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1  | INTRODUC TION

In December 2019, an outbreak of an unexplained acute respiratory 
disease of humans was reported in Wuhan, China (WHO, 2020d). 
As causative agent of the disease now named COVID-19, a novel 
betacoronavirus referred to as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) was 
identified (Zhu et al., 2020). COVID-19 rapidly evolved into a global 
pandemic (WHO, 2020b) resulting in millions of infections and sev-
eral hundred thousands of deaths. Overall, about 20% of the symp-
tomatic infections are severe or critical, with much higher rates 
in the elderly or when certain underlying health conditions exist 
(WHO, 2020b). However, also asymptomatic infections occur and 

it is estimated that virus transmission from asymptomatic humans 
accounts for about half of all COVID-19 cases (He et al., 2020), 
which might be particularly critical when asymptomatically infected 
healthcare workers transmit the virus in hospitals or care homes for 
the elderly.

Diagnosis is currently based primarily on real-time RT-PCR (RT-
qPCR) using nasal or throat swabs. To identify and isolate infected 
individuals, thereby interrupting transmission chains, millions of RT-
qPCR tests are carried out (Hasell et al., 2020). With such a large num-
ber of diagnostic tests and yet low prevalences of infected humans, 
it is of utmost importance to ensure a high level of quality manage-
ment in the testing laboratories to guarantee an optimal and reliable 
diagnostic accuracy. Any deviation of the diagnostic specificity of 
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Abstract
To combat the COVID-19 pandemic, millions of PCR tests are performed worldwide. 
Any deviation of the diagnostic sensitivity and specificity will reduce the predictive 
values of the test. Here, we report the occurrence of contaminations of commercial 
primers/probe sets with the SARS-CoV-2 target sequence of the RT-qPCR as an ex-
ample for pitfalls during PCR diagnostics affecting diagnostic specificity. In several 
purchased in-house primers/probe sets, quantification cycle values as low as 17 were 
measured for negative control samples. However, there were also primers/probe sets 
that displayed very low-level contaminations, which were detected only during thor-
ough internal validation. Hence, it appears imperative to pre-test each batch of rea-
gents extensively before use in routine diagnosis, to avoid false-positive results and 
low positive predictive value in low-prevalence situations. As such, contaminations 
may have happened more widely, and COVID-19 diagnostic results should be re-
assessed retrospectively to validate the epidemiological basis for control measures.
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the PCRs, for example through contamination of reagents with tar-
get sequences, mix-up or cross-contamination of samples, will sig-
nificantly reduce the positive predictive value of the test. Here, we 
report contamination of commercial primers and probes with oligo-
nucleotides as an example for pitfalls during PCR diagnostics with a 
drastic effect on diagnostic specificity. This example emphasizes the 
need for continuous and comprehensive quality management in all 
diagnostic steps.

2  | MATERIAL S AND METHODS, RESULTS 
AND DISCUSSION

For the detection of SARS-CoV-2 genome, two real-time PCRs 
listed on the website of the World Health Organization (WHO) 
(WHO, 2020a) were established and validated in our laboratory. 
To increase the diagnostic accuracy, systems targeting different 
genomic regions were selected. The first assay (‘E-Sarbeco’) is based 
on the E gene coding region (Corman et al., 2020), and the second 
assay (‘nCoV_IP4’) targets the RNA-dependent RNA polymerase 
(RdRp) gene (WHO, 2020a). To control for efficient RNA extraction 
and amplification, both assays were combined with an internal con-
trol system based on the housekeeping gene beta-actin (Wernike, 
Hoffmann, Kalthoff, König, & Beer, 2011). Primers and probes were 
ordered from four different commercial companies in March and 
April 2020, amongst them major oligonucleotide suppliers on the 
European market. Both duplex SARS-CoV-2/beta-actin real-time 
PCR systems were validated using two different real-time PCR kits, 
namely the AgPath-ID™ One-Step RT-PCR kit and the SuperScript III 
One-Step RT-PCR kit (both produced by Thermo Fisher Scientific) to 
increase flexibility in case of supply shortage.

As part of our internal quality management, each batch of prim-
ers/probe is investigated regarding its sensitivity and specificity 
using SARS-CoV-2 RNA and negative samples (phosphate-buffered 
saline [PBS] or nuclease-free water) before the oligonucleotides are 
applied in routine diagnosis. During these pre-tests, the first prim-
ers/probe sets from supplier A purchased in March 2020 (set A-1) 
performed as expected. However, subsequently, very high genome 
loads were found in some newly purchased E-Sarbeco primers/
probe sets. Quantification cycle (Cq) values as low as ~17 or ~22 
were measured in negative control samples (Table 1) indicating a 
high level of contamination in reagents obtained from some oligonu-
cleotide suppliers. While the problems in performance are obvious 
in these cases, there were also primers/probe sets that displayed 
contaminations only at lower levels. As an example, when we used 
a separate batch of oligonucleotides from supplier A (set A-2), only 
two out of 27 negative control samples reacted weakly positive. To 
exclude the PCR chemistry or the internal control oligonucleotides 
as potential sources of the false-positive results, samples from the 
first German proficiency test on COVID-19 diagnostics (INSTAND 
e. V. and GBD Gesellschaft für Biotechnologische Diagnostik mbH) 
as well as seven negative RNA isolation controls (RIC = PBS) were 
tested using the incriminated primers/probes in combination with TA
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two different batches of both RT-PCR kits. Every combination, in 
which the first set of primers/probe was applied, yielded correct 
results, while the incriminated primers/probe (set A-2) resulted in 
several false-positive results regardless of the applied PCR chem-
istry (Figure 1). Hence, the primers or the probe were the cause of 
the false-positive reactions, a phenomenon that seems to occur fre-
quently (Table 1). The main reason for the wide distribution of con-
taminated primers or probes may be the simultaneous production 
of long oligonucleotides containing SARS-CoV-2 target sequences 
for real-time RT-PCRs. Especially during the first phase of the es-
tablishment and internal validation of SARS-CoV-2-specific real-time 
RT-PCRs, such oligonucleotides have been widely used as pos-
itive controls and were produced by many primer/probe suppliers 
(Mögling et al., 2020).

To investigate the impact of the low-level primer/probe contam-
ination on the diagnostic specificity, 41 human throat swabs were 
tested with the different primers/probe sets A-1, A-2, A-3 and B. 
Swabs were collected in 1 ml PBS and total nucleic acid extracted 
from this swab medium either manually (QIAamp Viral RNA Mini, 
Qiagen; extraction volume 140 µl) or automated (NucleoMag VET 
kit, MACHEREY-NAGEL GmbH & Co. KG; extraction volume 100 µl). 
To exclude non-specific reactions, which could be caused by other 
human coronaviruses potentially present in the throat swab samples, 
47 oral or nasal swabs of bovine origin (taken before the SARS-CoV-2 

pandemic) were included. These specimens represented routine 
submissions to the Friedrich-Loeffler-Institut, Federal Research 
Institute for Animal Health, or originated from an unrelated animal 
trial (Wernike et al., 2018). Positive predictive values were calculated 
using EpiTools (https://epito ols.ausvet.com.au/predi ctive values).

All human and bovine swab samples scored negative by the 
nCoV_IP4 assay and the first E-Sarbeco primers/probe set delivered 
at the 25th of March 2020 (set A-1) (Table 1). However, when tested 
by the oligonucleotides A-2, A-3 and B, a total of 13, five and seven 
of the negative samples scored positive, respectively. Since the 
empty control (NTC = nuclease-free water), which was included in 
the PCR runs, reacted negatively as expected, the PCRs would have 
been considered valid during routine diagnostics. Thus, the samples 
would have been incorrectly diagnosed as positive in settings, where 
no cut-off for positivity is defined.

If we assume a best-case scenario for specificity based on these 
results for the A-3 or B/E-Sarbeco setting, the diagnostic specific-
ity was calculated as 0.9756 (40/41; Table 1). In calendar week 14 
of 2020, 36,885 out of 408,348 samples (9.0%) tested positive in 
Germany (Robert-Koch-Institut, 2020). Under these conditions, 
the positive predictive value of the test system was 0.802, that is 
almost 20% of the positive results would have been false-positive. 
In calendar week 19, 10,187 out of 382,154 samples (2.7%) tested 
positive. In this scenario, a test system with a diagnostic specificity 

F I G U R E  1   Real-time RT-PCR results 
generated by using two different 
batches of the identical in-house primers 
and probe (Corman et al., 2020) in 
combination with two distinct PCR kits. 
RIC, RNA isolation control; NTC, no 
template control; PC, positive control; 
AgPath, AgPath-ID™ One-Step RT-PCR 
kit (Thermo Fisher Scientific); SSIII, 
SuperScript III One-Step RT-PCR kit 
(Thermo Fisher Scientific)

https://epitools.ausvet.com.au/predictivevalues
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of 0.9756 had resulted in a positive predictive value of 0.5319, that 
is almost half of the positive results would have been false-positive. 
Obviously, any further reduction of the prevalence of SARS-CoV-2 
infections will result in decrease of the positive predictive value if 
the specificity of the employed assays is not dramatically increased.

Not only in-house PCRs need to be thoroughly validated in every 
laboratory, but also commercial kits (Rahman et al., 2020), as they 
may contain similar primer/probe mixes and produce incorrectly 
positive results, which will also result in a low positive predictive 
value.

As an additional component of quality assurance, the prepara-
tion of small sample pools might be considered in areas or scenarios 
with low prevalences (e.g. amongst asymptomatic persons), which 
conserves resources and increases sample throughput (Abdalhamid 
et al., 2020; Eis-Hübinger et al., 2020; Yelin et al., 2020). Most im-
portantly, when such a pool scores positive, all samples need to be 
re-tested individually, where at least one individual sample should 
result in the same or a higher virus load than the sample pool itself. 
In the case of contaminations as described above, the pool will show 
implausible results during follow-up testing markedly increasing the 
diagnostic specificity. The WHO recommends widespread testing 
to combat the COVID-19 pandemic (WHO, 2020b). However, the 
capacity of SARS-CoV-2 for explosive spread has not only over-
whelmed weaker health systems, but also challenges diagnostic ca-
pacities (Hasell et al., 2020; WHO, 2020b). Where testing capacity 
cannot meet the needs, even a prioritization of testing has to be 
implemented (WHO, 2020c, European Commission, 2020). In such 
settings of limited resources, pooling of samples might be an option 
for the serial screening of, for example, asymptomatic healthcare 

workers, which is highly recommended to prevent nosocomial trans-
mission of the virus (Rivett et al., 2020). Here, the samples of the 
German proficiency test (INSTAND e. V. and GBD Gesellschaft für 
Biotechnologische Diagnostik mbH) were tested in pools consisting 
of the respective ring trial sample and four negative human throat 
swabs. The values obtained from the pools were about 2.2 Cq higher 
than the values of the respective individual samples, but the final 
assessment was always correct, that is each positive sample was 
correctly identified (Figure 2). While there is undoubtedly a (minor) 
decrease in analytical sensitivity, the pooling option needs to be 
carefully considered in the light of the current epidemiological sit-
uation, as every positive pool needs to be dissolved anyway to test 
the samples individually. Nevertheless, to screen certain groups, in 
which the expected prevalence of positive samples is low, pooling 
might be a resource- and cost-effective option with a minimal loss of 
diagnostic sensitivity, but with an increase in diagnostic specificity.

3  | CONCLUSIONS

To ensure a high level of diagnostic accuracy, it is highly recommended 
to pre-test each batch of PCR reagents thoroughly before applying it 
in routine diagnosis using more than 50 negative samples for speci-
ficity testing. Furthermore, it is of utmost importance to include also 
a reasonable number of appropriate controls such as NTCs, negative 
extraction controls and positive controls in every PCR run to mini-
mize the risk of incorrect results further. Additional external quality 
assessment of the analytical results could be achieved by the par-
ticipation in inter-laboratory proficiency trials (FAO, 2015). Finally, in 

F I G U R E  2   Real-time RT-PCR results 
of samples that were tested either 
individually (black dots) or in pools 
consisting of one SARS-CoV-2-positive 
and four negative samples (blue dots). 
RIC, RNA isolation control; NTC, no 
template control; PC, positive control; 
AgPath, AgPath-ID™ One-Step RT-PCR kit 
(Thermo Fisher Scientific)
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well-validated PCR workflows, pooling of up to five samples might be 
an option for expanding capacities especially for the routine testing 
of low-prevalence groups without any COVID-19-specific symptoms.
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