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Abstract

Even though there is a clear link between Alzheimer’s Disease (AD) related neuropathology

and cognitive decline, numerous studies have observed that healthy cognition can exist in

the presence of extensive AD pathology, a phenomenon sometimes called Cognitive Resil-

ience (CR). To better understand and study CR, we develop the Alzheimer’s Disease Cogni-

tive Resilience Score (AD-CR Score), which we define as the difference between the

observed and expected cognition given the observed level of AD pathology. Unlike other

definitions of CR, our AD-CR Score is a fully non-parametric, stand-alone, individual-level

quantification of CR that is derived independently of other factors or proxy variables. Using

data from two ongoing, longitudinal cohort studies of aging, the Religious Orders Study

(ROS) and the Rush Memory and Aging Project (MAP), we validate our AD-CR Score by

showing strong associations with known factors related to CR such as baseline and longitu-

dinal cognition, non AD-related pathology, education, personality, APOE, parkinsonism,

depression, and life activities. Even though the proposed AD-CR Score cannot be directly

calculated during an individual’s lifetime because it uses postmortem pathology, we also

develop a machine learning framework that achieves promising results in terms of predicting

whether an individual will have an extremely high or low AD-CR Score using only measures

available during the lifetime. Given this, our AD-CR Score can be used for further investiga-

tions into mechanisms of CR, and potentially for subject stratification prior to clinical trials of

personalized therapies.

Introduction

Alzheimer’s Disease (AD) is a debilitating, irreversible, and progressive brain disorder that

destroys memory and cognitive skills. AD is a major public health concern, as it is the sixth
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leading cause of death in the United States and is the only cause of death in the top ten that

cannot be prevented, cured, or slowed. A definitive diagnosis of AD requires the presence of

AD pathology at autopsy (amyloid plaques and neurofibrillary tangles in the brain) in con-

junction with cognitive symptoms observed during the lifetime [1]. Numerous studies show a

link between AD-related pathology and cognitive decline, yet it has also been observed that

healthy cognition can exist in the presence of extensive AD pathology [2]. In fact, only about

40% of the variation in late life cognition can be explain by pathology [3]. Consistently in com-

munity based cohorts with autopsy, around a third of people without dementia have the

pathology meeting the criteria for intermediate or even high likelihood of AD [4–7]. A model

for explaining this anomaly is the concept of cognitive resilience (CR). In [8], CR in AD is

defined as the mechanism which enables some individuals to be more resilient to the patholog-

ical brain changes associated with AD than others; individuals with high CR show few or no

clinical symptoms of AD during their lifetime, but have a pathological diagnosis of AD at

autopsy. Understanding and characterizing CR could transform the way that AD is viewed

from both a public health and scientific perspective, leading to population-level and targeted

interventions as well as disease-modifying treatments and therapies to prevent, or slow pro-

gression of disease.

CR is an abstract concept with no consensus definition and therefore has been quantified

using numerous approaches in the literature. Associations between levels of CR and a number

of characteristics have been found in the literature, such as years of education, gender, social

connectedness, and personality traits. One of the simplest and most frequently used methods

to define CR is using one or more of these proxy variables [2, 9, 10]. In [11], a composite global

enrichment score based on education, occupation and leisure activities is used as a surrogate

for CR. Defining CR through the use of proxy variables has been cautioned against in the liter-

ature [12], as many of these proxy variables are highly correlated with other variables (such as

socioeconomic status and health behaviors) already known to be associated with AD risk. In

addition, many of the proxy variables do not reflect the same life experience among different

individuals [9]. For example, one year of education could be very different among two differ-

ent individuals.

CR has also been characterized using in-vivo structural magnetic resonance imaging (MRI)

of the brain as a proxy for AD-related pathology. In [13], baseline episodic memory is decom-

posed into three components with a latent variable model: brain pathology (as characterized

from measures derived from in-vivo structural MRI), demographic variables, and a latent per-

son-specific factor that captures difference from the baseline test performance predicted for an

average person with similar brain pathology and demographics. This latent factor defines CR

and is extended to longitudinal settings in [14]. These methods rely heavily on parametric

models, which may be prone to model misspecification, and do not produce stand-alone met-

rics of CR. And while measures derived from in-vivo structural MRI are available during

the lifetime (unlike AD-related pathology measures), these measures have not been validated

with ‘gold-standard’ postmortem pathology of AD and may not actually be related to brain

pathology.

A number of studies have characterized AD-related CR by explaining the variation in cog-

nition that remains after adjusting for AD-related postmortem pathology. In [15] and [16], CR

is quantified by regressing a global cognition score on a global postmortem pathology score

and an interaction between the pathology score and another characteristic (for example years

of education). The interaction term tests the hypothesis that the characteristic modifies the

effect of pathology on cognition, and is therefore associated with CR. In [17], a longitudinal

global cognition score is modeled using a random effects mixture model, adjusting for com-

mon AD associated pathologies. After adjusting for these pathologies, four distinct groups of
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cognitive decline are found. Among the four groups, statistically significant differences are

observed in depressive symptoms, measures of social isolation, and measures of cognitive and

physical engagement activities. These residual-cognition methods have allowed for important

discoveries of a number of important associations with CR, including experiential, psychologi-

cal, and genetic findings [18, 19]. Yet, characterizing CR as the variation in cognition that

remains after adjusting for AD-related pathology is not ideal, as these characterizations also

use parametric models, which may be incorrectly specified, and do not produce stand-alone

metrics of CR. Further, incorporating adjustment for AD pathologic burden in estimates of

CR may obscure specific mechanisms conferring resilience to AD pathology, which may not

necessarily be generalizable to other brain lesions. In addition, the characterizations using

postmortem pathology are not available during an individual’s lifetime, and therefore cannot

be used in clinical settings.

Here we propose an alternative framework for defining CR, the Alzheimer’s Disease Cogni-

tive Resilience Score (AD-CR Score). Given AD-related pathology, the AD-CR Score is the dif-

ference between the observed and expected cognition. The AD-CR Score is closest to residual-

cognition methods of characterizing CR, as it is computed using a global measure of cognition

obtained proximal to death and ‘gold standard’ postmortem AD pathology. Yet unlike the

residual-cognition methods, the AD-CR Score is fully non-parametric, stand-alone, and pro-

duces individual-level quantifications of CR that are derived independently of other measures.

To show that the AD-CR Score is measuring CR, we validate the score by exploring its associa-

tion with measures already known to be associated with CR, as well as longitudinal cognition.

And while the AD-CR Score is computed using ‘gold-standard’ postmortem pathology of AD,

we also propose a framework for predicting whether an individual will have an extremely high

or low AD-CR Score using measures collected during premortem assessments, providing

potential clinical utility to the score.

Methods

Participants

Data from two ongoing, longitudinal cohort studies of aging, the Religious Orders Study

(ROS) and the Rush Memory and Aging Project (MAP) [18–20], is used for this analysis. The

two studies were designed and are managed by the same team of investigators that collect the

same measures, making the studies ideal to be combined for analysis. All participants are free

of dementia when enrolled into the studies and agree to annual clinical evaluations and brain

donation upon death. Both studies are approved by the Institutional Review Board of Rush

University Medical Center.

At the time of this analysis, 3190 participants had completed the baseline evaluation and

1378 participants were deceased with completed brain autopsy. Clinical diagnoses were made

following National Institute of Neurological and Communicative Disorders and Stroke-Alz-

heimer’s Disease and Related Disorders Association recommendations [21], and including

AD, mild cognitive impairment (MCI), or no cognitive impairment (NCI). Such clinical diag-

noses were made blind of all postmortem data. During autopsy, a modified NIA-Reagan score

of AD pathology presenting as neurofibrillary tangles and neuritic plaques in the brain was

also assigned [22]. This assessment is performed without knowledge of clinical information

(e.g. a clinical diagnosis of dementia) and is a postmortem diagnosis of Alzheimer’s Disease

based entirely on the neuropathology. Specifically, the modified NIA-Reagan score was dichot-

omized into low probability for having a pathologic diagnosis of AD and high probability

for having a pathologic diagnosis of AD based entirely on the postmortem neuropathologic

evaluation. Low probability means no or low likelihood of AD based on the postmortem
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neuropathologic evaluation. High probability means high or intermediate likelihood of AD

based on the postmortem neuropathologic evaluation.

Of the 1378 participants who had died and gone to autopsy, 24 were excluded from this

analysis because they were diagnosed with non-AD dementia at death, and 46 were missing

either a clinical diagnosis at death or a modified NIA-Reagan score. Furthermore, the compu-

tation of our proposed AD-CR Score requires a global measure of cognition proximal to death

and a global measure of AD pathology burden (described in the Neuropsychological perfor-
mance testing section and the Neuropathologic evaluation section, respectively). Therefore,

seven participants were excluded for not having the global AD pathology measure at autopsy.

Similarly, we also excluded 319 participants who did not have the full battery of cognitive tests

used to calculate the global cognition measure within two years of death. After applying this

exclusion criteria, 980 subjects were used in the analysis.

We show a demographic summary for the 980 participants used in our analysis in Table 1

in terms of the premortem clinical diagnosis (i.e. AD, MCI, and NCI) as well as the postmor-

tem pathologic diagnosis (i.e. the modified NIA-Reagan score). Nearly 15% of the participants

have NCI from premortem clinical diagnosis with a high probability for having a pathologic

diagnosis of AD based on postmortem neuropathologic evaluation. In other words, even

though these participants actually have NCI before death, their postmortem neuropathologic

evaluations show extensive AD-related pathology that would fulfill criteria for having a patho-

logic diagnosis of AD. These participants would be among those considered to have ‘high cog-

nitive resilience (CR)’. In addition, over 18% of the participants have either MCI or AD from

premortem clinical diagnosis despite a low probability for having a pathologic diagnosis of AD

based on postmortem neuropathologic evaluation. These participants would be among those

considered to be ‘cognitively vulnerable (CV)’. We want to note that Table 1 is only meant to

provide a demographic summary for the participants and the actual definition/computation of

our proposed AD-CR Score does not depend on the categorizations in Table 1 at all.

Neuropsychological performance testing

A battery of 21 cognitive tests are administered annually and nineteen of them are used to

assess a variety of cognitive abilities across five cognitive domains (episodic memory, semantic

memory, working memory, perceptual speed, and visuospatial ability) [20]. The specific tests

used for each domain are summarized as follows: i) Logical Memory Ia, Logical Memory IIa,

immediate story recall, delayed story recall, Word List Memory, Word List Recall, Word List

Recognition for assessing episodic memory; ii) Boston Naming Test, Category Fluency (fruits,

animals), National Adult Reading Test for assessing semantic memory; iii) Digit Span For-

ward, Digit Span Backward, Digit Ordering for assessing working memory; iv) Symbol Digit

Modalities Test, Number Comparison, Stroop word reading, Stroop color naming for assess-

ing perceptual speed; and v) Judgment of Line Orientation, Standard Progressive Matrices for

Table 1. A demographic summary for the n = 980 participants in terms of the premortem clinical diagnosis (i.e. AD, MCI, and NCI) as well as the postmortem path-

ologic diagnosis (i.e. the modified NIA-Reagan score).

Clinical Diagnosis

AD MCI NCI

Pathologic Diagnosis Low Probability of AD 66 (6.73%) 111 (11.33%) 212 (21.63%)

High Probability of AD 286 (29.18%) 159 (16.22%) 146 (14.90%)

Of the participants, 146 (14.9%) had no cognitive impairment from premortem clinical diagnosis, yet a high probability for having a pathologic diagnosis of AD based

on neuropathologic evaluation at autopsy. These participants would be among those considered to have ‘high cognitive resilience’.

https://doi.org/10.1371/journal.pone.0241707.t001
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assessing visuospatial ability [23]. A global measure of cognition is computed by converting

each test to a z-score and then averaging the z-scores, as previously described in [24, 25].

Therefore, the global cognition measure is a summary measure of a subject’s overall cognitive

abilities across five cognitive domains on a continuous scale—negative values for the global

cognition measure indicate lower overall cognitive abilities than the average of the entire

cohort whereas positive values signify higher cognitive abilities than the average of the cohort.

This global cognition measure is used in the computation of our proposed AD-CR Score in

our analysis.

Neuropathologic evaluation

Following the procedures recommended by the National Alzheimer’s Disease Coordinating

Center [26], the postmortem neuropathologic evaluation includes assessment of AD pathol-

ogy, cerebral infarcts, lewy body disease, and other pathologies common in aging and demen-

tia. In addition to the modified NIA-Reagan score, a global measure of AD pathology burden

is constructed using three AD pathologies (neuritic plaques, diffuse plaques, and neurofibril-

lary tangles) from 5 regions of the brain (midfrontal cortex, midtemporal cortex, inferior pari-

etal cortex, entorhinal cortex, and hippocampus), as previously described in [27]. This global

measure of AD pathology burden is used in the computation of our proposed AD-CR Score in

our analysis. As we are also interested in other, non-AD causes of dementia and cognitive

decline, we accounted for the presence of Lewy bodies [28], the presence of hippocampal scle-

rosis [29], as well as measures of vascular infarcts: gross infarcts, microinfarcts, gross chronic

infarcts, and chronic microinfarcts [30–33].

Other measures

For this analysis, we investigate measures that may be correlated with CR and the AD-CR

Score. We group these measures into the following categories to test association: demographic,

cognition, non-AD pathology, education, personality, vision, APOE, pain, alcohol, smoking,

BMI, comorbidity, parkinsonism, depression, life activities, and physical activities. The demo-

graphic group includes sex and age. The cognition group includes the summary measures of

the five cognitive domains described in the Neuropsychological performance testing section

(episodic memory, semantic memory, working memory, perceptual speed, and visuospatial

ability). The non-AD pathology group consists of the non-AD pathology measures introduced

in the Neuropathologic evaluation section, namely the presence of Lewy bodies, hippocampal

sclerosis, gross infarcts, microinfarcts, gross chronic infarcts, and chronic microinfarcts. The

education group is the number of years of education. The personality group includes of a mea-

sure of neuroticism [34] and a measure of anxiety [35, 36]. The vision group includes a test of

visual acuity. The APOE genotype group includes an indicator of whether the individual has

allele E2 as well as allele E4. The former has been shown to be protective for AD while the latter

has been shown to increase an individual’s risk of AD [37, 38]. The pain group includes the

measures of self-reported pain in the upper and lower extremities. The alcohol group includes

self reported measures of the average grams of alcohol consumed per day in the last 12 months

and the average number of alcoholic drinks consumed per day over the individual’s lifetime.

The smoking group includes an indicator of being a former smoker or a current smoker. The

BMI group is a measure of the individual’s BMI. The comorbidity group includes any history

of hypertension, cancer, diabetes, head injury with loss of consciousness, thyroid disease, heart

disease, and stroke. The parkinsonism group includes measures of bradykinesia, gait quality,

rigidity and tremor all modified from the United Parkinson’s Disease Rating Scale (mUPDRS)

[39] as well as an overall diagnosis of parkinsonism from a trained nurse based upon the
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mUPDRS scale [39]. The depression group is an assessment of depression using a modified

Center for Epidemiologic Studies Depression (CESD) scale [40]. The life activities groups con-

sists of a measure of the ability to perform instrumental activities of daily living [41], a measure

of the ability to perform basic activities of living [42], and a measure of mobility disability [43].

The physical activities groups includes measures of general physical activity, swimming physi-

cal activity, walking physical activity, and physical activity spent doing yard work. Table 2 sum-

marizes the measures in each of the groups.

Statistical methods

We validate the AD-CR Score as a measure of CR by (1) demonstrating the score’s association

with measures already known to be associated with CR and (2) demonstrating the association

of the score with longitudinal global cognition trajectories. In addition, we also build a

machine learning framework to predict whether an individual will have a high or low AD-CR

Score using only clinical measures available during the individual’s lifetime.

AD-CR Score associations. We validate the proposed AD-CR Score as a measure of CR

by establishing the associations of the score with measures already known to be associated

with CR in the literature. Individuals with higher cognition at baseline [8], higher educational

attainment [2, 8, 15], less neuroticism [44], less depressive symptoms [44, 45], less disability in

daily life activities [44, 46] and more engagement in physical activities [46] have been previ-

ously found to have higher CR. Having the APOE E4 allele has been found to increase the risk

of AD, while the APOE E2 allele has been shown to be protective for AD [37, 38]. Non-AD

pathology [2] and other comorbidities, especially Parkinson’s disease [47], may also explain

cognition that is less than expected in relation to AD related pathology. Alcohol consumption

and smoking have not been found to be associated with CR [48], so we also investigate these

associations to confirm the previous findings. In addition, we explore the relationship with CR

and other available measures for the participants (anxiety, vision, lower and upper extremity

pain, and BMI) in an effort to find new associations with the AD-CR Score and CR. To reduce

the number of tests performed, we grouped these measures into 16 groups as described in the

section Other measures: demographic, cognition, non-AD pathology, education, personality,

vision, APOE, pain, alcohol, smoking, BMI, comorbidity, parkinsonism, depression, life activi-

ties, and physical activities (Table 2).

For this analysis, we first use the baseline value (collected at the participant’s first evalua-

tion) for each of the measures as well as the non-AD pathology measures collected at autopsy.

We perform a univariate nested ANOVA (or F-test) to test whether the model with the demo-

graphic group has a significantly better fit compared to the null model (in terms of the variance

explained in the AD-CR Score). We then use the univariate nested ANOVA to determine if

adding each of the groups from Table 2 individually fits significantly better than the demo-

graphic group model alone. Next we performed a multivariate nested ANOVA (or F-test), test-

ing whether a model fit with all groups fits significantly better than each of the models fit after

removing one of the groups. Note that the demographic group is excluded from such removal

and is thus always included in all multivariate models. Additionally, as baseline cognition and

pathology are highly associated with CR and many of the other measures of interest, we fit

another set of multivariate nested ANOVA excluding the cognition and pathology groups

from removal, which always include these two groups in addition to the demographic group in

all multivariate models. Participants with missing measurements were excluded from models

for which there was missingness. To adjust our inference for multiple testing, we performed

multiple-comparison correction within the nested univariate ANOVA and the two nested

multivariate ANOVA settings by controlling the false discovery rate at 10% [49].
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Table 2. Summary of the measures that make up each of the groups for the analysis.

Group Measure Mean [Range] Missing

Demographics Age at Baseline 80.71 [62.64, 102.15] 0

Male 37.65% 0

Cognition (z-scores, higher values for higher cognition) Episodic Memory -0.14 [-4.00, 1.45] 2

Visuospatial Ability -0.12 [-3.24, 1.61] 4

Perceptual Speed -0.17 [-3.18, 2.54] 3

Semantic Memory -0.07 [-5.73, 2.35] 2

Working Memory -0.05 [-3.39, 2.19] 1

Non-AD Pathology Hippocampal Sclerosis 6.08% 9

Lewy Bodies 19.71% 1

Gross Chronic Infarcts 32.99% 1

Chronic Microinfarcts 29.11% 1

Gross Infarcts 41.98% 1

Microinfarcts 37.18% 1

Education Education (years) 16.39 [3, 30] 0

Personality Anxiety (range 0 to 10 [more anxious]) 1.52 [0, 10] 122

Neuroticism (range 0 to 24 [more neurotic]) 8.12 [0, 18] 51

Vision Vision (range 1 to 7 [poor]) 1.55 [1, 7] 8

APOE APOE 2 Allele 15.93% 13

APOE 4 Allele 24.92% 13

Pain Lower Extremity 31.7% 2

Upper Extremity 19.73% 2

Alcohol Lifetime (range 0 to 6 [more consumption]) 0.41 [0, 6] 6

Last 12 months (log grams per day) 0.70 [0, 4.66] 6

Smoking Former Smoker 28.3% 5

Current Smoker 2.56% 5

BMI BMI 26.77 [12.65, 47.44] 29

Comorbidities Hypertension 47.7% 1

Cancer 32.38% 1

Diabetes 13.48% 1

Head Injury 5.93% 2

Thyroid 17.47% 1

Heart Disease 15.83% 1

Stroke 10.43% 21

Parkinsonism Bradykinesia (range 0 to 100 [more bradykinesia]) 13.99 [0, 80] 5

Gait Quality (range 0 to 100 [more gait problems]) 19.34 [0, 100] 9

Overall (range 0 to 2 [high]) 1.07 [0, 2] 4

Rigidity (range 0 to 100 [more rigid]) 4.71 [0, 85] 4

Tremor (range 0 to 100 [more tremor]) 3.60 [0, 69.70] 5

Depression Depression (range 0 to 10 [more depressed]) 1.2 [0, 9] 5

Life Activities Instrumental (0 to 8 [needs more help]) 1.35 [0, 8] 7

Basic (0 to 6 [needs more help]) 0.23 [0, 6] 6

Mobility Disability (0 to 3 [needs more help]) 0.91 [0, 3] 8

Physical Activities Overall (higher scores more active) 0.71 [0, 18] 4

Walking (higher scores more active) 1.46 [0, 35] 5

Yardwork (higher scores more active) 0.29 [0, 35] 3

https://doi.org/10.1371/journal.pone.0241707.t002
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Acknowledging that participants in the ROS and MAP studies were recruited into these

studies at different ages, we also perform the univariate and multivariate ANOVAs using mea-

sures from participants in cross-sectional models at age 75, 80, 85, and 90, as well as the pathol-

ogy measures collected at autopsy. This analysis is done in an attempt to temporally register

the subjects using age. The number of participants in these groups was significantly smaller

than the full study population, n = 198, 353, 413, and 284 respectively, with missingness of 1%,

2%, 3%, and 4% respectively. We therefore imputed the data with nonparametric missing

value imputation using a random forest implemented in the missForest R package [50, 51].

The sensitivity analysis for this imputation can be found in the S2 Appendix. For all of the

nested ANOVA models we use only sex from the demographic group; adjusting for age is not

necessary as all participants in the models are the same age. Just as with the nested ANOVA

models with the baseline data, we also adjust for multiple testing using the false discovery rate.

Association with cognitive decline. In addition to demonstrating the cross sectional asso-

ciations with the AD-CR Score, we also examine the association of the AD-CR Score with the

longitudinal trajectories of global cognition to provide validation for the score. Previous stud-

ies have identified a relationship between cognitive decline and CR [17]; those individuals with

higher CR experience a slower rate of decline in cognition than those with lower CR, who

experience a steeper drop in cognition over time. To explore the association between the

AD-CR Score and cognitive decline, we consider a non-linear longitudinal mixed effects

model, using splines to fit non-linear longitudinal effects [52]. In the model, we include the

fixed effects of age at baseline, AD-CR Score, an interaction of age at baseline and AD-CR

Score, a quadratic B-spline basis of age (henceforth referred to as the non-linear age term), and

an interaction between the non-linear age term and the AD-CR Score, as well as a random

effect for each subject. The baseline age and AD-CR Score fixed-effects in the model allow us

to test for an overall shift in the cognition trajectory based upon age of entry into the study and

CR. We include a fixed effect interaction between the AD-CR Score and the baseline age to

test if the AD-CR Score modifies the relationship between the age at baseline and the longitu-

dinal trajectories. The non-linear age term is used to capture the expected overall decline in

cognition as an individual ages. In addition, we include an interaction with the AD-CR Score

and this non-linear age term to test if the AD-CR Score modifies this decline. The random sub-

ject effect allows for individual differences in cognition among the subjects.

Prediction of the AD-CR Score. To assess the clinical utility of the AD-CR Score, we seek

to predict the AD-CR Score and specifically whether subjects will have high or low AD-CR

Score using only measures that are available at the baseline visit (we exclude pathology as this

is only available after death). First, we randomly assign 60% of the 791 participants with com-

plete data to a training set (490) and assign the remaining participants to a test set (301). We

focus on predicting subjects that will have extreme AD-CR Scores as these are the most clini-

cally relevant groups. Thus, we employ a two stage predictive modeling process: First, we use a

predictive model to predict subjects as having extreme or average AD-CR Scores; and second,

we build separate predictive models for each group to classify subjects as having high or low

AD-CR Scores (defined as positive or negative AD-CR Scores respectively). For the first stage,

we fit weighted regression models to predict the continuous AD-CR Score, where subjects

with extreme AD-CR Scores are up-weighted. We implement regression models such as regu-

larized regression (R package glmnet), random forests (R package randomForest), and gradi-

ent boosting (R package mboost and XGBoost). All models are trained using the training set.

In particular, we use 10-fold cross-validation to choose the optimal tuning parameters, the

optimal weighting scheme, as well as the best overall model using the training set. After the

first stage, subjects with an absolute predicted AD-CR Score greater than 0.1 are placed into

the extreme AD-CR group and the rest are placed into the average AD-CR group. For the

PLOS ONE Quantifying cognitive resilience in Alzheimer’s Disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0241707 November 5, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0241707


second stage, we fit separate models to the extreme and average AD-CR groups to further clas-

sify subjects as having high or low AD-CR Scores. For this, we implement weighted classifica-

tion models such as regularized logistic regression, random forests, support vector machines

(Python toolbox scikit-learn), and gradient boosting; again, we use 10-fold cross-validation to

choose tuning parameters and decide on the best model using the training set. The predictive

performance of our machine learning framework is reported on the test set in terms of Sensi-

tivity, Specificity, F-Score as well as accuracy for predicting whether subjects will have high or

low AD-CR Scores.

Results

The Alzheimer’s Disease Cognitive Resilience Score

Numerous studies have shown a link between AD-related pathology and cognitive decline [2].

Our objective is to develop a quantitative definition of CR in AD that is stand-alone, non-

parametric, and produces individual quantifications independent of other measures. To this

end, we first characterize the expected level of cognition given an observed level of AD pathol-

ogy. The AD-CR Score is then defined as the difference between the observed and expected

cognition for a given AD pathology burden. Fig 1A shows a diagram of this definition. Our

AD-CR Score is computed using the global cognition measure and the global AD pathology

measure (described in the Neuropsychological performance testing and Neuropathologic evalua-
tion sections respectively).

To mathematically define our AD-CR Score, let c be the observed global cognition at last

visit and let p be the observed global AD pathology. We first quantile transform the global cog-

nition and global AD pathology: Let F̂ c and F̂ p be the empirical distribution functions for c
and p respectively. The quantile transformed values of global cognition and pathology are

F̂ cðcÞ and F̂pðpÞ. Fig 1B shows plots of the observed and quantile transformed global cognition

at last visit versus the AD pathology for all participants in the analysis. We then define the

expected level of cognition given the level of AD pathology to be the line at which the two

quantiles are equal, F̂ cðcÞ ¼ F̂ pðpÞ, denoted as the red forty-five degree line in Fig 1B2. Quan-

tile matching provides a non-parametric way to characterize the expected cognition given the

level of AD pathology. Finally, we define the AD-CR Score for participant i with global cogni-

tion score of ci and global AD pathology burden of pi as:

CRi ¼ F̂ cðciÞ � F̂pðpiÞ:

In other words, the AD-CR Score for each individual is the difference between their quan-

tile-transformed cognition and their quantile-transformed AD pathology level. Hence, the

AD-CR Score is a continuous measure, taking values between −1 and 1. Positive values indi-

cate that there is higher cognition than expected, negative values indicate that there is lower

cognition than expected, and values near 0 indicate that the cognition is as expected for the

observed pathology. Our AD-CR Score can also be interpreted as the normalized shortest dis-

tance from an individual’s observed cognition and pathology to the expected values of cogni-

tion and pathology; a proof of the mathematical equivalence of the two definitions is provided

in the S1 Appendix. Fig 1B illustrates how our AD-CR Score is calculated by highlighting a

participant with a AD-CR Score of 0.55 shown on both the observed and quantile transformed

plots.
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Cross sectional associations

Next, we seek to validate our AD-CR Score by testing its association to previously implicated

indicators of cognitive resilience in AD. Table 3 shows cross-sectional association results from

the three baseline nested ANOVA models: the univariate ANOVA, the multivariate ANOVA,

and the multivariate ANOVA excluding cognition and pathology. Note that we do not test the

demographics group in the multivariate models as we adjust for age in all of the multivariate

models. After correcting for multiple testing, we found associations with the AD-CR Score

and demographic information, baseline cognition, non-AD related pathology, education, per-

sonality, APOE genotype, parkinsonism, depression, and life activities in the univariate

ANOVA. These findings replicate previous findings in the literature [2, 8, 37, 38, 47]. In the

univariate ANOVA, the only finding that we were not able to replicate from the literature was

physical activity; this is perhaps due to how these measures were obtained in the ROS and

MAP cohorts. In the multivariate ANOVA, cognition, non-AD pathology, and APOE were

Fig 1. Illustrations of the AD-CR Score definition. (A) Diagram of the AD-CR Score definition. (B) Plot of the observed global cognition at last visit

versus AD pathology burden of the participants where (B1) are the original values and (B2) are the quantile transformed values. A participant with a

AD-CR Score of 0.55 is shown as the circled blue point. The geometric interpretation of the AD-CR Score (as the normalized shortest distance from an

individual’s observed cognition and pathology to the expected values of cognition and pathology) is also shown in the plot with the red lines. Colors for the

plots are determined as follows: AD and MCI (AD and MCI with high AD pathology), CR (NCI with high AD pathology), CV (AD and MCI with low AD

pathology) and normal (NCI with low AD pathology).

https://doi.org/10.1371/journal.pone.0241707.g001
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found to be associated with the AD-CR Score. As baseline cognition and pathology are highly

associated with CR and many of the other measures of interest, we also fit a multivariate

ANOVA model excluding cognition and pathology. In this model, APOE genotype, parkin-

sonism, and life activities were found to be associated with the AD-CR Score.

Table 4 shows the coefficient estimates from the baseline nested ANOVA models. Almost

all of the coefficient estimates from the ANOVA regressions are in the same direction of

already established associations of CR in the literature. Notably however, the APOE allele asso-

ciations with the AD-CR Score are opposite to the well established associations between APOE
genotype and AD risk. The APOE 2 allele is known to be protective for AD, while the APOE 4

allele increases the risk of AD [37, 38], and these alleles show consistent associations with AD

pathologic burden [53, 54]. We observe that the APOE 2 allele is negatively associated with the

AD-CR Score and the APOE 4 allele is positively associated with the AD-CR Score. In further

investigation, the univariate regressions of the AD-CR Score on the APOE 2 allele and the

APOE 4 allele maintain the same direction of the association (coefficient estimates of -0.061

and 0.121 respectively with p-values of 0.024 and< 0.001). The reason that the association for

the AD-CR Score and APOE are in opposite directions likely relates to its strong association

with AD pathologic burden, and how we have defined the AD-CR Score. A substantial body of

literature supports that the association of APOE genotype with cognition is mediated by an

increase or decrease in the level of AD pathology in the brain [27, 54]. Because APOE genotype

impacts cognition through AD pathology and the AD-CR Score is intended to capture resil-

ience in cognitive manifestations conditioning on a given level of AD pathology, it is not sur-

prising that APOE does not show a strong positive correlation with AD-CR Score. In addition,

the AD-CR Score is defined as the difference in the observed and expected cognition given the

observed global AD pathology burden. Therefore, a positive AD-CR Score requires the pres-

ence of some AD pathology burden. And this is reasonable for modeling cognitive resilience

because Alzheimer’s Disease cognitive resilience describes the phenomenon that healthy

Table 3. Table of the FDR adjusted p-values from the baseline ANOVA models.

Baseline ANOVA Models (p-values)

Group Univariate ANOVA Multivariate ANOVA (n = 794) Multivariate ANOVA (n = 782) Excludes Cognition and Path

Demographics <.001 (n = 980) NA NA

Cognition <.001 (n = 974) <.001 NA

Non-AD Pathology <.001 (n = 969) 0.001 NA

Education <.001 (n = 980) 0.967 0.062

Personality <.001 (n = 858) 0.661 0.062

Vision 0.218 (n = 972) 0.967 0.406

APOE <.001 (n = 967) <.001 <.001

Pain 0.469 (n = 978) 0.661 0.444

Alcohol 0.074 (n = 974) 0.093 0.406

Smoking 0.218 (n = 975) 0.153 0.218

BMI 0.251 (n = 951) 0.089 0.406

Comorbidity 0.474 (n = 958) 0.967 0.737

Parkinsonism <.001 (n = 970) 0.092 0.006

Depression <.001 (n = 975) 0.967 0.794

Life Activities <.001 (n = 970) 0.074 0.004

Physical Activities 0.81 (n = 974) 0.967 0.948

Statistically significant p-values are highlighted in blue. The number of participants used to fit each of the models is also reported in the table.

https://doi.org/10.1371/journal.pone.0241707.t003
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Table 4. Coefficients from the baseline ANOVA models.

Group Measure Univariate

ANOVA

Multivariate

ANOVA

Multivariate ANOVA (Excludes Cognition

and Pathology)

Demographics Age at Baseline -0.006

Male -0.064

Cognition (z-scores, higher values for

higher cognition)

Episodic Memory 0.013 0.022

Visuospatial Ability 0.016 0.017

Perceptual Speed 0.036 0.04

Semantic Memory 0.092 0.078

Working Memory 0.054 0.044

Pathology Hippocampal Sclerosis -0.155 -0.136

Lewy Bodies -0.084 -0.073

Gross Chronic Infarcts -0.05 -0.052

Chronic Microinfarcts -0.031 0.01

Gross Infarcts -0.038 -0.001

Microinfarcts 0.004 -0.028

Education Education (years) 0.01 0 0.007

Personality Anxiety (range 0 to 10 [more

anxious])

-0.015 -0.005 -0.011

Neuroticism (range 0 to 24 [more

neurotic])

-0.008 -0.002 -0.006

Vision Vision -0.012 0.003 -0.01

APOE APOE 2 Allele -0.046 -0.047 -0.031

APOE 4 Allele 0.111 0.141 0.109

Pain Lower Extremity 0.017 0.03 0.038

Upper Extremity -0.039 -0.03 -0.024

Alcohol Lifetime (range 0 to 6 [more

consumption])

0.023 0.028 0.023

Last 12 months (log grams per day) 0.003 -0.03 -0.015

Smoking Former Smoker 0.015 -0.001 0.012

Current Smoker -0.11 -0.137 -0.126

BMI BMI -0.003 -0.005 -0.003

Comorbidities Hypertension 0.001 0.001 0.017

Cancer 0.043 0.017 0.044

Diabetes -0.007 0.012 -0.003

Head Injury 0.04 0.03 0.028

Thyroid 0.011 0.01 0.026

Heart Disease 0.005 0.015 0.004

Stroke -0.043 0.02 0.013

Parkinsonism Bradykinesia (range 0 to 100 [more

bradykinesia])

-0.002 0 -0.001

Gait Quality (range 0 to 100 [more

gait problems])

-0.001 0.002 0.002

Overall (range 0 to 2 [high]) -0.004 -0.01 -0.022

Rigidity (range 0 to 100 [more rigid]) -0.004 -0.004 -0.004

Tremor (range 0 to 100 [more

tremor])

-0.001 0 0

Depression Depression (range 0 to 10 [more

depressed])

-0.024 0 -0.003

(Continued)
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cognition can still exist in the presence of AD pathology. Because the APOE 2 likely protects

against development of AD pathology in the first place, individuals with the APOE 2 allele are

less likely to have AD pathology and therefore will not have a high positive AD-CR Score. And

this agrees with the literature that APOE likely affects the development of pathology rather

than cognitive resilience in the presence of pathology [27]. In contrast those with the APOE 4

allele will have more AD pathology burden and will therefore be more likely to have a positive

AD-CR Score.

In addition to fitting the nested ANOVA models using the baseline visit for each partici-

pant, we also fit cross sectional nested ANOVA models at age 75, 80, 85, and 90. The results

from these models are shown in Fig 2 and indicate that different factors are associated with CR

at different ages. Note that we do not test the sex group in the multivariate models as we adjust

for sex in all of the models. An overall pattern in all of the models is that there are more signifi-

cant results in the younger age groups (75 and 80) than the older groups (85 and 90). This is

suggestive of the fact that there may be irreversible AD-related disease burden that cannot be

modified by behaviors and other factors at these older ages. In addition, we see in the univari-

ate model that non-AD pathology is more significant for the older groups. This indicates that

non-AD pathology may account for CV, especially as participants age. The results from the

cross sectional ANOVA models are similar to those in the baseline model and also validated

those findings already established in the literature. In both the univariate and multivariate

ANOVA models, cognition is found to be significant at all time points. The APOE genotype

was also found to be significant at all time points in the multivariate ANOVA, and at ages 75

and 80 in the univariate and multivariate ANOVA that excluded cognition and pathology. Life

activities were found to be significant at all time points in the univariate ANOVA. Non-AD

pathology, education, personality, and parkinsonism were also found to be significant at differ-

ent time point in the three models.

Longitudinal cognition

Fig 3A shows the longitudinal global cognition for the participants versus age. The participants

are grouped by AD-CR Score quintiles (Lowest, Low, Medium, High and Highest) and are

smoothed using a non-linear age term within each of the quintile groups (also shown on the

plot with 95% confidence bands). While all groups follow an overall decline trajectory in cog-

nition over time, we see that participants with high AD-CR Score (those in the Highest and

High quintile groups) have a much slower decline trajectory in global cognition compared to

Table 4. (Continued)

Group Measure Univariate

ANOVA

Multivariate

ANOVA

Multivariate ANOVA (Excludes Cognition

and Pathology)

Life Activities Instrumental(0 to 8 [needs more

help])

-0.026 -0.004 -0.021

Basic (0 to 6 [needs more help]) -0.04 -0.064 -0.068

Mobility Disability (0 to 3 [needs

more help])

0.006 0.004 0.007

Physical Activities Overall (higher scores more active) 0.002 -0.004 -0.004

Walking (higher scores more active) -0.002 0.002 -0.001

Yardwork (higher scores more

active)

0.004 0.001 0.001

The coefficients highlighted in blue are those for which the ANOVA p-values are statistically significant.

https://doi.org/10.1371/journal.pone.0241707.t004
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those in the lower quintile groups (those in the Low and Lowest quintile groups). This relation-

ship has been observed in previous studies in the literature [17]; individuals with higher CR

experience a slower rate of decline in cognition than those with lower CR. In addition we see

that the global cognition score increases with age for those in the highest quintile of AD-CR

Scores. This may be due to the fact that there are very few participants in the study who live to

Fig 2. The cross-sectional nested ANOVA models for ages 75, 80, 85, and 90, with sample sizes of n = 198, 353, 413, and 284 respectively. The FDR

corrected p-values are shown up to values of 0.20. We see that different measures are associated with an individual’s AD-CR Score at different time points

in their lifetime and that there are more associations found in the younger age groups (75 to 80). Sex in the multivariate ANOVA model is shown in gray as

all models are adjusted for sex and we do not test for an association of sex and AD-CR Score in these models. Cognition and non-AD pathology are also

shown in gray as these are excluded from the multivariate ANOVA that excludes cognition and pathology.

https://doi.org/10.1371/journal.pone.0241707.g002

Fig 3. Global cognition (vertical axis) is shown over time (age, horizontal axis). (A) Longitudinal global cognition trajectories grouped by AD-CR Score

quintile group. For each of the quintile groups a smoothed curve with 95% confidence band is shown. (B) The predicted longitudinal cognition trajectories

for the AD-CR Score quintile groups from the fitted mixed effects model. The plot is divided into three panels, one panel each for baseline age of 70, 80, and

90 with 10 years of predictions for each of the panels.

https://doi.org/10.1371/journal.pone.0241707.g003
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be over age 100; the estimates for the global cognition in these ages is less accurate than at

other ages, as evident from the wider confidence bands.

In the longitudinal smoothing spline ANOVA model, all fixed effects were found to be sta-

tistically significant: baseline age (p< .001), the AD-CR Score (p< .001), the interaction

between baseline age and AD-CR Score (p< .001), the non-linear age term (p< .001) and the

interaction with AD-CR Score and the non-linear age term (p< .001). To illustrate the results

from the model, we plot the predicted non-linear global cognitive decline trajectories from the

model in Fig 3B. Each of the predicted curves in the figure represents the prediction of the cog-

nitive trajectory for 10 years for each of the quintile group cutoffs of cognition (4 cutoffs at the

quintile values). The plot is split into three panels, one panel each for baseline age of 70, 80,

and 90. We note that for all quintile cutoffs, the global cognition decrease over time, and the

rate of cognitive decline becomes larger with age. Participants in the higher (lower) AD-CR

Score quintiles have higher (lower) overall cognition levels. Additionally we note that the rate

of cognitive decline is less steep (steeper) for subjects with high (low) AD-CR Scores. Finally

we note there is a discontinuity of trajectories between the three panels, demonstrating the

baseline age effect. There is an increase in each of the trajectories at the start of the new panel

for participants in the lower AD-CR quintile groups. This phenomenon is attributable to selec-

tion bias; subjects who enter the study at older ages have lived dementia free until the time of

enrollment and are therefore healthier than the general population.

Prediction

We applied our two stage machine learning framework to classify subjects as having extremely

high or low AD-CR Scores, as these are the most clinically relevant groups. For these analyses,

we restricted to baseline factors that are measured through clinical assessments during lifetime.

Out of the machine learning models examined, cross-validation on the training set determined

that gradient boosting (cross-validation-selected tuning parameters: mstop = 2000, nu = 0.1)

with component-wise linear models (R package mboost) performed best in the first stage for

separating subjects into an extreme AD-CR group and an average AD-CR group; additionally,

cross-validation on the training set determined that linear support vector machines (SVM)

were best for classifying subjects as having high or low AD-CR in stage two for both groups.

Specifically, the linear SVM for the extreme AD-CR group has cross-validation-selected tuning

parameter C = 0.003 and the linear SVM for the average AD-CR group has cross-validation-

selected tuning parameter C = 0.0046. The predictive performance reported on the test set is

visually depicted in Fig 4 and shows that our machine learning framework is able to predict

whether new subjects will have extremely high (positive) AD-CR Scores vs. extremely low

(negative) AD-CR Scores reasonably well (Sensitivity = 0.803, Specificity = 0.720, Accu-

racy = 0.767, and F-Score = 0.797 on the test set). We are not able to as accurately predict the

AD-CR Scores of subjects in the average AD-CR group whose AD-CR Scores are close to zero

(Sensitivity = 0.602, Specificity = 0.524, Accuracy = 0.568, and F-Score = 0.608 on the test set).

Overall, our machine learning framework shows promising results in terms of predicting

whether an individual will have an extremely high or low AD-CR Score using only baseline

measures that are available during the lifetime.

Discussion

CR is the mechanism that allows some individuals to be more resilient to the pathology asso-

ciated with AD than others. We provide a quantitative definition of CR with the AD-CR

Score; given the AD related pathology, the AD-CR Score is the difference between the

observed and expected cognition. The AD-CR Score is not the first definition of CR to be
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proposed. Previous work has defined CR using proxy variables [2, 9–11], as a latent factors

[13, 14] and using residual cognition [15–17]. Proxy variables are a poor surrogate for CR as

the variables used are not standardized among individuals and are correlated with other vari-

ables known to be associated with AD. Both the latent factor and residual cognition defini-

tions rely on parametric models, which may be misspecified. The latent factor model uses in-

vivo MRI to characterize AD-related pathology in place of ‘gold standard’ postmortem

pathology. Residual cognition, the definition that is closest to the AD-CR Score, uses post-

mortem pathology, but can only be calculated at death. In contrast to the previously pro-

posed definitions, the AD-CR Score is a fully non-parametric, stand-alone, individual-level

quantification of CR that is derived independently of other factors or proxy variables. The

AD-CR Score is computed with a global measure of cognition collected proximal to death

and a ‘gold standard’ AD pathology measures collected at autopsy. Unlike residual cognition

methods, we also provide a framework for prediction of the AD-CR Score using information

available during the lifetime.

To validate the AD-CR Score as a measure of CR, we demonstrated the association of the

AD-CR Score with baseline cognition, non-AD pathology, education, personality, APOE, par-

kinsonism, depression and life activities in the univariate ANOVA models. These measures

Fig 4. Visual depiction of our two stage machine learning framework and the predictive performance in terms of

classifying high AD-CR Scores from low AD-CR Scores on the test set. The first stage model separates subjects into an

Extreme AD-CR group and an Average AD-CR group based on whether their predicted AD-CR Scores are above a

threshold, jŶ 1j � 0:1. Within each group separately, the second stage model classifies subjects as having either high or

low AD-CR, Ŷ 2 � 0. We report the Sensitivity, Specificity, Accuracy, and F-Score of our machine learning framework

when applied to the test set and also report the number of test subjects with high (orange) or low (blue) AD-CR Scores as

well as the average AD-CR Score (CR) in each of the predicted categories. Overall, our machine learning framework

shows promising results in terms of predicting whether an individual will have an extremely high or low AD-CR Score

using only baseline measures that are available during the lifetime.

https://doi.org/10.1371/journal.pone.0241707.g004
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have previously been shown to be associated with CR in the literature [2, 8, 37, 38, 47]. Consis-

tent with prior studies [48], we also replicated the findings that smoking and alcohol consump-

tion are not related to CR. We were unable to replicate the association between CR and

physical activity. This could be due to the fact that the available activity measures are self

reported. Self reported measures of physical activity are known to be biased, especially in

elderly populations such as the population in this study [55]. Recent advances in monitoring

physical activity in the elderly have included the use of activity monitors to obtain a less biased

measure of activity [56], which could be useful for an analysis like this. We also found that the

associations with the AD-CR Score and the measures changed over time. Many of the results

from the baseline ANOVA models were confirmed in the cross-sectional ANOVA models for

age. We also found associations with variables that were previously not found to be associated

with CR: pain in the upper and lower extremities, vision and BMI. Due to the small sample

sizes for these analysis further investigation is warranted. In addition we also found associa-

tions with the AD-CR Score and longitudinal cognitive decline that were consistent with those

already established in the literature. Subjects in the upper quintiles of AD-CR Score showed

slower cognitive decline than those in the lower quintiles of AD-CR Score.

In addition to validating the AD-CR Score by establishing previously observed associations

with CR, we also built a framework for predicting the AD-CR Score. The AD-CR Score is cal-

culated using postmortem pathology that is only available after death. This is ideal as ‘gold

standard’ postmortem pathology is the only way to definitely diagnose AD, yet it is also a limi-

tation as the AD-CR Score cannot be calculated during an individual’s lifetime. To increase

the utility of the score, we built a machine learning framework to predict the AD-CR Score

using measures collected at the baseline visit. Our study shows promising results in terms of

classifying extremely high AD-CR Score from extremely low AD-CR Score. Future work

includes expanding the prediction model to include environmental factors, activity measures,

genomic information, in-vivo brain imaging measures to further increase the predictive accu-

racy. Accurate prediction of the AD-CR Score would allow the score to be used in clinical

practice and in clinical trial settings. If individuals are identified as having low CR using the

AD-CR Score, potential interventions could increase CR and reduce their risk of cognitive

decline. In clinical trials for AD disease modifying therapies, it may be useful to enrich for

participants with lower CR that have the potential to show the most improvement with the

therapy.

Additionally, even though we used the global cognition measure and global AD pathology

measure from the ROSMAP study to compute and validate our AD-CR Score in this study, the

mathematical definition for the proposed AD-CR Score is very flexible and can accommodate

a variety of cognition measures as well as other AD-related pathology measures. We look to

further validate our proposed AD-CR Score using other measures of cognition such as MMSE

and/or other AD-related pathology in future works and evaluate whether the AD-CR Score

approach works well on other populations in other studies. Furthermore, we would love to fur-

ther explore the use of various smoothing techniques in future works to mitigate the potential

high variability from cognitive measures in subjects with AD.

In the current form, the AD-CR Score can be used as a research tool to further understand

CR and factors that are associated with CR in a quantitative manner. As demonstrated here,

the AD-CR Score may be applied for discovery of epidemiological factors that are associated

with and/or predictive of CR. The AD-CR Score may also be used to discover genomic and in-

vivo brain imaging markers of CR. Such advances would not only enhance our understanding

of the mechansims of CR in AD pathogenesis, but also has the potential to powerfully inform

stratification for clinical trials of potential disease-modifying therapies for AD.
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