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Abstract

A unified proteochemometric (PCM) model for the prediction of the ability of drug-like chemicals to inhibit five major drug
metabolizing CYP isoforms (i.e. CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) was created and made publicly available
under the Bioclipse Decision Support open source system at www.cyp450model.org. In regards to the proteochemometric
modeling we represented the chemical compounds by molecular signature descriptors and the CYP-isoforms by alignment-
independent description of composition and transition of amino acid properties of their protein primary sequences. The
entire training dataset contained 63 391 interactions and the best PCM model was obtained using signature descriptors of
height 1, 2 and 3 and inducing the model with a support vector machine. The model showed excellent predictive ability
with internal AUC= 0.923 and an external AUC= 0.940, as evaluated on a large external dataset. The advantage of PCM
models is their extensibility making it possible to extend our model for new CYP isoforms and polymorphic CYP forms. A key
benefit of PCM is that all proteins are confined in one single model, which makes it generally more stable and predictive as
compared with single target models. The inclusion of the model in Bioclipse Decision Support makes it possible to make
virtual instantaneous predictions (,100 ms per prediction) while interactively drawing or modifying chemical structures in
the Bioclipse chemical structure editor.
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Introduction

There are close to sixty Cytochrome P450 enzymes (CYPs)

present in humans, where they facilitate oxidative metabolism of

endogenous substances and xenobiotics. Two-thirds of currently

used drugs are cleared by metabolism, and seven CYPs contribute

to the clearance of more than 90% of these compounds. The

major drug-metabolizing isoforms are CYP1A2 (estimated to

catalyze metabolism for 2% of drugs), CYP2B6 (4%), CYP2C9

(10%), CYP2C19 (5%), CYP2D6 (28%), CYP2E1 (4%), and

CYP3A4 (47%) [1,2]. Being broadly specific with respect to their

substrates, CYPs are also susceptible to inhibition by a large

variety of chemical compounds. The results of a recent large-scale

screening against five CYP isoforms identified that the majority of

compounds in a typical chemical library cross-inhibited several

isoforms, while only 7% of the compounds did not inhibit any of

the isoforms [3].

CYP inhibition leads to decreased elimination and/or

changed metabolic pathways of their substrates, which is the

major cause of adverse drug-drug interactions [2,4]. It is

therefore essential to identify potential problems with CYP

liability at an early stage in drug discovery. During the last

decade, techniques for high throughput in vitro screening of CYP

inhibition were developed and implemented on a broad scale in

the drug discovery pipelines of pharmaceutical companies, as

well as much open data has accumulated through academic

research initiatives (e.g. PubChem Bioassays AID 410 and 1851)

[5]. The collected data has enabled development of structure-

activity relationship models for in silico prediction of CYP

inhibition. Thus, Vasanthanathan et al. [6] and Novotarskyi

et al. [7] recently developed large-scale single target models for

CYP1A2 isoform, and Cheng and co-workers [8] created single

target models for five CYP isoforms (i.e. QSAR models). These

models show good predictive performances, but have the

disadvantage that they are not implemented as publicly

available services. Another deficiency of these models (except

the work by Cheng et al. [8]) is the use of molecular descriptors

that are calculated by commercial software packages, which

does not allow implementation of the models in free, open

source software.

All previous studies created structure-activity models for one

CYP subtype at a time. This may be a suboptimal approach since
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the inhibition profiles of CYPs largely overlap. A more general

technique is proteochemometrics (PCM), a modeling technology

that we introduced some time ago [9] to study similarities and

differences in molecular interaction mechanisms of groups of

related proteins [10,11]. PCM creates unified models for multiple

proteins interacting with multiple ligands by correlating the

interaction data to descriptors of both sets of interacting entities.

Previous studies on G-protein coupled receptors, proteases,

protein kinases, and other protein classes have shown PCM to

be able to predict activity profiles of untested chemical compounds

as well as activity profiles of untested proteins [10–14]. In this

study, we aimed to create a unified PCM model for CYPs suited

for drug profiling using free, open-access software and make the

model publicly available for predictions using earlier developed

open source Bioclipse Decision Support system [15].

Materials and Methods

Datasets
Dataset for model development. We used PubChem

BioAssay dataset AID=1851 containing data for inhibition of

five major CYP isoforms (CYP1A2, CYP2C9, CYP2C19,

CYP2D6 and CYP3A4) by 17 143 chemical compounds [3,5].

Inorganic compounds, non-covalent inhibitors and compound

mixtures were removed from the dataset, leaving 16 359

compounds. The dataset classified compounds as active or inactive

for the respective CYP, and the activity cutoff was set to

AC50 = 10 mM (AC50, ‘‘activity concentration 50’’, refers to the

concentration that is required to elicit half-maximal effect).

However, in cases when the dose-response curve for a compound

showed poor fit or the inhibition efficacy was below 60%, the assay

results were regarded as inconclusive. Thus, not all compounds

had activity outcomes for all five CYP isoforms, but the dataset

contained all-in-all 63 391 compound-CYP combinations. The

fraction of compounds found to be active ranged from 19% for

CYP2D6 to 46% for CYP1A2 (Table 1). The dataset comprised

drugs and drug-like compounds. The chemical space revealed that

the majority of compounds had molecular weight below 500

daltons and logP below 5 (Figure 1).

Dataset for model validation. Dataset for external valida-

tion of the model was obtained from Cheng et al. [8] and

comprised 8 988 compounds tested on at least one of the five CYP

isoforms studied herein. In this dataset, compounds are charac-

terized by the so-called PubChem activity score,and are regarded

as inhibitors if the activity score ranges between 40 and 100.

PubChem activity score is assigned based on an AC50 value, which

is combined with a measure for completeness of a dose-response

curve and efficacy of inhibition, where a larger value indicates

higher inhibitory activity and/or higher confidence in inhibitory

assay result. Compounds with activity score equal to 0 are

considered as non-inhibitors while compounds with activity score

above 0 and up to 40 are considered as inconclusive and therefore

removed from the dataset. Under these constraints, the fraction of

inhibitors obtained in the dataset ranges from 19% for CYP2D6 to

62% for CYP1A2 [8]. The dataset for model validation is

hereinafter termed ‘external test set.’

Description of Chemical Compounds
All compounds were obtained as SMILES strings and converted

to SDF format by open source Bioclipse workbench version 2.6

software [16–18]. The compounds were thereafter encoded by

molecular signatures [19], which were generated by Bioclipse 2.6.

An atomic signature is a canonical representation of the atom’s

environment up to a predefined height (i.e. the bond number to the

neighboring and next-to neighboring atoms that the signature

spans). Only heavy atoms but not hydrogens are considered in

calculation of signatures. Signatures distinguish between single,

double, and triple bonds, as well as between aromatic and

aliphatic atoms in the atom’s environment. (There is no further

distinction of atoms depending on chirality or hybridization state,

however). Presence of the same atomic signatures in several

compounds indicates thus that these compounds share identical or

similar 2D structural fragments or features.

A molecular signature constitutes a vector of occurrences of all

atomic signatures in the dataset. In the present dataset, we found

460 atomic signatures of height one, 13 386 atomic signatures of

height two, and 67 168 of height three. In other words, molecular

signatures of heights one, two and three comprised in our dataset

vectors of 460, 13 386, and 67 168 integers.

Description of CYP Isoforms
We encoded the five CYP enzymes by alignment-independent

description of composition and transition of amino acid properties

in the protein primary sequences as proposed by Dubchak and

coworkers [20]. The descriptors are based on seven amino acid

properties: 1) hydrophobicity, 2) normalized van der Waals

volume, 3) polarity, 4) polarizability, 5) charge, 6) secondary

structure, and 7) solvent accessibility. For each of these seven

attributes, amino acids are assigned to three classes. As there are

seven attributes and three classes, 763= 21 composition descrip-

tions can be computed, representing percentages of the attributes/

classes in the protein sequence. The transition descriptors

represent frequencies with which an attribute changes class along

the sequence, e.g., a class 1 amino acid is followed by a class 2

amino acid or vice versa. As there are three possible transitions

between classes, 763= 21 transition descriptors can be calculated.

Composition and transition descriptors were computed by using

PROFEAT (Protein Feature) web server [21].

Figure 1. Chemical space covered by the dataset. The graph
shows logP versus the molecular weight of the compounds. Work set
compounds are shown as blue dots and prediction set compounds as
red dots. The logP was calculated by Dragon 5.5 software (Talete.srl).
doi:10.1371/journal.pone.0066566.g001
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Methods of Correlation of Compound and CYP
Descriptors to the Activity Data

Support Vector Machine (SVM). SVM is a machine-

learning technique for classification or regression that uses linear

or non-linear kernel-functions to project the data into a high-

dimensional feature space. Correlation is performed in this

hyperspace based on the structural risk minimization principle;

i.e., aiming to increase the generalization ability of a model [22].

We induced PCM models by applying the commonly used

Gaussian radial basis function kernel. SVM requires fine-tuning of

several parameters to obtain an optimal model, the most

important being the width of the kernel function c and the error

penalty parameter C. We found optimal c and C by performing

grid search and evaluating resulting models by five-fold cross-

validation. SVM models were created by libSVM software as

accessed from Weka 3.7 [23]. The final model was implemented in

Bioclipse Decision Support system using e1071 package from the

R software environment accessed under Bioclipse 2.6.

K-Nearest Neighbor method (k-NN). The k-NN algorithm

predicts the class of a test set object based on the class membership

of its k most similar training set objects. We induced k-NN models

using Weka 3.7 software. To obtain optimal k-NN models one

must find the optimal number of neighbors considered to predict

class membership. Moreover, in PCM modeling the results are

influenced by the scaling of compound descriptors, relative to the

scaling of protein descriptors. To obtain optimal models, we

systematically varied scaling of the two descriptor blocks and the

number of considered neighbors while estimation of the prediction

accuracy for the resulting models was performed by means of five-

fold cross-validation.

Random Forest. Random Forest (RF) is a classifier that

consists of multiple decision trees. A decision tree is made of nodes

and branches. At each node the dataset is split based on the value

of some attribute that is selected so that the instances of different

classes are predominantly moved to different branches. Classifi-

cation starts at the root node and is performed by passing the

instances along the tree to leaf nodes. To introduce diversity

between the trees of a random forest, a small subset of all attributes

is randomly selected to take decisions at each node of each tree.

The classification is performed by considering results of all trees by

a majority vote. We generated RF using the RandomForest

classifier of Weka 3.7. The optimal size of the forest and the

number of attributes to consider at each node were found by

performing five-fold cross-validation.

Assessment of the Quality of the Models
We assessed the predictive ability of the models by performing

cross-validation and external predictions. We used two statistical

measures: the overall prediction accuracy and the area under the

Receiver Operating Characteristic (ROC) curve.

Accuracy is simply the percentage of correctly classified

instances and is calculated as

ACC~
TPzTN

TPzFPzTNzFN

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives or over-predictions,

and FN is the number of false negatives or missed predictions.

However, accuracy is not an optimal measure of model

performance if the dataset is unbalanced (i.e. sizes of the classes

are unequal) or if certain errors are to be considered more serious

than others (e.g. false negatives compared to false positives). In

contrast to accuracy, the area under the Receiver Operating

Characteristic curve is a measure of the discriminatory power that

is insensitive to changes in class distribution and the costs of

making certain errors. A ROC curve is obtained by calculating

sensitivity and specificity at various discrimination threshold levels.

Sensitivity is the fraction of true positives among all positively

classified instances (the true positive rate) and is calculated as:

sensitivity~
TP

TPzFN

Specificity is the true negative rate and is calculated as:

specificity~
TN

TNzFP

An increased sensitivity is always accompanied by decreased

specificity. A ROC curve is plotted as sensitivity versus 1-

specificity, at varied discrimination cut-offs. An area under the

ROC curve (AUC) close to 1 means that the classifier can perfectly

separate the two classes, whereas an area 0.5 indicates that the

classifier does not perform better than random guessing.

Results and Discussion

Activity Data
The success of PCM modeling depends to a large extent on

partial overlaps of the activity profiles of the studied proteins, or its

multi-covariance, when the data are quantitative. An overview of

the activity data is given in Table 1. As seen, more than half of the

compounds that are inhibitory on CYP1A2 inhibit also CYP2C19

(3 252 of 5 838). CYP1A2 also shares more than 40% of its

Table 1. Composition of the dataset.

CYP isoform
Tested
compounds

Active
compounds

Active only against
this CYP Active also against:

1A2 2C9 2C19 2D6 3A4

1A2 12 634 5 838 (46%) 1 395 2 011 3 252 1 272 2 565

2C9 12 264 4 024 (33%) 370 2 011 3 022 800 2 115

2C19 12 834 5 763 (45%) 562 3 252 3 022 1 363 3 012

2D6 13 276 2 545 (19%) 622 1 272 800 1 363 1 252

3A4 12 383 5 165 (42%) 889 2 565 2 115 3 012 1 252

doi:10.1371/journal.pone.0066566.t001
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inhibitors with CYP3A4 and 35% with CYP2C9. Inhibitors of

CYP2C9 also tend to be active against CYP2C19 (3 022 of 4 024,

i.e. 75%), although the opposite tendency is less pronounced, the

total number of inhibitors of CYP2C19 being 5 763 (i.e, only 52%

of them, that is 3 022 of 5 763, inhibit also CYP2C9). CYP2C19

also shares 3 012 inhibitors with CYP3A4, but only 1 363

inhibitors with CYP2D6. In fact, CYP2D6 shows the most distinct

inhibition profile, having fewer inhibitors than the other isoforms,

and about J of them being specific for only this isoform.

In analyzing the activity data one should take into account that

not all compound–CYP combinations had conclusive assay results;

hence, the fraction of compounds inhibiting several CYPs is

expected to be even greater than estimated in the table. Thus,

taken together, the interaction data suggests that the dataset is well

suited for simultaneous PCM modeling of compound interactions

with all five CYP isoforms.

Proteochemometric Modeling
We developed several PCM models for the inhibition of five

isoforms of CYP450 enzyme using the dataset of 16 359 organic

compounds, comprising totally 63 391 organic compound–CYP

isoform combinations. CYP isoform–inhibitor combinations were

assigned the category membership +1, and CYP isoform–non-

inhibitor combinations were assigned the category membership

21. The structures of chemical compounds were encoded by

molecular signature descriptors and the CYPs were represented by

descriptors of amino acid property composition and transition in

their primary sequences. Description of compound-CYP combi-

nations was formed by concatenation of the respective compound

and CYP descriptions. PCM models correlating the thus obtained

compound-CYP description to the activity data were developed

using three non-linear data analysis techniques: Support Vector

Machine, Random Forest, and k-Nearest Neighbor method.

These three techniques not only perform binary classification

(i.e. 21/+1) but also provide class probability estimates, i.e.

quantitative predictions in the range between 21 and 1. To

estimate the predictive ability of the models we calculated

accuracy (percentage of correctly classified instances) at zero

threshold level as well as area under the ROC curve (AUC), which

is obtained by plotting model sensitivity versus specificity at

varying discrimination thresholds. The models were validated

internally by performing five-fold cross-validation as well as by use

of the external test set, as described under Materials and Methods.

We created PCM models based on the compound description of

increasing complexity (i.e. increasing height of molecular signa-

tures) (Table 2). The Random Forest technique, which employ

molecular signatures of height 1, produced an excellent model

with internal AUC=0.900 and external AUC=0.933. The model

improved further by adding higher signatures, which gave internal

AUC=0.918 and external AUC=0.946. The best Support

Vector Machine model was obtained by combining signatures of

height 1, 2, and 3, which gave the internal AUC=0.923 and

external AUC=0.940; its performance thus being about the same

as the best random forest model. The performance of k-Nearest

Neighbor approach was inferior to the two other methods; all

models with height 1, 2, and 3 showing similar performances with

AUCs ranging 0.860–0.870.

ROC curves for individual CYP isoforms, as obtained from

cross-validation of the models, are presented in Figure 2 Panel A.

In the SVM model, at 80% sensitivity level the specificities for the

five isoforms ranged 80 to 92%, while in the RF model, the

specificity is slightly lower for CYP2D6. The figure confirms that

the discriminative ability of k-NN model is slightly lower, except

for the CYP1A2 isoform.

The results from the external validation are even more

impressive. For three of the isoforms the specificity at 80%

sensitivity level is 97–99% for both the SVM and RF models

(Figure 2 Panel B). The superior results compared with that of the

internal validation may be explained in part by the way the

external test set was created. As described under Materials and

Methods, compounds of the external test set were classified as

active/inactive based on their PubChem activity scores, which is a

classification that may not be directly comparable to AC50 values.

Further on, scores between 0–40% were considered as inconclu-

sive and compounds falling within this range were removed from

the dataset, a situation which would likely make the predictions

easier.

However, the external predictions for CYP1A2 are not superior

to the cross-validation results. The shape of the ROC curve

indicates that for this isoform very high sensitivity can be achieved

only at a cost of low specificity. Remarkably, CYP1A2 is the only

one of the five enzymes for which the fraction of inhibitors in the

external test set is higher than in the work set (64% versus 46%).

For one of the five isoforms, CYP3A4, the area under the ROC

curve as obtained from external predictions is lower than AUC

from internal validation (0.865 versus 0.907 in RF model and

0.889 versus 0.927 in SVM model). This can be attributed to

differences between the used activity criteria or to differences in

the compositions of the two datasets. In particular, the fraction of

inhibitors of CYP3A4 in the test set was below 30% as compared

to 42% in the dataset as used for model development. It is also

known that inhibitor effects may be influenced by the assay

conditions; e.g. differences may arise from the use of different

substrates [24].

In an earlier study by Cheng et. al. [8], the same dataset was

exploited for external validation for single target models, and the

models also performed best for CYP2C9, CYP2C19, and

CYP2D6 where the AUC values being in the range 0.842–

0.886. The AUC for CYP3A4 was, however, only 0.79, indicating

that this enzyme is indeed most promiscuous and therefore difficult

to predict (in fact, CYP3A4 is involved in metabolism of almost

half of all currently used drugs). It is notable that our

proteochemometric model seems to outperform the earlier single

target models in terms of predictive accuracy.

Implementation of the Proteochemometric CYP Model in
Bioclipse Decision Support
Bioclipse Decision Support provides a workbench where

scientists can download and execute predictive models on

chemical structures [15]. We packaged the proteochemometric

model developed with the Support Vector Machine using

molecular signatures of height 1–3 (model marked by an asterisk

in Table 2) and made it available for predictions from within

Bioclipse Decision Support. Bioclipse [16–18] and Bioclipse

Decision Support [15] are available as open source under the

Eclipse Public License (EPL). Binary downloads of Bioclipse for

Windows, Linux, and Mac OS X are available from http://www.

bioclipse.net and source code is available from https://github.

com/bioclipse. After downloading and unpacking Bioclipse, users

can install the proteochemometric CYP450 model as is described

in full detail in on the website www.cyp450model.org [25],

accompanying this study.

Users are then able to draw or import chemical structures and

predict CYP inhibition (see Figure 3, for examples). The

implementation is fast, taking only about 100 ms for an average

chemical structure.

Model for Cytochrome P450 Isoforms
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Predictions of Inhibition of CYP Isoforms that are not
Represented in PCM Models
We also created proteochemometric models for five reduced

datasets, leaving out one CYP isoform at a time and then used the

reduced models to predict the activities of the compounds against

the excluded isoform. This was done to test the hypothesis that

PCM models can be used to predict inhibition of CYP isoforms

that have not been subjected to extensive experimental testing and

thus lack a bulk of experimental data.

The models were validated using two test sets: Test Set A

composed of compound–CYP combinations where CYP isoform

was excluded from the dataset but the compound could still be

present in it (i.e. data from BioAssay AID=1851); Test Set B

Table 2. Summary of the performance of PCM models.

Classification method
Maximum height
of signature Cross-validation External prediction

accuracy (%) AUC accuracy AUC

Support Vector Machine 1 83.73 0.905 82.52 0.883

2 85.13 0.920 87.04 0.922

3* 85.68 0.923 88.33 0.940

Random Forest 1 83.03 0.900 87.53 0.933

2 84.35 0.915 88.32 0.941

3 84.16 0.918 88.63 0.946

k-Nearest Neighbors 1 78.97 0.865 80.38 0.866

2 79.56 0.870 80.10 0.868

3 78.48 0.860 79.54 0.865

*Model implemented in Bioclipse Decision Support at www.cyp450model.org.
doi:10.1371/journal.pone.0066566.t002

Figure 2. ROC curves for proteochemometric models of CYP inhibition. Shown are results from models induced by Support Vector Machine,
Random Forest, and k-Nearest Neighbor algorithms. Chemical compounds were described by molecular signatures of height 1–3 in all three models.
Panel A presents ROC curves obtained during five-fold cross validation and panel B presents ROC curves obtained from the predictions for the
external dataset. The area under the ROC curve (AUC) is a measure of the discriminatory power of a model. The numerical values of AUC of each
model are given in Table 2.
doi:10.1371/journal.pone.0066566.g002
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included compound–CYP combinations where neither the CYP

isoform nor compound were present in the dataset used for model

building (i.e. data from dataset collected by Cheng et al. [8]).

The best models for the five reduced datasets were obtained by

Random Forest, the average AUC for Test Sets A being

AUC=0.792 and for Test Sets B AUC=0.797. ROC areas for

each of the CYP isotypes are shown in Figure 4. The best

predictions are for CYP2C9 and CYP2C19, which in fact are

phylogenetically closest of the studied CYP isoforms. As seen in the

figure, for these CYPs at 80% sensitivity level, specificity also

exceeds 80%. For CYP1A2 and CYP3A4, the predictions are

moderately good where at 80% sensitivity the specificity being

about 60% for Test Set A and 50% for Test Set B. The lowest

prediction accuracy (AUC=0.66) in Test Set 1 is for the CYP2D6.

This can be explained by the markedly distinct inhibition profile of

this isoform as compared to the others. In particular, of the

compounds inhibiting all other CYP isoforms they are tested on,

only 35% also inhibit CYP2D6. The presence of these compounds

in both the work set and the test set apparently leads to

mispredictions. This is evident from comparison with the excellent

prediction results for the Test Set B (AUC=0.79), comprising

novel unseen compounds not biasing the predictions towards false-

positive results.

General Discussion and Conclusions

We have shown in several earlier studies the advantage of PCM

over single target modeling approaches in predictive modeling

[9,10,26,27]. PCM models can host several hundred targets in one

unified model thereby aiding the development of broad predictive

models [10]. Furthermore, the PCM approach results in more

stable and predictive models for datasets comprising of only a few

targets when compared to single target models. A value-added

benefit is also that PCM models make richer interpretations

possible [9]. The performance improvement afforded by PCM

models can be attributed to the richer information content when

data for multiple targets and compound series are included into a

unified model. We have even shown earlier that PCM is useful for

the modeling of inhibition of multiple CYP-isoforms and gives

higher predictive ability than conventional single target approach-

es [27]. However, the latter model was built on a limited set of

only 375 compounds, which made it not practically useful for drug

profiling.

In this study, we aimed to develop a proteochemometric model

for the prediction of the inhibition of five major drug-metabolizing

CYP isoforms that are suited for general drug profiling. All stages

of the modeling are performed using open source software, and the

best-performing model is hosted in the Bioclipse Decision Support.

In this model, chemical compounds are represented by molecular

signatures of height 1–3 comprising more than 80 000 atomic

signatures. Thus, the predictions are based on the presence and

count of multiple overlapping molecular fragments of various sizes.

On an average, the dataset compounds contained 13.6 atomic

signatures of height one (i.e. non-zero values of the molecular

signature). The corresponding average values for height two are

19.3 and for height three 21.2 atomic signatures per compound

(these numbers for individual compounds are roughly proportional

to the number of atoms in the molecule). Thus, despite the large

sizes of molecular signatures of heights two and tree, the size of the

whole dataset in sparse representation does not become as

extensive as to make the data storage and computations too

resource demanding to not be affordable in reasonable time at

reasonable cost.

We built PCM models using three non-linear algorithms for the

correlation of descriptors of chemical compounds and CYP

isoforms to the compound–CYP inhibition data. Non-linear

methods allow PCM to account for complementarities of ligand

and protein properties that are required for their interactions (for

in depth discussion of technical aspects of PCM we refer to [10,11]).

Of the three methods, Support Vector Machines and Random

Forest were comparable and yielded models with very good

predictive performances; the accuracies ranging between 84–88%,

and AUC being above 0.9 for both cross-validation and external

predictions.

The main advantage of hosting the model on Bioclipse Decision

Support is that users can draw or import chemical structures in

various file formats, modify the structures and perform predictions

in an interactive mode where the average time for recalculations

being about 100 ms for a medium-sized molecule. This is in vast

contrast to current workflows for typical QSAR and proteochemo-

metric studies where chemical structure management, descriptor

calculation, and statistical analysis are treated as separate steps and

performed by non-integrated software packages, which leads to

Figure 3. Screenshots of Bioclipse Decision Support showing the predictions of proteochemometric model. Left panel) Model predicts
that Quetiapine inhibits CYP2D6. Middle panel) Model predicts that Propranolol inhibits CYP1A2 and CYP2D6. Right panel) Model predicts that
Fluvoxamine inhibits all five CYPs.
doi:10.1371/journal.pone.0066566.g003
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low throughput and even lack of possibility of performing

predictions for new compounds and updating the models when

new data become available. By contrast, the Bioclipse platform

makes all of this easy in an interactive way. Bioclipse is a fully

scriptable work-bench, which provides means to plug-in various

open source cheminformatics, bioinformatics, and data analysis

tools [10,15–18]. The Bioclipse platform facilitates streamlined

modeling without any manual, time consuming, and error prone

steps of data conversion and transfer between various software

packages joined in ad hoc fashions. An important feature of

Bioclipse Decision Support [15] is also the ability to select and run

multiple predictive models at the same time, making it easily

available to complement the CYP model with models for other

endpoints such as activity on targets and off-targets, toxicity, and

ADME (see [24]).

At present a bulk of inhibition data has been collected for just

five of about sixty CYP isoforms present in humans. Interestingly,

CYP isoforms that metabolize only few drugs can be inhibited by a

large array of compounds. For example, 46% of compounds from

our analyzed dataset inhibited CYP1A2, 45% inhibited

CYP2C19, and 42% inhibited CYP3A4, although the former

two isoforms mediate the metabolism of much fewer drugs than

the latter one (2%, 5%, and 48%, respectively). A tendency that

the fraction of inhibitors is higher than the fraction of substrates

allows for the possibility that other CYP isoforms are also inhibited

by a substantial fraction of presently used drugs. Aside from the

five CYPs studied herein, several other isoforms have gained

increased attention as potentially important drug-metabolizing

enzymes [4,28,29] (to mention a few examples of metabolic

pathways of widely-used drugs, the metabolism of nicotine is

predominantly mediated by CYP2A6, metabolism of ethanol by

CYP2E1, metabolism of antimalarial drug amodiaquine and

several oral antidiabetics by CYP2C8, and metabolism of

antidepressant bupropion and HIV reverse transcriptase inhibitor

efavirenz by CYP2B6 [4]). Predictions of PCM models could

remedy the absence of experimental data for drug interactions

with these and other CYP isoforms. Although our dataset is

comprised of only five enzymes, models leaving-out one CYP at a

time showed the potential of PCM for such cross-CYP isoform

predictions. Updating the PCM model with more isoforms as

more data becomes available, thus affords the great advantage that

over time a single unified PCM model providing coverage for the

entire span of all CYP isoforms could be achieved.

Another important point is that the presently available drug-

CYP inhibition data do not account for high genetic polymor-

phism of these enzymes, which gives rise to extensive inter-

individual variation in human drug metabolism [30]. Such

variation poses a problem for the drug industry owing to the

adverse effects, therapeutic failure, and toxicity in those receiving

treatment. However, we foresee that data for mutated CYP

variants will be collected in the near future and that generalized

PCM models could have a role to analyze drug interaction data

with multiple genetically diverse CYP populations, thus enabling a

priori predictions of individuals and populations based on their

genetic make-up that might respond adversely or even with

idiosyncratic drug reactions to drug combinations and a drug in

development.
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