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Abstract

Introduction: Manual gating of flow cytometry (FCM) data for marrow cell analysis is a standard approach in current practice, 
although it is time- and labor-consuming. Recent advances in cytometry technology have led to significant efforts in developing 
partially or fully automated analysis methods. Although multiple supervised and unsupervised FCM data analysis algorithms have 
been developed, they have not been widely adopted by the clinical and research laboratories. In this study, we evaluated flowDensity, 
an open source freely available algorithm, as an automated analysis tool for classification of lymphocyte subsets in the bone marrow 
biopsy specimens. Materials and Methods: FlowDensity-based gating was applied to 102 normal bone marrow samples and compared 
with the manual analysis. Independent expression of each cell marker was assessed for comprehensive expression analysis and 
visualization. Results: Our findings showed a correlation between the manual and flowDensity-based gating in the lymphocyte subsets. 
However, flowDensity-based gating in the populations with a small number of cells in each cluster showed a low degree of correlation. 
Comprehensive expression analysis successfully identified and visualized the lymphocyte subsets. Discussion: Our study found that 
although flowDensity might be a promising method for FCM data analysis, more optimization is required before implementing this 
algorithm into day-to-day workflow.
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IntroductIon
Flow cytometry (FCM) has been extensively used to 
identify clusters of cells that share a particular expression 
pattern of surface and intracellular proteins.[1-4] Manual 
gating, a subjective process of sequential inspection 
of one or two characteristics at a time, is currently the 
gold standard for FCM data analysis.[3,5] This manual 
process suffers from a lack of standardization and is 
found to be a significant source of variation in the 
FCM studies, with interlaboratory coefficients of 
variations up to 30%.[5] Other limitations associated 
with manual gating include subjectivity, difficulties in 
detecting unknown cell populations, and difficulties in 
reproducibility. To standardize this process and address 
these crucial limitations, major efforts have been made to 
develop partially or fully automated analysis methods.[1] 
Automated analysis methods can be grouped into two 

main categories: unsupervised and supervised.[1] Most 
of the automated gating methods are unsupervised. In 
working with the unsupervised algorithms, the data do not 
come with predefined labels and there are no outputs to 
predict. In terms of FCM data, these algorithms find some 
characteristic features of cells and they use these features 
to group the cells into different populations. As a result of 
this approach, previously unknown cell populations can 
also be identified in an unbiased, data-driven manner. The 
unsupervised algorithms do not require any training and 
need no or very limited parameterization, which makes 
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them easy to use.[1,5,6] In contrast, supervised approaches 
start with the goal of predicting a known output. They use 
external variables such as external biological or clinical 
characteristics as an input to train a model, which can 
then be used to predict the status of the new samples.[1,6]

Despite the new breakthroughs in the FCM bioinformatics 
and development of several algorithms for automated 
analyses of FCM data, these methods have not been widely 
adopted by the clinical and research laboratories. This 
limited adoption could be due to the lack of bioinformatics 
expertise required for implementing these tools, failure of 
these algorithms in replicating a human expert’s gating 
results, or difficulties in selecting the most appropriate 
method.[3,7,8] Multiple studies comparing various automated 
FCM data analysis techniques have been published. In one of 
the series of publications by FlowCAP (“Flow Cytometry: 
Critical Assessment of Population Identification Methods”) 
Consortium, seven different combinations of FCM data 
analysis algorithms were evaluated and two out of seven 
approaches showed promising outcomes.[1,7] flowDensity is 
one of the two successful methods used in this study, and 
it is a freely available, open-source, supervised clustering 
algorithm that closely matches an expert’s sequential two-
dimensional (2D) gating strategy to identify the predefined 
cell populations.[3] The sequence of gates is specified by the 
user and customized threshold calculations based on one-
dimensional (1D) density estimation are used for different 
cell subsets.[3,4] The algorithm is developed by using R, a 
free statistical software platform widely used for biological 
analyses. Using 1D thresholds makes flowDensity 
computationally efficient, and parallel processing of several 
files can be performed on a standard desktop computer.[4]

The development of automated FCM data analysis methods 
has made using multiple data analysis and visualization 
techniques possible. Some of these methods are also 
incorporated into the currently available software for manual 
analysis and interpretation of FCM data. One of the common 
visualization methods for high-dimension data, such as in 
FCM, is principal component analysis (PCA). PCA is a 
technique for reducing the dimensionality of large data sets 
into a biaxial plot that retains most of the variation in the 
data and aids in identifying different cell clusters based on 
the gene expression.[9,10] In the present study, the flowDensity 
algorithm was implemented as an automated analysis tool 
for the evaluation of lymphocyte subsets in the bone marrow 
biopsy specimens. PCA was then applied for visualization of 
the cell populations identified by flowDensity. In addition, 
a comprehensive expression analysis pipeline was developed 
for cytometric profiling and investigation.

MaterIals and Methods

Data collection
Overall, 102 bone marrow biopsy specimens collected 
from January 1, 2019 to December 31, 2019 were included 

in this retrospective study, after ethics approval from 
the Institutional Review Board (IRB) at the Houston 
Methodist Hospital. The biopsies had been performed as 
part of a clinical workup to rule out various bone marrow 
abnormalities and were all diagnosed as “normal for age” 
by a board-certified hematopathologist. The basic bone 
marrow lymphocyte panel in our institution includes 
the following surface markers: CD2, CD3, CD4, CD5, 
CD7, CD8, CD10, CD19, CD20, CD34, CD38, CD45, 
CD56, and Kappa and Lambda light chains. The FCM 
data were acquired by using FACSDiva software (BD 
Biosciences, San Jose, CA) and stored as FCS files after 
proper compensation. All the cases had been previously 
reviewed by a hematopathologist using manual gating and 
the following cell populations had been identified: CD4+ 
T cells, CD8+ T cells, Natural killer (NK) cells (CD3−/
CD56+/low SSC), NK-like T large granular lymphocytes 
(NK-like T LGL) (CD3+/CD56+/low SSC), CD56+ cells 
(with low and high SSC), CD19+/Kappa+ B cells, CD19+/
Lambda+ B cells, CD10+ cells (with low SSC), CD19+/
Kappa+/CD10+ cells, CD19+/Lambda+/ CD10+ cells, 
CD19+/CD5+ B cells, plasma cells (CD38+), and CD34+ 
cells.

Data processing with flowDensity
The FCS files were read and transformed by using R 
programming language (flowCore package).[11] The log 
transformation (logbase  =  10) was applied on all the 
markers, and cells with positive values were selected for 
further analysis. An iterative training model was used 
to optimize the flowDensity gating parameters for each 
marker. First, about one-third of the total samples (35 out 
of 102 samples) were randomly selected and tested by using 
the default parameters. The results of the automated gating 
were then visually inspected by a pathologist and compared 
with the manual gating done by a hematopathologist. An 
acceptable threshold was defined as achieving comparable 
results between the automated and manual gating in at least 
30 out of 35 cases. Therefore, this step was repeated until 
the threshold was met by using a different set of parameters 
during each iteration. These parameters are algorithm 
features used by flowDensity, such as density distribution-
shape, percentile, location, etc. Once the gating strategy was 
configured, a single R script was prepared to gate all the 
markers in each tube. No further modification was applied 
to the finalized script to improve the outcomes for individual 
samples. The output files contained density plot, gated 
plot, and a CSV file with a total number, proportion, and 
identifier of cells selected for each combination of markers 
used for gating in each tube (e.g., CD3+/low SSC).

Data analysis and visualization
The flowDensity results with an optimized gating strategy 
from 102 specimens were rigorously evaluated by two 
board-certified pathologists and categorized into pass 
and fail groups based on the accuracy of the distribution 



      Journal of Pathology Informatics  3  

J Pathol Inform 2021, 0:1 http://www.jpathinformatics.org/content/0/0/1

estimation and gating [Figure 1]. In addition, the cell 
proportions for each gated cluster from the cases that 
passed the initial assessment were correlated with its 
corresponding manual proportions.

The cytometric profile of each cell in a tube consists 
of expression values for multiple markers. Thus, each 
cell can be projected onto an n-dimensional space, 
where each dimension is represented by a marker. To 
visualize such data in multidimensional space, we used 
PCA, a dimensionality-reduction method that linearly 
combines a large number of parameters (expression 
values from different markers) and derives a smaller 
set of pseudoparameters while preserving most of the 
information present in the original high-dimensional data. 
Here, we used PCA to visualize selected cell populations 
expressing different markers identified by the optimized 
automated workflow described earlier.

Traditionally automated FCM tools such as flowDensity 
are used to identify specific subpopulation of cells using 
sequential parent gating. These tools can be also utilized 
to develop an automated workflow that can identify all 
the subset of cells in a tube expressing a different set of 
markers to a single cell resolution. Here, we expanded 
the flowDensity algorithm to conduct a comprehensive 
expression analysis to profile all the subpopulations of cells 
expressing a unique set of markers in a tube. To achieve 
this, we first reoptimized the gating strategy independently 
for each marker as described in the method section but 
without any sequential parent gating. Then, we generated 
a data matrix for each tube where each row is identified 
by a cell and each column is identified by a combination 
of two markers used for gating the cell populations (e.g., 
CD3+/low SSC). The matrix X has an entry Xij as 1 if  cell 
i is gated by the algorithm as positive for the marker pair j, 
else Xij is 0. This binary matrix was used as Boolean gating 

Figure  1: Manual and flowDensity-based gatings on two representative samples. (A–D) An example of successfully gated case 
(classified as Pass). The gates are placed manually (Plot A) and by using flowDensity (Plot B) on the CD3+/low SSC cell population. 
This population was then used as the parent gate and subsequently gated as CD4+ and CD8+ manually (Plot C) and by flowDensity 
(Plot D). (E–H) An example of inaccurately gated case (classified as fail). The gates are placed manually (Plot E) and by using 
flowDensity (Plot F) on the CD3+/low SSC cell population. This population was then used as the parent gate and subsequently gated 
as CD4+ and CD8+, manually (Plot G) and by flowDensity (Plot H)
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to generate all possible subsets of cells expressing a unique 
combination of markers in each tube.

The downstream data analysis and visualization 
were conducted by using the Python programming 
language (sklearn package used for PCA).[12] The 
pipeline code is publicly available at https://github.
com/Houton-Methodi s t -C l in i ca l - In for mat i c s /
flow-cytometry-data-analysis.

results

Gating on populations of interest
Automated gating was performed for 102 normal bone 
marrow specimens, on the same populations as the manual 
gating. In comparing flowDensity and manual gating 
results, the proportion distribution of cells from all 102 
cases showed an overlap within a 95% confidence interval 
between the two methods for all the markers; however, 
for 6 out of 16 markers (CD38+, Lambda [CD10+], 
CD10+/low SSC, CD3−/CD56+ [low SSC], CD19+/low 
SSC, and CD19+/CD5+), the equality of variances in 
the distributions was significantly different (Levene’s test, 
Pval < 0.01, Figure 2).

As seen in the Method section, all the automatic gating 
scattograms were then reviewed by two board-certified 
pathologists and classified as pass or fail based on the 
accuracy of gating. For example, cases with a too large 
or narrow selection boundary or inappropriate boundary 
shape were classified as fail [Figures 1 and 3]. There were 

no discrepancies in evaluating the accuracy of gating 
between the two pathologists. Out of 102 normal bone 
marrow specimens, 95 cases were successfully gated for 
the CD3+/low SSC cell population and showed a strong 
correlation (r = 0.9843) [Figure 4A]. Sequential gating on 
CD3-positive cells for CD4 and CD8 showed 90 and 71 
correctly gated cases, respectively (r = 0.9865 and 0.9509) 
[Figure 4B and C]. Overall, 97 out of 102 specimens 
with successful gating on CD56+/low SSC (r  =  0.9001) 
were subsequently processed for NK (CD3−/CD56+/
low SSC) and NK-like T LGL (CD3+/CD56+/low SSC) 
populations. In 97 specimens gated for NK, 68 samples 
were successful (r = 0.6478) [Figure 4D]. The number of 
correctly processed cases was higher in gating the NK-like 
TLGL cells (92 out of 97) and showed a Pearson correlation 
coefficient of 0.8792 [Figure 4E]. Gating on the CD56+/
high SSC cell population resulted in a lower number of 
correctly gated samples (52 out of 102, r = 0.6934). Using 
flowDensity to gate the B cell subsets showed a lower 
number of successfully gated cases (56 out of 102 for 
CD19+/low SSC) with a Pearson correlation coefficient 
of 0.5455 [Figure 4F]. The successfully processed cases 
were subsequently gated for Kappa and Lambda and 
showed 30 and 36 correctly gated samples (r = 0.5111 and 
0.5329, respectively) [Figure 4G and H]. CD19+/low SSC 
cells were also used as the parent gate for gating CD5+ 
cells and showed 37 cases correctly gated (r = −0.0012). 
In gating the CD10+/low SSC population, 84 out of 
102 specimens were successfully processed (r  =  0.8712) 
[Figure 4I]. Sequential gating for Kappa and Lambda was 

Figure 2: Comparing manual and automated-based gatings. Violin plots showing the distribution of cell proportions using automated 
(flowDensity) and manual gatings. The proportion distribution of cells from all 102 cases showed an overlap within a 95% confidence 
interval between the two methods for all the markers; however, for 6 out of 16 markers (CD38+, Lambda (CD10+), CD10+/low 
SSC, CD3−/CD56+ (low SSC), CD19+/low SSC, and CD19+/CD5+), the equality of variances in the distributions was significantly 
different (Levene’s test, Pval < 0.01)
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performed and showed 30 and 35 successfully processed 
samples, respectively (r = 0.6729 and 0.2988). Automated 
gating on CD38+ cells on 102 samples showed 80 correctly 
gated cases (r = 0.2018). Gating CD34-positive cells had a 
Pearson correlation coefficient of 0.4945, with 73 out of 
99 being successfully processed [Figure 4J].

Applying principal component analysis
To visualize the cell clusters, the PCA technique was applied 
to 50 samples that were successfully gated by flowDensity 

for the main cell subsets in the T cell (CD4+ T cells, CD8+ 
T cells, NK cells, and NK-like TLGL) or CD19+ B cells 
(Kappa+ B cell, Lambda+ B cell, and CD5+ B cells) 
screening tubes. The PCA algorithm assigned each cell in 
a new dimension (such as PC1 and PC2), where each new 
dimension is a linear combination of the expression values 
of all the markers present in a tube. These two dimensions 
(PCA1/PCA2) are plotted on a biaxial plot to visualize 
clusters of cells and compared against subsets of cells 
identified by flowDensity for the respective cell types. Here, 

Figure  3: Total number of cases gated by flowDensity. All the gated plots were reviewed by a pathologist, and the samples that 
were successfully processed were identified. This chart shows the total number of passed and failed cases for each cell population 
individually

Figure 4: Correlation of flowDensity and manual gatings. Comparing the manual and flowDensity-based gatings. Correlation plots 
for the following representative cell populations are shown: CD3+ (A), CD4+ (B), CD8+ (C), CD3−/CD56+ (D), CD3+/CD56+ (E), 
CD19+ (F), Kappa+ (G), Lambda+ (H), CD10+ (I), CD34+ (J)
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the FCM data from 28 T cell and 22 B cell tube samples, 
successfully analyzed by flowDensity, were used for PCA 
visualization and evaluation. By applying PCA in our 
study, the cells of the same subset identified by flowDensity 
analysis were mostly grouped and separated from the cells 
of different subsets, although CD5+ B cell subsets with a 
few number of events were not readily distinguishable from 
the adjacent clusters. Comparing the visualization results 
of the T cell subsets showed a consistent pattern in 20 out 
of 28 normal bone marrow samples. However, this ratio was 
lower in the B cell subpopulations (9 out of 22). The PCA-
generated maps for six representative T and B cell samples 
are shown in Figure 5. Figure 5A shows the PCA-generated 
map visualizing T cell subsets in three different bone 
marrow specimens; Figure 5B depicts B cell subpopulations 
of three representative bone marrow samples.

Independent analysis of individual cells and 2D plot 
visualization
To identify all the subpopulations present in each sample, 
we utilized the same gating strategy with flow density as 
described earlier but removed all the parent gatings from 
the pipeline. With this approach, we were able to analyze 
each cell independently and identify a set of markers that it 
expressed. This information was then used to identify all the 

subpopulations present in the entire sample and calculate 
the total number of cells for each subset. Next, each cell 
was assigned to its group marked by a set of markers that it 
expressed, and the cell clusters with greater than 0.1% of total 
events were then visualized on 2D scatterplots [Figure 6].

dIscussIon
Recent advancements in cytometry technology with an 
increased number of measured parameters per cell and 
increased data complexity have made automated analysis 
tools a potential solution for handling the abundance of 
produced data.[7] flowDensity, a supervised algorithm for 
analyzing FCM data, has recently been used in different 
studies.[3,4,13] Conrad et al.[4] used flowDensity to implement 
an automated FCM analysis pipeline for human immune 
profiling. Data were generated by performing two staining 
panels for the identification of effector and memory or 
helper and regulatory T cells, and they showed a strong 
correlation between the manual and automated methods.[4] 
In another study by Ivison et al.,[13] an automated analysis 
workflow using flowDensity was developed and peripheral 
blood samples from both healthy subjects and patients 
10 days after hematopoietic stem cell transplantation were 
analyzed. Data were acquired by using different instruments 
from different vendors and across centers. The results were 

Figure 5: PCA-generated maps. By applying the PCA technique to the bone marrow FCM data and visualizing the subpopulations 
(CD4+ T cells, CD8+ T cells, NK cells, and NK-like TLGL, Kappa+ B cell, Lambda+ B cell, CD5+ B cells), the cells of the same 
subpopulation identified by flowDensity analysis were successfully grouped and separated from the other cells. (A) Shows the PCA 
generated map visualizing T cell subsets in three different bone marrow specimens. The B cell subpopulations of three representative 
bone marrow samples are shown in (B)
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compared with per-event value obtained by an expert 
manual analyzer and showed a strong agreement between 
the automated and manual methods.[13] In our study, we 
implemented flowDensity algorithm to analyze the FCM 
data of bone marrow biopsy lymphocyte subsets. For the 
populations that were successfully gated by flowDensity 
(pass group), our results showed a strong correlation between 
the manual and automated methods for the majority of 
the lymphocyte subsets. However, the flowDensity-based 
gating method failed to create an accurate gate for 5%–50% 
of the cell populations [Figure 3]. In addition, automated 
gating of the cell populations with a small number of 
events did not match the manual gating as closely. This 
finding was in agreement with the previous publications 
identifying the clusters with a few events to show a larger 
discrepancy between the manual and flowDensity-based 
gatings.[4,13] Other contributors of disagreement between 
the two methods in recent studies include poorly defined 
clusters and populations with indistinct marker expression 
boundaries, which are also known to be a significant source 
of variability in manual gating.[4,5,13] By applying PCA, the 
main cell subsets (CD4+ T cells, CD8+ T cells, NK cells 
and NK-like TLGL, Kappa+ B cell, and Lambda+ B cell) 
identified by flowDensity were successfully grouped and 
separated from the cells of different subsets. In addition, 
T cell subsets showed a consistent pattern in 20 out of 28 

normal bone marrow samples. However, this ratio was lower 
(9 out of 22) in visualizing the B cell subpopulations. This 
finding could be due to the presence of a smaller number of 
B cells in the bone marrow, which likely reduces the reliability 
of a flowDensity-based approach. Further, to identify all 
the present cell populations in each sample, we defined the 
expression of the variant markers for each cell independently. 
All the present cell populations with a unique combination 
of markers were identified, and the clusters with greater 
than 0.1% of total events were visualized on 2D scatterplots 
[Figure 6]. This approach helped us to readily identify all the 
present cell populations, calculate their proportion in the 
sample, and easily recognize them on the created plots. We 
believe that using this approach in the FCM workflow can 
facilitate the process of FCM data analysis and interpretation 
in both research and clinical practice.

In summary, major efforts have been made in recent years 
for the development of automated FCM data analysis, in 
order to increase efficiency and standardization of data 
output and reduce the analysis time. Although several 
reports of successful implementation of automated gating 
methods on either artificial data sets or patients’ samples 
have recently been published, there is still limited adoption 
due to barriers such as the required bioinformatics 
expertise.[4,5,14-16] Our study found that although 

Figure 6: Independent analysis of individual cells in a representative case. By analyzing each cell independently, we were able to identify 
all the present cell populations with a unique combination of markers. All the cell subsets with greater than 0.1% of total events were 
visualized on 2D scatterplots. (A) Three representative plots showing the cell populations present in the T cell screening tube. (B) Three 
representative plots visualizing the cell populations present in the B cell screening tube. (C) CD34+ cells from the blast tube
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flowDensity might be a promising method for FCM data 
analysis, more optimization and potentially incorporating 
additional tools for identification of clusters with a small 
number of cells are still required before implementing 
this algorithm in our everyday practice. Increasing the 
number of studies using clinical FCM data will provide 
additional feedback to the algorithm developers and 
improve accuracy in the future versions. In addition, 
the development of user-friendly tools that require less 
informatics and programming knowledge can result in a 
more widespread adoption of these tools.
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