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ABSTRACT: BackgroundBackground: Leukoencephalopathy with brainstem and spinal cord involvement and lactate
elevation (LBSL) is characterized by slowly progressive spastic gait, cerebellar symptoms, and posterior cord
dysfunction. DARS2, which encodes mitochondrial aspartyl tRNA synthase, is associated with the rare disease.
CasesCases: The proband had gait disturbance since age 56, while her younger brother had the gait problem since
his 20s and needed cane-assistance at age 45. Both cases showed typical demyelinating features of LBSL on
the magnetic resonance imaging (MRI) involving the periventricular white matter, brainstem, cerebellum and
spinal cord. Sequencing of both cases showed compound heterozygous mutations: c.228-16C>A and c.508C>T
in DARS2. The c.228-16C>A is a common mutation in splicing site of intron 2, which causes alternative splicing
defect of exon 3, while the c.508C>T at the exon 6 is novel. Our patients are unique in the relative late onset
and the apparent difference in disease progression.
Literature ReviewLiterature Review: Literatures from PubMed were reviewed. Five families showed intra-familial heterogeneity on
age at onset or clinical severity.
ConclusionConclusion: We identified a family of LBSL with compound heterozygous mutations, and c.508C>T at the exon
6 is a novel one. Clinical heterogeneity was observed in the family and other literatures. Further research for
underlying mechanism is required.

Leukoencephalopathy with brainstem and spinal cord involve-
ment and lactate elevation (LBSL, OMIM #611105) is a rare
autosomal recessive disorder, typically characterized by child-
onset, slowly progressive lower limb spasticity, cerebellar ataxia,
and dysfunction of the posterior cord. It was firstly described in a
case series of 8 patients by van der Knaap in the Netherlands in
2002.1 Their brain MRIs showed abnormal T2 hyperintensities
in periventricular and deep cerebral white matter, sparing the
temporal lobes and U-fibers. Selective tract involvement includes
the pyramidal tract, extending from internal capsule to the
brainstem and the lateral corticospinal tract, as well as the sensory

system from the posterior columns to medial lemniscus. The cer-
ebellar peduncles are also affected. Elevated lactate in magnetic
resonance spectroscopy (MRS) was found in the white matter
lesions in most patients.

The causative mutations of LBSL were found at DARS2 gene
on chromosome 1 in 2007 through linkage analysis.2 DARS2
encodes mitochondrial aspartyl-tRNA synthetase, which conju-
gates aspartate to the cognate tRNA in the mitochondria. This
enzyme is a kind of mitochondrial aminoacyl-tRNA synthetase
(mt-aaRS), and plays an important role in mitochondrial transla-
tion machinery. Most DARS2 mutations of LBSL are compound
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heterozygous, within which a splice mutation in intron 2 is
almost invariably found. In this report we described two Taiwan-
ese siblings with mutations, one in intron 2 and the other a novel
mutation c.508C>T (p.R170W) in exon 6. Clinical and
corresponding radiological heterogeneities were observed.

Case Series
Two of six siblings from a non-consanguineous marriage Tai-
wanese family were affected. Case 1 and 2 are the second and
the fourth siblings. Both were born full term via uneventful
spontaneous vaginal delivery. Neither of them is a vegetarian or
a recreational drug user.

Case 1
The 57-year-old woman is the index patient. She had no motor
developmental milestone delay according to her mother but had
poor physical performance when she was a child. At age 55, she
complained about unsteady gait, especially when going down-
stairs, with decreased sense of feedback when stepping on the
ground. Occasional urinary incontinence was noticed at age 57.
The patient denied any bulbar symptoms or upper limbs
involvement.

Neurological examinations (Video 1) showed wide-based,
ataxic gait, bilateral dysmetria on finger-nose-finger and knee-
shin-heel tests, and mild hypometric saccade. Babinski sign was
positive bilaterally, while spasticity was noted only at the right
leg and the deep tendon reflex (DTR) decreased at her lower
limbs. The muscle power was intact. Romberg’s sign was

positive and the sensitivity to vibration showed decrease at toes
(2 out of 8) and indices (4 out of 8).

Case 2
The case 2 had poor physical performance in his childhood. He
was unqualified for obligatory military service in our nation at age
18 and scissoring gait was described by his family. The patient
however did not suffer from unsteadiness until age 45, especially
in dark or narrow spaces. Falling frequency increased from once
per month to once every 3 days at about age 50, and thus he
started to use a walker. He also gradually had the problem of
standing tall. He did not present to our hospital until age 52.

On examination (Video 2), the patient had pes cavus, severe
genu recurvatum, and reduced muscle power in bilateral legs
(4/5 in hip flexion, knee flexion and ankle dorsiflexion, and 2/5
in toe extension). Spasticity was noted at lower limbs and
Babinski sign as well as Hoffmann sign was bilaterally positive.
His DTR increases in upper limbs but decreased at lower limbs.
He had prominent hypometric saccade, saccadic pursuit,
dysdiadochokinesia, and bilateral dysmetria on finger-nose-finger
and knee-shin-heel tests. His gait was wide-based with poor bal-
ance. The Romberg’s sign was positive and there are also
decreased sensitivity to vibration in both upper (6–7 out of 8)
and lower limbs (5–6 out of 8).

Both cases have normal vitamin B12, folic acid, thyroid func-
tion, and serum lactic acid. Venereal disease research laboratory
(VDRL) tests were negative. In case 1 we also examine the tumor
markers, adrenal function, tandem mass spectrometry of serum
metabolites, and the results were all normal. The cerebrospinal fluid
of case 1 showed no pleocytosis, with total protein 54.0 mg/dL, and
lactic acid level 2.00 mmol/L (reference range: 1.1–2.4 mmol/L).

Video 1. The video was recorded at age 57 of the case 1, showing cerebellar ataxia, and dysmetria on finger-nose-finger and knee-shin-
heel tests.
Video content can be viewed at https://onlinelibrary.wiley.com/doi/10.1002/mdc3.13281
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The median somatosensory evoked potentials (SSEP) revealed
bilaterally prolonged peak N9-N13 in both cases, and the tibial
SSEP showed absence of evoked potentials in the case 1 and
small amplitude with prolonged latencies in the case 2. These
results suggested lesions in posterior cord in both cases.

MRI of brain and cervical cord in both cases showed signal
abnormalities (T2 hyperintensity and T1 hypointensity) in the

periventricular white matter, pyramidal tract (including the
internal capsule, pyramids of medulla, and lateral corticospinal
tract), dorsal column of spinal cord, medial lemniscus, middle
cerebellar peduncle, inferior cerebellar peduncle, cerebellar
white matter, anterior spinocerebellar tracts, spinal trigeminal
nuclei, and intraparenchymal trigeminal tracts. In the case
1, there are cysts in the left middle cerebellar peduncle and

Video 2. The video was recorded at age 52 of the case 2, showing mixed waddling and cerebellar gait, severe genu recurvatum,
dysmetria on finger-nose-finger test, and dysdiadochokinesia.
Video content can be viewed at https://onlinelibrary.wiley.com/doi/10.1002/mdc3.13281

FIG. 1. MRI of brain and cervical cord of case 1 (age 57) and case 2 (age 52). There was more extensive cerebellar white matter
involvement in the case 2 (B, arrow), and cysts in the middle cerebellar peduncle of the case 1 (D, arrowhead).
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cerebellar white matter. In the case 2, the involvement of
cerebral and cerebellar white matter of the anterior lobe is
more extensive, and the splenium is also affected (Fig. 1). The
MRS using single-voxel spectroscopy (SVS) technique showed
a small lactate peak by targeting the left middle cerebellar
peduncle of the case 1, and no detectable lactate peak
by targeting the left cerebellar white matter of the case 2
(Supplementary Figure S1).

With tentative diagnosis of demyelinating leu-
koencephalopathy and positive family history, whole exome
sequencing was performed for the case 1. Two compound het-
erozygous variants (c.228-16C>A and c.508C>T) in DARS2
were identified. The c.228-16C>A is a known mutation in splic-
ing site of intron 2,3,4 while the c.508C>T is a novel one which
was predicted as deleterious by SIFT (Sorting Intolerant From
Tolerant) program. To determine the pathogenicity of this novel

FIG. 2. (A) The family pedigree. (B) Segregation analysis with sanger sequencing showed both the case 1 (II-2, arrow) and case 2 (II-4)
have the same compound heterozygous mutations. Their mother (I-2) carries only c.228-16C>A, and their sister (II-1) is normal.
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mutation, segregation analysis with Sanger sequencing was per-
formed in the case 2, and their sister and mother (no available
sample from the siblings’ father who died of pancreatic cancer in
his 50s without known gait problem). The latter two are normal
under thorough neurological examination. Their mother carries
c.228-16C>A only, and their sister has neither of these variants.
In contrast, the case 2 has the same compound heterozygous var-
iants as the case 1 (Fig. 2). The minor allele frequency of
c.508C>T in DARS2 is 0.00001622 worldwide according to
gnomAD. In East Asia the frequency ranges from 0.00005564
to 0.0001718 (estimated by gnomAD and ExAC database respec-
tively).5 By applying the American College of Medical Genetics
and Genomics (ACMG) guideline, the c.508C>T in DARS2 is
“likely pathogenic” (meeting criteria PM2, PM3, PP3, PP4).6

Literature Review
Although typically a childhood-onset, slowly progressive disease,
the onset age and progression speed of LBSL are actually highly
variable, ranging from infantile onset with great disability, to
middle-age onset without loss of ambulation after decades.7 Cur-
rently, there are more than 50 non-intron 2 mutations reported
and according to a large case series from a European group, the
genotype–phenotype correlation is not apparent.7 Patients carry-
ing c.228-21_-20delTTinsC in combination with c.455G>T
showed various onset age ranging from 2 to 23 years. Similar sit-
uations could also be found in those in combination with c.492
+2T>C, with onset age 1–15 years. The duration of disease pro-
gression from onset to walking aids also varies from 7 to 22 years
in these patients.7

To understand more about such variations, we reviewed all
the case reports and case series of LBSL on the PubMed from
April 2007 to March 2021. Sporadic cases or cases without clini-
cal details were all excluded. Ages of onset/functional deficits are
categorized into infancy (birth to 2 years), childhood (3–
12 years), adolescence (13–20 years), early adulthood (21–
40 years), and late adulthood (greater than 40 years). Siblings
with ages of onset and functional deficits in different age catego-
ries were considered clinically heterogeneous and were therefore
included.

Our report, along with five families from other studies, demon-
strate intra-familial heterogeneity (Table 1),7–9 suggesting some
intrinsic mechanisms. Environmental factors such as well water,
pesticide, smoking, alcohol, food and life style, at least in our cases,
unlikely play crucial roles in clinical heterogeneity as both our
cases were raised up together and lived nearby after marriage.

Discussion
DARS2 is responsible for conjugation of aspartate to the cognate
tRNA. The intron 2 mutations that are invariably found in most
LBSL cases cause skip of exon 3 through aberrant splicing,10

probably leading to frameshifting or premature stop. Point muta-
tions at non-intron sites, on the other hand, have been shown in
association with decreased enzyme activities, decreased dimeriza-
tion, decreased protein expression,2,11 or alterations of other bio-
physical characteristics.12 It is intuitive to consider that
mitochondria aspartyl tRNA synthetase (mt-AspRS), the protein
products of DARS2, plays an important role in intra-
mitochondrial translation, and is therefore pivotal for

TABLE 1 Six families of LBSL showing intra-familial heterogeneity from literatures

Family No. Sex
Age at

Visit (yr) Mutation 1 Mutation 2
Onset

Age (yr)
Walking
Aid (yr)

Wheelchair
(yr) Reference

1 F 57 c.228-16C>A c.508C>T 55 � � Index report

M 52 c.228-16C>A c.508C>T Teenage 50 �
2 M 25 c.228-21_-20delTTinsC c.492+2T>C 2 24 � 5

M 22 c.228-21_-20delTTinsC c.492+2T>C 15 � �
3 M 20 c.228-21_-20delTTinsC c.787C>T 2 6 � 5

F 24 c.228-21_-20delTTinsC c.787C>T 1 14 22

4 F 33 c.228-21_-20delTTinsC c.788G>A 3 8 20 5

F 29 c.228-21_-20delTTinsC c.788G>A 5 28 �
5 F 23 c.228-16C>G c.745C>A 4 � � 6

F 28 c.228-16C>G c.745C>A Asymp. � �
6* F 15 c.1762C>G c.563G>A 0.3 + + 7

F 18 c.1762C>G c.563G>A 0.6 + +

F 20 c.1762C>G c.563G>A Asymp � �
*Consanguineous family; Asymp, asymptomatic; �, not affected; +, affected but not specified (both cases had motor delay but learned independent walking at age 6).
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mitochondria function. However, according to the work of
Scheper and his colleagues, activities of mitochondria complex I-
IV remained unaffected in fibroblasts and lymphoblasts derived
from LBSL patients.2 The contradictory results might be related
to intrinsic differences among cell lineages. Van Berge et al. have
shown that exon 3 preceded by mutant intron 2 will be spliced
out more efficiently in neuronal than non-neuronal cell lines.10

The leaky strategy might explain why the nervous system is
more vulnerable than other systems, and probably also the tract-
specific nature of LBSL. It is possible that the intra-familial het-
erogeneity is related to the splicing efficacy variations among
individuals. Epigenetic regulation might contribute to the indi-
vidual differences although the evidence remains limited. The
RNA processing, supposedly associated with the aberrant splicing
of DARS2 mutants in intron 2, is regulated not only by the cis-
sequences in pre-mRNA but also by many trans-acting factors,
such as DNA methylation, histone modification, and non-coding
RNAs.13 Further studies about the underlying mechanisms may
provide hints about treatment development in the future.14

Our newly identified mutation c.508C>T in DARS2 causes
R170W missense mutation. A similar variant c.509G>A (dbSNP:
rs759658461) that causes R170Q is reported in the ClinVar data-
base, but as no clinical detail is provided, the clinical significance is
uncertain. Our report strengthens the importance of this residue.
The mt-AspRS is mainly composed of five parts: mitochondria
targeting sequence (aa 1–41), anticodon binding domain (aa 58–
151), dimerization helix (aa 180–205), catalytic domain (aa 208–
608), and C-terminal bacterial extension (aa 609–645).15 The
R170 residue resides in the hinge between the anticodon binding
domain and dimerization helix, and is 80% conserved across spe-
cies as the MiSynPat (http://misynpat.org/misynpat/) described.16

Residues including Q182, M183, and D600 share spatial proxim-
ity (<5 Å) with the R170 according to the 3D modulation of
Protein Data Bank (Fig. 3),17 implying the possible interactions
with dimerization helix and catalytic domain. These interactions
to our knowledge have not been well-studied yet.

In conclusion, we identified a Taiwanese non-consanguineous
family of LBSL showing prominent intra-familial heterogeneity.

FIG. 3. The R170 residue is highly conserved across species (A) and has spatial proximity (<5 Å) with residues Q182, M183, and D600 (B),
suggesting possible interactions with the dimerization helix and the catalytic domain.

MOVEMENT DISORDERS CLINICAL PRACTICE 2021; 8(7): 1116–1122. doi: 10.1002/mdc3.13281 1121

LI J.-L. ET AL. CASE SERIES WITH LITERATURE REVIEW

http://misynpat.org/misynpat/


Compound heterozygous mutations of one intron 2 mutation
and one novel missense mutation in exon 6 were detected. The
leakiness of aberrant splicing due to the intron 2 mutation might
explain the clinical heterogeneity and provide clues for future
gene therapies.
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Figure S1. The MRS using the SVS technique showed a
small lactate peak (arrow) at the left middle cerebellar peduncle
of the case 1 (aged 57), and no lactate peak at the left cerebellar
white matter of the case 2 (aged 52).
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