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A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of
estimating the desired torque, a two-layer neural network is used.Then, adaptation laws for the neural network weights are derived.
Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be
uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were
carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm
which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented
without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed
adaptive neural network-based controller.

1. Introduction

Robust control consists in designing control strategies by
using little information of the system model and considering
that the system may be affected by bounded disturbances.
Robust controllers can be designed to satisfy either the
regulation goal or the trajectory tracking objective. Thus,
in the last years there has been mathematical and practical
interest in studying robust control architectures. In this class
of controllers, adaptive neural networks have been used in the
design of robust controllers for electromechanical systems.

Neural networks can be used in the control of unknown
systems without requirements for linearity in the system
parameters. Neural networks exhibit the universal approx-
imation property which allows approximating unknown
linear and nonlinear functions [1].

In the following, we provide a literature review on
application of neural networks for robot motion control.
Selmic and Lewis [2] proposed a dynamical inversion com-
pensation scheme by using a backstepping technique with
neural networks, which was applied to mechanical sys-
tems. Kwan et al. [3] proposed a class of neural network

robust controllers showing global asymptotic stability of
tracking errors and boundedness of neural network weights.
Lewis et al. [1] provided in manner of survey a study of
the application of neural networks in the compensation of
actuator nonlinearities. In [4] a robust controller with a
nonlinear two-layer neural network structure was proposed
for control of four-axis SCARA robot manipulator. The error
trajectories are proven to be uniformly ultimately bounded.
Yu and Li [5] propose a PD-type controller plus neural
network compensation of the uncertainties and velocity
estimation is achieved by using a high-gain observer. Sta-
bility is proven using Lyapunov-based analysis. Wang et al.
[6] proposed a neural network-based motion controller in
task space. The controller is addressed as two-loop cascade
control scheme. The inner loop implements a velocity servo
loop at the robot joint level using a radial basis function
network with a proportional-integral controller. In [7] an
adaptive neural network algorithm is developed for rigid-link
electrically driven robot systems. The controller is developed
in a constructive form and a rigorous stability analysis is
also provided. In Moreno-Armendáriz et al. [8], an indirect
adaptive control using hierarchical fuzzy CMAC neuronal
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network for the ball and plate system was introduced. The
proposed controller was validated by means of numerical
simulations and experiments.

Fateh and Alavi [9] introduced a new scheme for the
impedance control of an active suspension system. The
control was achieved through two interior loops which are
force control of the actuator by feedback linearization and
fuzzy control loop. The work proposed by Liu et al. in [10,
11] addressed the problem of control of manipulators with
saturated input. In particular, new controllers based on fuzzy
self-tuning of the proportional and derivative gains were
proposed. Although the controllers in [9–11] are based in
fuzzy logic, it has been proven in [12] that fuzzy logic systems
and feedforward neural networks are equivalent in essence.

In Sun et al. [13], a robust tracking control for robot
manipulators in the presence of uncertainties and distur-
bances was proposed. A neural network-based sliding mode
adaptive controlwas designed to ensure trajectory tracking by
the robot manipulator. In Hernandez et al. [14], a neural PD
with a second order sliding mode compensation technique
was introduced. The scheme is able to guarantee asymptotic
convergence of the error trajectories. In [15], in order to deal
with actuator and model nonlinearities, a neural network-
based controller was addressed. The scheme was experimen-
tally tested in real time showing the advantages of the neural
network. In [16], neural network contouring control using a
Zebra-Zero robotic manipulator was presented.The paper in
[17] used two modified optimal controllers based on neural
networks. The closed-loop system trajectories were studied
in a rigorous form although validation was presented with
simulations. Other novel approaches of neural networks are
presented in [18, 19].

Experimental evidence that neural networks are efficient
in the control of a mechanical systems has been provided in
[8, 15], for example. However, existing literature reveals a gap
in the experimental evaluation of new controllers since most
of the published works only consider numerical simulations
to assess the performance of the proposed controllers.

In the present work a different approach is taken. In the
theoretical part of our work, a neural network is used to
approach the desired torque as a function of the desired joint
position trajectory.The inner and outer weights of the neural
network are adapted on-line by using an update law coming
from a Lyapunov-like analysis of the closed-loop system tra-
jectories. In addition, an extensive real-time implementation
study in two different experimental set-ups has also been
carried out. We prove by means of the experimental tests
that the neural network compensation is really effective to
reduce the joint tracking error. The real-time experiments
show that an excellent tracking accuracy can be obtained by
using adaptive neural network compensation plus a “small
amount” of nonlinear PDcontrol compensation. In summary,
the contribution of this paper is twofold:

(1) a new nonlinear PD controller plus adaptive neural
network compensation,

(2) a real-time experimental study in two different exper-
imental set-ups.

Our approach is based on the adaptation of the weights of a
neural network that only depends on the desired signals of
joint position, velocity, and acceleration. In other words, the
neural network used in the controller approaches the desired
torque. In addition to the adaptive neural network feedfor-
ward compensation, the proposed controller is equippedwith
nonlinear PD terms, which are motivated by the convergence
analysis. We prove that by using the proposed controller;
the position and velocity error trajectories converge to zero,
while the adapted neural network signals remain uniformly
bounded. It is noteworthy that the proposed neural network
controller resembles the PD control with feedforward com-
pensation for robot manipulators, whose global asymptotical
convergence proof was reported in [20, 21].

The proposed controller is tested in real time in a
horizontal two-degree-of-freedomdirect-driven arm and in a
vertical single-link arm, which is affected by the gravitational
force. In both experimental set-ups, the new scheme is
implemented with and without neural network adaptation.
The experimental results show that the tracking performance
is drastically improved by using the new controller with the
adaptive neural network feedforward compensation.

The difference of this document with respect to our
previous work in [22] is that here the study of closed-
loop trajectories is rigorously presented and experimental
validation of the proposed scheme is evaluated in a detailed
form.

The present document is organized as follows.Mathemat-
ical preliminaries, the robot model, and the control goal are
given in Section 2. The proposed controller is discussed in
Section 3. Section 4 is devoted to the real-time experimental
result, while some concluding observations are given in
Section 5.

2. Mathematical Preliminaries,
Robot Model, and Control Goal

Thenotations 𝜆min{𝐴} and 𝜆max{𝐴} denote theminimumand
maximumeigenvalues of a symmetric positive definitematrix
𝐴 ∈ R𝑛×𝑛, respectively. ‖ x ‖= √x𝑇x stands for the norm of
vector x ∈ R𝑛. ‖ 𝐵 ‖ = √𝜆max{𝐵

𝑇𝐵} stands for the induced
norm of a matrix 𝐵(x) ∈ R𝑚×𝑛 for all x ∈ R𝑛.

Given 𝐴 ∈ R𝑛×𝑚 the Frobenius norm is defined [1, 23] by

‖𝐴‖
2

𝐹
= Tr (𝐴𝑇𝐴) = ∑

𝑖,𝑗

𝑎
2

𝑖𝑗
. (1)

Other properties are

⟨𝐴, 𝐵⟩
𝐹
= Tr (𝐴𝑇𝐵) ,

⟨𝐴, 𝐵⟩𝐹
 ≤ ‖𝐴‖

𝐹
‖𝐵‖
𝐹
.

(2)

2.1. Properties on Hyperbolic Functions. Some properties on
hyperbolic functionswill be used. See [24, 25], where the cited
properties are used in the design and analysis of controllers
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for mechanical systems. The tangent hyperbolic function is
defined as

tanh (𝑥) = 𝑒
𝑥

− e−𝑥

𝑒𝑥 + 𝑒−𝑥
, (3)

where 𝑥 ∈ R. The tangent hyperbolic function can be
arranged in a vector in the following way:

tanh (z) = [tanh (𝑧
1
) , . . . , tanh (𝑧

𝑛
)]
𝑇

, (4)

and the following properties are accomplished by tanh(z).

(a) For all z ∈ R𝑛, the Euclidean norm of tanh(z)
satisfies

‖tanh (z)‖ ≤ ‖z‖ ,

‖tanh (z)‖ ≤ √𝑛.

(5)

(b)The time derivative of tanh(z) is given by

𝑑

𝑑𝑡
tanh (z) = Sech2 (z) ż, (6)

where Sech2(z) = diag{sech2(𝑧
1
), . . . , sech2(𝑧

𝑛
)} and

Sech (𝑥) = 2

𝑒𝑥 + 𝑒−𝑥
=

1

cosh (𝑥)
. (7)

(c)Themaximum eigenvalue of thematrix sech2(x) is
one for all z ∈ R𝑛; that is,

𝜆max {sech
2

(z)} = 1. (8)

(d) Finally, the property

√

𝑛

∑

𝑖=1

ln (cosh (𝑧
𝑖
)) ≥

1

√2
‖tanh (z)‖ , ∀z ∈ R

𝑛

, (9)

holds.

2.2. Neural Networks. Let us recall the universal approxima-
tion property of the neural networks [1, 3]. A function f(x) :
R𝑁+1 → R𝑛 can be approximated by

f (x) = 𝑊
𝑇

𝜎 (𝑉
𝑇x) + 𝜖, ∀x ∈ R

𝑁+1

, (10)

where x ∈ R𝑁+1 is the vector of input signals to the neural
network, 𝑉 ∈ R(𝑁+1)×𝐿 and 𝑊 ∈ R𝐿×𝑛 are the input and
output ideal weights, respectively, 𝐿 is the number of neurons
in the hidden layer, 𝑁 + 1 is the number of input signals to
the neural network, 𝜎 ∈ R𝐿 is the activation function in the
hidden layer, and 𝜖 ∈ R𝑛 is the approximation error with

𝜖𝑖
 ≤ 𝜙, 𝑖 = 1, . . . , 𝑛, (11)

where 𝜙 > 0.

The output of an activation function, 𝜎
𝑖
: R → R, 𝑖 =

1, . . . , 𝐿, is used to define the output signal of a neuron from a
modified combination of its input signals by compressing the
signal. The function 𝜎

𝑖
is usually between the values 0 ≤ 𝜎

𝑖
≤

1 or valued such that −1 ≤ 𝜎
𝑖
≤ 1 is satisfied.

In this paper, we have used as activation function 𝜎
𝑖
the

hyperbolic tangent function. Therefore, by defining z = 𝑉
𝑇x,

𝜎 (z) = [tanh(𝑧
1
), . . . , tanh(𝑧

𝐿
)]
𝑇

. (12)

2.3. Robot Dynamics. Thedynamics in joint space of a serial-
chain 𝑛-link robot manipulator considering the presence of
friction at the robot joints can be written as [26, 27]

𝑀(q) q̈ + 𝐶 (q, q̇) q̇ + g (q) + 𝐹Vq̇ = 𝜏, (13)

where q ∈ R𝑛 is a vector of joint positions, 𝑀(q) ∈ R𝑛×𝑛

is the symmetric positive definite inertia matrix, 𝐶(q, q̇)q̇ ∈

R𝑛 is the vector of centripetal and Coriolis torques, g(q) ∈
R𝑛 is the vector of gravitational torques, 𝐹V ∈ R𝑛×𝑛 is
a diagonal positive definite matrix containing the viscous
friction coefficients of each joint, and 𝜏 ∈ R𝑛 is the vector
of torques input.

The dynamics of 𝑛-link robotic manipulator expressed in
(13) has the following properties, which hold for rigid-link
revolute joint manipulators [26–28].

Property 1. The inertia matrix 𝑀(q) is symmetric and posi-
tive definite; that is,

𝜆min {𝑀 (q)} ‖x‖2 ≤ x𝑇𝑀(q) x ≤ 𝜆max {𝑀 (q)} ‖x‖2. (14)

Property 2. Assuming that the robot has revolute joints, the
vector 𝐶(q, x)y satisfies the bound

𝐶 (q, x) y
 ≤ 𝑘
𝐶1
‖x‖ y

 , ∀q, x, y ∈ R
𝑛

, (15)

where 𝑘
𝐶1
> 0.

Property 3. Assume that the centrifugal and Coriolis torque
matrix 𝐶(q, q̇) is computed by means of the so-called
Christoffel symbols of the first kind. Then,

x𝑇 [�̇� (q) − 2𝐶 (q, q̇)] x = 0, ∀x, q, q̇. (16)

Besides,

�̇� (q) = 𝐶 (q, q̇) + 𝐶(q, q̇)𝑇. (17)

Property 4. The so-called residual dynamics [29, 30] is
defined by

h (𝑡, e, ė) = [𝑀 (q
𝑑
) − 𝑀 (q)] q̈

𝑑

+ [𝐶 (q
𝑑
, q̇
𝑑
) − 𝐶 (q, q̇)] q̇

𝑑

+ g (q
𝑑
) − g (q) ,

(18)

where e will be defined later and q
𝑑
(𝑡) is the desired joint

position trajectory assumed to be bounded together with its
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first and second time derivative. The residual dynamics (18)
satisfies the following inequality [27]:

‖h (𝑡, e, ė)‖ ≤ 𝑘
ℎ1
‖ė‖ + 𝑘

ℎ2

tanh (𝛾e)
 , (19)

where 𝑘
ℎ1

and k
ℎ1

are sufficiently large strictly positive
constants that depend on the robot model parameters and
𝛾 > 0.

2.4. Control Goal. Let us define the joint position tracking
error as

e (𝑡) = q
𝑑
(𝑡) − q (𝑡) , (20)

where q
𝑑
(𝑡) ∈ R𝑛 denotes the desired joint position

trajectory. The estimated weight errors are defined as

�̃� = 𝑊 − �̂�,

�̃� = 𝑉 − �̂�,
(21)

where𝑉 ∈ R[𝑁+1]×𝐿 are the ideal input weights, �̂� ∈ R[𝑁+1]×𝐿

is an estimation of the input weights,𝑊 ∈ R𝐿×𝑛 are the ideal
output weights, and �̂� ∈ R𝐿×𝑛 is an estimation of the output
weights.

The desired time-varying trajectory q
𝑑
(𝑡) is assumed to

be three times differentiable and bounded for all time 𝑡 ≥ 0

in the sense
q𝑑 (𝑡)

 ≤ 𝜇
1
,

q̇𝑑 (𝑡)
 ≤ 𝜇
2
,

q̈𝑑 (𝑡)
 ≤ 𝜇
3
,

(22)

where 𝜇
1
, 𝜇
2
, and 𝜇

3
denote known positive constants.

The control problem consists in designing a controller
𝜏(𝑡) and update laws for the estimated weights �̂�(𝑡) and �̂�(𝑡)

such that the signals e(𝑡), ė(𝑡), �̃�(𝑡), and �̃�(𝑡) are uniformly
bounded. In addition, the limit

lim
𝑡→∞

[
e (𝑡)
ė (𝑡)] = 0 (23)

should be satisfied.

3. Proposed Adaptive Neuronal Network
Compensation Controller

The proposed controller has a structure of a nonlinear
PD controller plus adaptive neural network feedforward
compensation. The design of the controller departs from the
assumption that the desired torque can be approached by a
neural network and then it can be estimated on-line bymeans
of proper adaptation laws for the input and output neural
network weights.

3.1. Proposed Scheme. The development of the proposed
approach is presented in a constructive form. First, let us
consider the robot dynamics (13) evaluated along the desired
position q

𝑑
∈ R𝑛 such that the desired torque 𝜏

𝑑
∈ R𝑛 can be

founded by

𝑀(q
𝑑
) q̈
𝑑
+ 𝐶 (q

𝑑
, q̇
𝑑
) q̇
𝑑
+ g (q

𝑑
) + 𝐹Vq̇𝑑 = 𝜏𝑑, (24)

by combining (13) and (24) and using the tracking error
defined in (20) the following equation is obtained:

𝑀(q) ë + 𝐶 (q, q̇) ė + h (𝑡, e, ė) + 𝐹Vė = 𝜏𝑑 − 𝜏, (25)

where h(𝑡, e, ė) ∈ R𝑛 is the so-called residual dynamics [29,
30], defined by (18).

By using the universal approximation property of the
neural networks in (10), the desired torque in (24) can be
approached as

𝜏
𝑑
= 𝑊
𝑇

𝜎 (𝑉
𝑇x
𝑑
) + 𝜖, (26)

where

x
𝑑
= [q𝑇
𝑑
q̇𝑇
𝑑
q̈𝑇
𝑑
1]
𝑇

∈ R
𝑁+1 (27)

is the vector of input signals to the neural network. Notice
that in this case𝑁 = 3𝑛.

Now, we are in position to introduce the following
tracking controller:

𝜏 = �̂�
𝑇

𝜎 (�̂�
𝑇x
𝑑
) + 𝐾
𝑝
tanh (𝛾e) + 𝐾

𝑑
ė + Δ sign (r) , (28)

where 𝐾
𝑝
, 𝐾
𝑑
, and Δ are diagonal positive definite matrices,

𝛾 is a positive scalar, �̂� is the estimated input weight, �̂� is the
estimated output weight,

r = ė + 𝛼 tanh (𝛾e) , (29)

sign (r) = [sign (𝑟
1
) ⋅ ⋅ ⋅ sign (𝑟

𝑛
)]
𝑇

∈ R
𝑛

, (30)

with

sign (𝑥) =
{{

{{

{

1, for 𝑥 > 0,

0, for 𝑥 = 0,

−1, for 𝑥 < 0.

(31)

The proposed update laws for the estimated input and
output weights, denoted as �̂� and �̂�, respectively, are

̇̂
𝑉 = 𝑅x

𝑑
r𝑇�̂��̂�, (32)

̇̂
𝑊 = 𝐹�̂�r𝑇 − 𝐹�̂��̂�𝑇x

𝑑
r𝑇, (33)

where 𝑅 ∈ R[𝑁+1]×[𝑁+1] and 𝐹 ∈ R𝐿×𝐿 are positive definite
matrices, �̂� = 𝜎(�̂�𝑇x

𝑑
) and

�̂�


=
𝜕𝜎 (x)
𝜕x

, (34)

with �̂�𝑇x
𝑑
.

3.2. Closed-Loop SystemDerivation. By substituting (26) and
(28) in (25), the equation

𝑀(q) ë + 𝐶 (q, q̇) ė + h (𝑡, e, ė) + 𝐹Vė

= −𝐾
𝑝
tanh (𝛾e) − 𝐾

𝑑
ė

− Δ sign (r) + 𝑊𝑇𝜎 (𝑉𝑇x
𝑑
) − �̂�

𝑇

𝜎 (�̂�
𝑇x
𝑑
) + 𝜖

(35)
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is obtained. The weight error is defined as in (21) and

�̃� = 𝜎 − �̂� = 𝜎 (𝑉
𝑇x
𝑑
) − 𝜎 (�̂�

𝑇x
𝑑
) . (36)

Multilayered neural networks are nonlinear in the weights 𝑉
and Taylor’s series can be used to approximate the activation
function 𝜎. Thus,

𝜎 (𝑉
𝑇x
𝑑
) = 𝜎 (�̂�

𝑇x
𝑑
) + 𝜎


(�̂�
𝑇x
𝑑
) �̃�
𝑇x
𝑑
+ 𝑂(�̃�

𝑇x
𝑑
)
2

,

(37)

where𝑂(�̃�𝑇x
𝑑
)
2 represents the higher order terms. Approxi-

mation of activation function via Taylor’s series has been used
in, for example, [1, 3]. Therefore, substituting (21) and (37) in
(35) and simplifying, we obtain the following expression:

𝑀ë = −h − 𝐶ė − 𝐾
𝑝
tanh (𝛾e) − [𝐾

𝑑
+ 𝐹V] ė

− Δ sign (r) + �̂�𝑇�̂��̃�𝑇x
𝑑
− �̃�
𝑇

�̂�


�̂�
𝑇x
𝑑

+ �̃�
𝑇

𝜎 + 𝜔 (𝑡) ,

(38)

where𝑀 = 𝑀(q), h = h(e, ė), 𝐶 = 𝐶(q, q̇), and

𝜔 (𝑡) = �̃�
𝑇

�̂�


𝑉
𝑇x
𝑑
+𝑊𝑂

2

+ 𝜖, (39)

with 𝑂2 = 𝑂(�̃�
𝑇x
𝑑
)
2.

Finally, the dynamics of [e𝑇 ė𝑇]𝑇 ∈ R2𝑛 is given by

𝑑

𝑑𝑡
e = ė,

𝑑

𝑑𝑡
ė = 𝑀

−1

[−h − 𝐶ė − 𝐾
𝑝
tanh (𝛾e) − [𝐾

𝑑
+ 𝐹V] ė

− Δ sign (r) + �̂�𝑇�̂��̃�𝑇x
𝑑
− �̃�
𝑇

�̂�


�̂�
𝑇x
𝑑

+�̃�
𝑇

�̂� + 𝜔 (𝑡)] .

(40)

By using the definition of the weight errors (21), we can
rewrite the proposed update laws (32)-(33) as

𝑑

𝑑𝑡
�̃� = −𝑅x

𝑑
r𝑇𝑊�̂� + 𝑅x

𝑑
r𝑇�̃��̂�,

𝑑

𝑑𝑡
�̃� = − 𝐹�̂�r𝑇 + 𝐹�̂�𝑉𝑇x

𝑑
r𝑇

− 𝐹�̂�


�̃�
𝑇x
𝑑
r𝑇.

(41)

The overall closed-loop system is given by (40) and (41).

3.3. Convergence Analysis. The assumption

𝑘
𝜔
≥ ‖𝜔 (𝑡)‖ , ∀𝑡 ≥ 0, (42)

with 𝑘
𝜔
> 0 and 𝜔(𝑡) defined in (39), will be used in the next.

Concerning the trajectories of the closed-loop system
(40)-(32), we have the following result.

Proposition 1. One assumes that the desired trajectory q
𝑑
(𝑡) is

bounded as (22). Then, provided that 𝜆min{𝐾𝑝}, 𝜆min{𝐾𝑑} and
𝜆min{Δ} are sufficiently large, there always exist strictly positive
constants 𝛼∗max and 𝛼

∗

min such that

𝛼
∗

min < 𝛼 < 𝛼
∗

max (43)

guarantees that the trajectories e(𝑡), ė(𝑡), �̃�(𝑡), and �̃�(𝑡) of the
overall closed-loop system (40)-(32) are uniformly bounded. In
addition, the limit

lim
𝑡→∞

[
e (𝑡)
ė (𝑡)] = 0 (44)

is satisfied.

Proof. Let us consider the function

𝑈 (𝑡, e, ė) = 1

2
ė𝑇𝑀ė +

𝑛

∑

𝑖=1

𝐾
𝑝𝑖
𝛾
−1 ln (cosh (𝛾e

𝑖
))

+ 𝛼 tanh (𝛾e)𝑇𝑀ė + 1

2
𝑇
𝑟
(�̃�
𝑇

𝐹
−1

�̃�)

+
1

2
𝑇
𝑟
(�̃�
𝑇

𝑅
−1

�̃�) ,

(45)

which is positive definite in terms of the state space of the
closed-loop system (40)-(32).

By using property (9), a lower bound on 𝑈(𝑡, e, ė) can be
computed as follows:

𝑈 (𝑡, e, ė) ≥ 𝜂𝑇
[
[
[

[

1

2
𝜆min {𝑀} −

𝛼

2
𝜆max {𝑀}

−
𝛼

2
𝜆max {𝑀}

𝛾
−1

2
𝜆min {𝐾𝑝}

]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑃

𝜂

+
1

2
𝑇
𝑟
(�̃�
𝑇

𝐹
−1

�̃�) +
1

2
𝑇
𝑟
(�̃�
𝑇

𝑅
−1

�̃�) ,

(46)

with 𝜂 = [‖ ė ‖ ‖ tanh(𝛾e) ‖ ]𝑇.
If 𝑃 is positive definite, then the function 𝑈(𝑡, e, ė) is

globally positive definite and radially unbounded. By using
Sylvester’s Theorem, the sufficient and necessary condition
for 𝑃 to be positive definite is

0 < 𝛼 <

√𝛾−1𝜆min {𝐾𝑝} 𝜆min {𝑀}

𝜆max {𝑀}
. (47)

Next step in the proof is to compute the time derivative of
𝑈(𝑡, e, ė) along the closed-loop system trajectories (40) and
(32). Thus, we have that

�̇� (𝑡, e, ė) = − ė𝑇 [𝐾
𝑑
+ 𝐹V] ė − r𝑇h + r𝑇 [𝜔 − Δ sign (r)]

+ 𝛼𝛾ė𝑇𝑀Sech2 (𝛾e) ė + 𝛼 tanh (𝛾e)𝑇𝐶𝑇ė

− 𝛼 tanh (𝛾e)𝑇 [𝐾
𝑑
+ 𝐹V] ė

− 𝛼 tanh (𝛾e)𝑇𝐾
𝑝
tanh (𝛾e) ,

(48)
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which was obtained thanks to the property (6), the robot
model properties (16)-(17), and the facts

Tr (�̃�𝑇�̂�r𝑇) = Tr (r𝑇�̃�𝑇�̂�) ,

Tr (�̃�𝑇�̂��̂�𝑇x
𝑑
r𝑇) = Tr (r𝑇�̃�𝑇�̂��̂�𝑇x

𝑑
) ,

Tr (�̃�𝑇x
𝑑
r𝑇�̂�𝑇�̂�) = Tr (r𝑇�̃�𝑇�̂��̃�𝑇x

𝑑
) .

(49)

An upper bound on each term of �̇�(𝑡, e, ė) is computed as
follows:

−ė𝑇 [𝐾
𝑑
+ 𝐹V] ė ≤ −𝜆min {𝐾𝑑 + 𝐹V} ‖ė‖ ,

−r𝑇h ≤ 𝛼𝑘
ℎ2

tanh (𝛾e)

2

+ [𝛼𝑘
ℎ1
+ 𝑘
ℎ2
]
tanh (𝛾e)

 ‖ė‖ + 𝑘ℎ1‖ė‖
2

,

r𝑇 [𝜔 − Δ sign (r)] ≤ − [𝜆min {Δ} − 𝑘𝜔]
𝑛

∑

𝑖=1

𝑟𝑖
 ,

𝛼𝛾ė𝑇𝑀 Sech2 (𝛾e) ė ≤ 𝛼𝛾𝜆max {𝑀} ‖ė‖2,

𝛼 tanh (𝛾e)𝑇𝐶𝑇ė ≤ 𝛼𝑘
𝐶1
𝜇
2

tanh (𝛾e)
 ‖ė‖

+ 𝛼𝑘
𝐶1
√𝑛‖ė‖2,

− 𝛼 tanh (𝛾e)𝑇 [𝐾
𝑑
+ 𝐹V] ė

≤ 𝛼𝜆max {𝐾𝑑 + 𝐹V}
tanh (𝛾e)

 ‖ė‖ ,

− 𝛼 tanh (𝛾e)𝑇𝐾
𝑝
tanh (𝛾e)

≤ −𝛼𝜆min {𝐾𝑝}
tanh (𝛾e)


2

,

(50)

where the property of the residual dynamics h in (19),
assumption (42), property (8), property (15), and the fact that
‖ q̇ ‖≤ 𝜇

2
+ ‖ ė ‖, with 𝜇

2
defined in (22), were used.

With the computed bounds on each term of �̇�(𝑡, e, ė), we
can write

�̇� (𝑡, e, ė) ≤ −p𝑇
1
𝑄
1
p
1
− [𝜆min {Δ} − 𝑘𝜔]

𝑛

∑

𝑖=1

𝑟𝑖
 , (51)

where

p
1
= [

tanh (𝛾e)


‖ė‖ ] , (52)

𝑄
1
=
[
[

[

𝛼𝑎 −
1

2
[𝛼𝑑 + 𝑒]

−
1

2
[𝛼𝑑 + 𝑒] 𝑏 − 𝛼𝑐

]
]

]

, (53)

with
𝑎 = 𝜆min {𝐾𝑝} − 𝑘ℎ2,

𝑏 = 𝜆min {𝐾𝑑 + 𝐹V} − 𝑘ℎ1,

𝑐 = 𝛾𝜆max {𝑀} + 𝑘
𝐶1
√𝑛,

𝑑 = 𝑘
ℎ2
+ 𝑘
𝐶1
𝜇
2
+ 𝜆max {𝐾𝑑 + 𝐹V} ,

𝑒 = 𝑘
ℎ1
.

(54)

It is easy to observe that if 𝑄
1
in (53) is positive definite

and if

𝜆min {Δ} > 𝑘
𝜔
, (55)

with 𝑘
𝜔
defined in (42), then the function �̇�(𝑡, e, ė) is negative

semidefinite. Besides, notice that the matrix𝑄
1
in (53) can be

rewritten as

𝑄
1
= 𝑄
𝑎
+ 𝑄
𝑏
, (56)

where

𝑄
𝑎
=
[
[
[

[

1

2
𝛼𝑎 −

1

2
𝛼𝑑

−
1

2
𝛼𝑑

1

2
[𝑏 − 2𝛼𝑐]

]
]
]

]

,

𝑄
𝑏
=
[
[
[

[

1

2
𝛼𝑎 −

1

2
𝑒

−
1

2
𝑒

1

2
𝑏

]
]
]

]

.

(57)

If 𝑄
𝑎
and 𝑄

𝑏
are positive definite then 𝑄

1
is also positive

definite. By applying Sylvester’s criterion, the matrix 𝑄
𝑎
is

positive definite if

𝑎 > 0 ⇒ 𝜆min {𝐾𝑝} > 𝑘
ℎ2
,

𝛼 <
𝑏

2𝑐
⇒ 𝜆min {𝐾𝑑 + 𝐹V} > 𝑘

ℎ1
,

𝛼 <
𝑎𝑏

2𝑎𝑏 + 𝑑2
,

(58)

while 𝑄
𝑏
is positive definite if

𝑎 > 0 ⇒ 𝜆min {𝐾𝑝} > 𝑘
ℎ2
,

𝑏 > 0 ⇒ 𝜆min {𝐾𝑑 + 𝐹V} > 𝑘
ℎ1
,

𝛼 >
𝑒
2

𝑎𝑏
.

(59)

Therefore, the selection of large enough control gains Δ,
𝐾
𝑝
and𝐾

𝑑
guarantee the existence of 𝛼 satisfying (43) so that

the function 𝑈(𝑡, e, ė) in (45) is positive definite and radially
unbounded, and �̇�(𝑡, e, ė) in (48) is a negative semidefinite
function. Hence the trajectories e(𝑡), ė(𝑡), �̃�(𝑡), and �̃�(𝑡)

of the overall closed-loop system (40)-(32) are uniformly
bounded.

By integrating both sides of (51) it is possible to prove that

∫

𝑡

0

p1(𝜌)

2

𝑑𝜌 ≤
𝑈 (0, e (0) , ė (0))

𝜆min {𝑄1}
, (60)

where p
1
(𝑡) is defined in (52). Then, by invoking Barbalat’s

lemma [31], the limit (44) is assured.
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Figure 1: Experimental horizontal two-degree-of-freedom robot manipulator.
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Figure 2: Desired joint trajectories 𝑞
𝑑1
(𝑡) and 𝑞

𝑑2
(𝑡) used in the real-time evaluations.

4. Experimental Results

Two sets of experiments in different experimental set-ups
have been carried out in order to assess the performance of
the proposed adaptive neural network controller (28) and
(32)-(33). The used experimental systems are

(i) a horizontal two-degree-of-freedom arm,

(ii) a vertical one-degree-of-freedom arm, which is
affected by the gravitational force.

In each set of experiments the applied torque (28) is imple-
mented with and without adaptive neural network compen-
sation. The purpose of the experiments is to show the benefit
of the adaptive neural network feedforward compensation.

4.1. Planar Two-Degree-of-Freedom Robot. To carry out
experiments, a planar two-degree-of-freedom direct-driven
arm has been used. See Figure 1 for a CAD drawing and
picture. The system is composed by two DC Pittmanmotors
operated in currentmodewith twoAdvancedMotionControls
servo amplifiers. A Sensoray 626 I/O card is used to read
encoder signals with quadrature included and to transfer
control commands through the D/A channels. A PC running
Windows XP, Matlab, Simulink, and Real-Time Windows

Target is used to execute controllers in real time at 1 [kHz]
sampling rate.

Two experiments have been conducted corresponding to
the implementation of a nonlinear PD controller which does
not consider any adaptation and the proposed adaptive neural
network-based controller in (28).

In reference to Tables 1 and 2, and the model (13), the
elements of the experimental robot model are

𝑀(q) = [

[

𝜃
1
+ 2𝜃
2
cos (𝑞

2
) 𝜃
3
+ 𝜃
2
cos (𝑞

2
)

𝜃
3
+ 𝜃
2
cos (𝑞

2
) 𝜃

3

]

]

,

𝐶 (q, q̇) = [

[

−𝜃
2
sin (𝑞
2
) ̇𝑞
2
−𝜃
2
sin (𝑞
2
) [ ̇𝑞
1
+ ̇𝑞
2
]

𝜃
2
sin (𝑞
2
) ̇𝑞
1

0

]

]

,

𝐹V = diag {𝜃
4
, 𝜃
5
} ,

g (q) = 0.

(61)

It is noteworthy that the robot is moving in the horizontal
plane, whereby the vector of gravitational forces is null.
Table 2 shows a numerical estimation of the parameters
𝜃
𝑖
∈ R, which was obtained by using the filtered dynamic

model and the classical least-squares identification method;
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Figure 3: Applied torque by using the PD + Δ sign (r) scheme which does not consider any adaptation.
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Figure 4: Tracking errors 𝑒
1
(𝑡) and 𝑒

2
(𝑡) by using the PD + Δ sign (r) scheme which does not consider any adaptation.

see [32, 33]. The links of the arm are made of aluminum and
both have a length of 0.15 [m].

4.1.1. Desired Trajectory. The desired joint velocity trajectory
chosen to achieve the experimental tests is given by

q
𝑑
(𝑡) = [

1.0 cos (2.0𝑡)
1.0 cos (4.0𝑡)] . (62)

It is clear that the desired joint trajectory q
𝑑
(𝑡) satisfies the

bounding assumption (22). See Figure 2 to observe the time
evolution of the desired trajectory (62).

4.1.2. Results. By removing the adaptive neural network
compensation in the proposed controller (28), the following
nonlinear PD-type controller is obtained:

𝜏 = 𝐾
𝑝
tanh (𝛾e) + 𝐾

𝑑
ė + Δ sign (r) , (63)

with r defined in (29). Hereafter, the controller (63) will be
denoted as PD + Δ sign (r).

The PD + Δ sign (r) controller in (63) has been imple-
mented in real time with the following control gains:

𝐾
𝑝
= diag {0.2, 0.1} ,

𝐾
𝑑
= diag {0.1, 0.01} ,

Δ = diag {0.05, 0.005} ,

(64)

and with

𝛼 = 1.0, 𝛾 = 5.0. (65)

Table 1: Physical parameters of the experimental robot arm.

Description Notation Units
Length of link 1 𝑙

1
m

Length of link 2 𝑙
2

m
Distance to the center of mass of link 1 𝑙

𝑐1
m

Distance to the center of mass of link 2 𝑙
𝑐2

m
Mass of link 1 𝑚

1
kg

Mass of link 2 𝑚
2

kg
Inertia rel. to center of mass (link 1) 𝐼

1
kg-m2

Inertia rel. to center of mass (link 2) 𝐼
2

kg-m2

The results of implementing in real time the PD +
Δ sign (r) controller in (63) can be appreciated in Figure 3,
which shows the time evolution of the applied torques 𝜏

1
(𝑡)

and 𝜏
2
(𝑡), and in Figure 4, that depicts the time evolution of

the tracking error 𝑒
1
(𝑡) and 𝑒

2
(𝑡).

On the other hand, the new control scheme in (28) will
be referred to as ANN + PD + Δ sign (r).This controller was
implemented by using 𝐿 = 20, which is the number of
neurons. The neural network requires the input vector

x
𝑑
= [𝑞
𝑑1

̇𝑞
𝑑1

̈𝑞
𝑑1
𝑞
𝑑2

̇𝑞
𝑑2

̈𝑞
𝑑2
1]
𝑇

∈ R
7

. (66)

The vector x
𝑑
(𝑡) describes the signals that are used in the

inner layer of the neural network.
In order to establish a fair comparison scenery, the control

gains (64) and (65), which were used in the PD + Δ sign (r)
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Figure 5: Applied torque by using the ANN + PD + Δ sign (r) scheme which considers adaptation.
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Figure 6: Tracking errors 𝑒
1
(𝑡) and 𝑒

2
(𝑡) by using the ANN + PD + Δ sign (r) scheme which considers adaptation.

Table 2: Estimated parameters of the experimental robot arm; see
(61) for reference.

Parameter Definition Value Unit
𝜃
1

𝑚
1
𝑙
2

𝑐1
+ 𝑚
2
[𝑙
2

1
+ 𝑙
2

𝑐2
] + 𝐼
1
+ 𝐼
2

0.0363 Kgm2

𝜃
2

𝑚
2
𝑙
1
𝑙
𝑐2

0.0028 Kgm2

𝜃
3

𝑚
2
𝑙
2

𝑐2
+ 𝐼
2

0.0023 Kgm2

𝜃
4

𝑓V1 0.0084 Nm sec
𝜃
5

𝑓V1 0.0024 Nm sec

controller in (63), have been used in the real-time implemen-
tation of the proposed controller ANN + PD + Δ sign (r) in
(28). Besides, the gains

𝑅 = 0.2𝐼
7
, 𝐹 = 0.5𝐼

20
, (67)

with 𝐼
𝑛
meaning the identity matrix of dimension 𝑛, were

used the adaptation update laws (32) and (33), respectively.
The results of implementing the proposed controller

ANN + PD + Δ sign (r) in (28) is shown in Figure 5, where
the time evolution of the applied torques 𝜏

1
(𝑡) and 𝜏

2
(𝑡) are

represented, and in Figure 6, where the obtained tracking
errors 𝑒

1
(𝑡) and 𝑒

2
(𝑡) are described.

4.1.3. Observations. Figures 4 and 6 show the tracking error
e(𝑡) ∈ R2 for the controller PD + Δ sign (r) in (63),
which does not consider adaptation, and the new scheme
ANN + PD + Δ sign (r) in (28), which is based on the adap-
tation of neural network. From these figures the performance
of the controllers can be assessed.
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Figure 7: Time evolution of the norm of the tracking error ‖e(𝑡)‖.

For both implementations, one can consider a steady state
behavior after 10 [sec]. In order to assess the performance of
the controllers, themaximumpeak-to-peak tracking error for
each joint and for each implementation has been computed.
Table 3 shows the performance of the two controllers, where
the notation PTPV stands for “peak-to-peak value.” We can
see that by using the new controller the tracking performance
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Figure 8: Time evolution of the output weights �̂�
1
(𝑡) ∈ R10×1 and �̂�

2
(𝑡) ∈ R10×1.

Table 3: Performance of the two controllers: maximum peak-to-
peak value (PTPV) of the tracking errors after the settling time.

Index [rad] PD+Δsign(r) ANN+PD+Δsign(r)
max
𝑡≥10

{PTPV of 𝑒
1
(𝑡)}

(rad) 0.260 0.046

max
𝑡≥10

{PTPV of 𝑒
2
(𝑡)}

(rad) 0.187 0.047

is drastically improved. In particular, the percentage of
improvement for joint 1 is 82.3% and for joint 2 is 74.9%.

On other hand, Figure 7 shows the norm of the tracking
error ‖ e(𝑡) ‖, which is another form to compare the tracking
performance of a controller with respect to the other. In this
figure, the improvement in the tracking of the desired trajec-
tory by using the ANN + PD + Δ sign (r) scheme in (28) is
clearly observed. After 10 [sec], the peak value of the ‖ e(𝑡) ‖
by using the PD + Δ sign (r) scheme in (63) is 0.161 [rad]
and by using the ANN + PD + Δ sign (r) controller in (28)
is 0.035 [rad]. Thus, the improvement using the new scheme
is 78.3%.

Finally, the output weights �̂�
1
(𝑡) ∈ R10×1 and �̂�

2
(𝑡) ∈

R10×1 for joints 1 and 2, respectively, obtained in the real-time
implementation of the new controller (28) are observed in
Figure 8. A small value of such aweights is enough to improve
the tracking performance drastically.

4.2. Vertical One Degree-of-Freedom Robot. This experimen-
tal system consists in an Advanced Motion Controls servo
amplifier operated in voltage mode and a Nema 34 brushed
direct current motor which has attached a pendulum as
shown in Figure 9. Like the two-degree-of-freedom robot, a
data acquisition board and Matlab were used to implement
the controllers in real time at 1 [kHz] sampling rate.

Themodel of this system corresponds to a pendulumwith
viscous friction which is actuated by a armature-controlled
direct current motor, which can be written as [34]

𝑀 ̈𝑞 + 𝐵 ̇𝑞 + 𝑁 sin (𝑞) = 𝐼,

𝐿
𝑑𝐼

𝑑t
+ 𝑅𝐼 + 𝑘

𝐵
̇𝑞 = V,

(68)

where 𝑀, 𝐵, 𝑁, 𝐿, 𝑅, and 𝑘
𝐵
are strictly positive constants;

𝐼 denotes the armature current, and V is the voltage input.

Table 4: Identified parameters of the vertical one degree-of-
freedom robot.

Parameter Unit Estimation
Lumped inertia𝑀 A(s2/rad) 0.0292
Lumped viscous friction coefficient 𝐵 A(s/rad) 0.0298
Lumped gravitational load𝑁 A 2.2387
Inductance 𝐿 H 0.0031
Resistance 𝑅 Ω 0.9322
Back electromotive force coefficient 𝑘

𝐵
N(m/A) 0.0246

By using the least-squares identification method we have
estimated the numerical value of the constant parameters,
which are shown in Table 4. Let us notice that themotor shaft
has attached a pendulumwhosemass is 0.285 [Kg] and length
is 0.1803 [m] (equivalent to 7.1 [in]) from the rotation axis to
the arm tip.

The tested controllers corresponds to

V = 𝑘
𝑝
tanh (𝛾𝑒) + 𝑘

𝑑
̇𝑞 + 𝛿 sign (𝑟) , (69)

V = �̂�
𝑇

𝜎 (�̂�
𝑇x
𝑑
) + 𝑘
𝑝
tanh (𝛾𝑒) + 𝑘

𝑑
̇𝑞 + 𝛿 sign (𝑟) . (70)

In analogy with experimental tests carried out in the hori-
zontal two-degree-of-freedom robot, the controller in (69)
will be denoted as PD + 𝛿 sign (𝑟), while the scheme (70) will
be referred as ANN + PD + 𝛿 sign (𝑟). In both controllers
𝑟 = ̇𝑒 + 𝛼 tanh(𝛾𝑒). The adaptation signals �̂�(𝑡) and �̂�(𝑡)

in (70) are computed by using the expressions (32) and (32),
respectively.

The idea is to compare the performance and robustness
of the controllers (69) and (70) in a system affected by the
gravitational force and the electrical dynamics of the motor.

In this case, the model of the system of the robot was
assumed to be unknown, whereby the tested controllers were
tuned by trial and error until an acceptable performance was
obtained.

4.2.1. Desired Trajectory. The proposed desired trajectory for
this set of experiments was

q
𝑑
(𝑡) = 1.5 + 2 sin (3𝑡) [rad] . (71)
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Figure 9: Experimental one-degree-of-freedom arm (pendulum)
subject to gravitational force.
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Figure 10: Desired joint trajectory 𝑞
𝑑
(𝑡) the real-time evaluations.

Notice that with trajectory the effect of the gravitational force
is maximized. Figure 10 shows the time history of the desired
joint trajectory 𝑞

𝑑
(𝑡) in (71).

4.2.2. Results. Like the case of the experiments with the two-
degree-of-freedom robot, we have selected the control gains
so that most of the control action is contributed by the
adaptive neural network part of the control.

Specifically, we selected the gains

𝑘
𝑝
= 1, 𝑘

𝑑
= 0.2,

𝛼 = 1.5, 𝛾 = 5.

(72)

The adaptation of the parameters is given by using (32) and
(33) with x

𝑑
= [1 𝑞

𝑑
̇𝑞
𝑑

̈𝑞
𝑑
]
𝑇

∈ R4 and the gains

𝑅 = 0.2𝐼
4
, 𝐹 = 0.3𝐼

10
. (73)
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Figure 11: Experiments with the one degree-of-freedom robot:
applied voltage V(𝑡) for the PD + 𝛿 sign (𝑟) and the ANN + PD +
𝛿 sign (𝑟) controllers.
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Figure 12: Experiments with the one degree-of-freedom robot:
absolute value of tracking error |𝑒(𝑡)| for the PD + 𝛿 sign (𝑟) and the
ANN + PD + 𝛿 sign (𝑟) controllers.

The proposed adaptive NN controller ANN + PD + 𝛿

sign (𝑟) was implemented by using 𝐿 = 10 neurons.
The results of the implementation of the controllers

PD + 𝛿 sign (𝑟) in (69) and ANN + PD + 𝛿 sign (𝑟) in (70)
are given in Figures 11 and 12, which show the time evolution
of the applied voltage V(𝑡) and the absolute value of tracking
error |𝑒(𝑡)|, respectively. The advantage of the proposed
controller inANN + PD + 𝛿 sign (𝑟) is clearly observed from
Figure 12. Notice that with the new controller (70), which



12 The Scientific World Journal

0 5 10 15 20 25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Estimated input weights V̂(t)

Time (s)

(a)

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Estimated output weights Ŵ(t)
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Figure 13: Experiments with the one degree-of-freedom robot: estimated input and output weights for the ANN + PD + 𝛿 sign (𝑟) controller.

includes the adaptive neural network, the absolute value
of the tracking error |𝑒(𝑡)| is reduced to values less than
0.08 [rad] after 20 [sec]. Finally, Figure 13 depicts the esti-
mated input and output weights, �̂�(𝑡) and �̂�(𝑡), respectively,
which remain bounded for all time.

5. Conclusions

This paper introduced a new adaptive neural network control
algorithm for the tracking control of robot manipulators.
The neural network of this controller uses only the desired
joint position, velocity, and acceleration.Themain theoretical
result consisted in showing that the position and velocity
error converge asymptotically while the input and output
weights of the neural network remain bounded.

The experimental tests showed the benefit of using an
adaptive neural network plus nonlinear PD control action.
The new controller showed robustness tomodel uncertainties
and strong nonlinear effects such as gravitational effects and
Coulomb friction.

Further research considers the application of the pro-
posed ideas in PI joint velocity control [35], anticontrol
of chaos [36], output feedback tracking control [37], and
underactuated systems [38].
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