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Abstract: Foodborne disease attributed to the consumption of shellfish contaminated with human
norovirus (HuNoV) is one of many global health concerns. Our study aimed to determine the
conditions of the heat-inactivation of HuNoV in freshwater clams (Corbicula japonica) using a recently
developed HuNoV cultivation system employing stem-cell derived human intestinal enteroids (HIEs).
We first measured the internal temperature of the clam tissue in a water bath during boiling at 90 ◦C
and found that approximately 2 min are required for the tissue to reach 90 ◦C. Next, GII.4 HuNoV
was spiked into the center of the clam tissue, followed by boiling at 90 ◦C for 1, 2, 3, or 4 min. The
infectivity of HuNoV in the clam tissue homogenates was evaluated using HIEs. We demonstrated
that HuNoV in unboiled clam tissue homogenates replicated in HIEs, whereas infectivity was lost in
all boiled samples, indicating that heat treatment at 90 ◦C for 1 min inactivates HuNoV in freshwater
clams in our current HIE culture system. To our knowledge, this is the first study to determine
the thermal tolerability of HuNoV in shellfish using HIEs, and our results could be informative for
developing strategies to inactivate HuNoV in shellfish.

Keywords: norovirus; acute gastroenteritis; intestinal enteroids; heat inactivation; freshwater clam

1. Introduction

Foodborne diseases attributed to the consumption of unsafe foods, which are contami-
nated with pathogens (bacteria, viruses, or parasites) or toxic chemical substances, cause
600 million people illness worldwide every year and therefore pose a major public health
concern [1,2]. Foodborne disease is caused by several pathogens, including Campylobac-
ter, Salmonella, Listeria, hepatitis A virus, and human norovirus (HuNoV). Among those,
HuNoV is the most frequently detected pathogen in contaminated foods being consumed
by ill individuals [1,3]. Shellfish, especially oysters, are recognized as one of the major
sources for HuNoV-associated foodborne disease due to the accumulation of HuNoVs in
the digestive gland by filter feeding [4].

The most common inactivation method of pathogens in contaminated foods is to cook
them properly at a high temperature. Given the varied thermal tolerability of each pathogen,
the establishment of tailor-made strategies to inactivate their respective pathogens is
necessary to reduce the risk of foodborne illness. Concerning HuNoV, there was no robust
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HuNoV cultivation system developed until recently. Therefore, investigations on the food
inactivation of HuNoV have been carried out by measuring copy numbers of the HuNoV
genome or infectious virus titers of surrogate viruses, such as murine norovirus (MNV) and
feline calicivirus (FCV) [5,6]. However, it remains unclear whether these indirect measures
reflect the inactivation of HuNoV infectivity.

Recently, several HuNoV cultivation systems have been developed, including B
cells [7], tissue stem cell-derived human intestinal enteroids (HIEs) [8,9], human induced
pluripotent stem cell-derived intestinal epithelial cells (iPSC-derived IECs) [10] and ze-
brafish [11]. Studies using our HIE system, as well as human iPSC-derived IECs, show
HuNoV inactivation by heating or disinfectants (alcohol or chlorine) [8,12,13]. However, to
our knowledge, an investigation on HuNoV’s inactivation in foods such as bivalves using
the HuNoV cultivation system has not been performed so far.

In this study, we evaluated the thermal inactivation conditions of freshwater clams artifi-
cially inoculated with HuNoV by measuring infectious HuNoV using the HIE culture system.

2. Materials and Methods
2.1. Measurement of Temperature Kinetics in Freshwater Clams Subjected to Heat Treatment

Live freshwater clams (Corbicula japonica) were purchased at a grocery store and
maintained overnight at room temperature in diluted seawater. A whole clam body was
then taken from its shell and transferred into a 1.5-mL tube. The weights of the clam bodies
ranged from 0.16 g to 0.41 g (mean ± standard deviation (SD), 0.29 ± 0.07). To monitor the
internal and external temperatures of the samples, two thermometers were used; a probe
thermometer was inserted into a clam body (Figure 1A), and another was immersed in
a water bath set at 90 ◦C (Figure 1B). Both temperatures were recorded every 15 s up to
5 min.

Figure 1. Kinetics of the internal temperature in clams subjected to heat treatment. A thermometer
probe was inserted into a clam body in a 1.5-mL tube to measure the internal temperature of the
clam (A). A second thermometer probe was put in the water bath to measure the temperature outside
the 1.5-mL tube (B). The internal clam tissue temperature and the external water bath temperature
were recorded every 15 s up to 5 min (C). The results are shown as the mean ± standard deviation
calculated from 5 independent experiments (n = 5).
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2.2. Preparation of HuNoV-Containing Stool Filtrate

Ten percent stool filtrate containing HuNoV was prepared as described previously
with minor modifications [8]. Briefly, PBS was added to a HuNoV-positive stool and
homogenized by vortexing and sonication. The suspensions were centrifuged at 12,000× g
for 5 min at 4 ◦C, and the supernatant was passed serially through 5-µm and 0.22-µm filters.
The samples were aliquoted and frozen at −80 ◦C before use.

2.3. Artificial Inoculation of HuNoV into Freshwater Clams Followed by Heat Treatment and
Sample Processing

Six freshwater clams (one clam per each time point plus PBS control) were used in
one experiment, and the experiment was repeated three times. Each clam body taken
from its shell was injected with 30 µL of either PBS as a control or 10% stool filtrate
containing 1.06 × 108 genome equivalents (GEs) of GII.4[GII.P16] HuNoV [14] using a
50-µL microsyringe with a fine needle. The relatively high titer of HuNoV was used for
this purpose, because the resultant clam homogenate needed to be diluted to minimize
its cytotoxicity in HIEs. The artificial inoculated samples were then left untreated or heat-
treated at 90 ◦C for 1, 2, 3, or 4 min, as described above. After cooling the samples down to
room temperature, 170 µL of chilled complete medium without growth factors (CMGF(-))
used for culturing HIEs was added to each sample. The clam bodies were then chopped
with scissors and homogenized using a hand mixer (PowerMasher II, 891300, nippi, Tokyo,
Japan) for 30 s, followed by centrifugation at 9100× g for 3 min at 4 ◦C. The supernatant was
collected and repeated the centrifugation with the same condition to remove debris. The
collected supernatant was stored at −80 ◦C until used for determining the virus infectivity
and viral recovery efficiency. The final recovered volume was 160 ± 26 µL (PBS, 0 min),
193 ± 25 µL (HuNoV, 0 min), 210 ± 17 µL (HuNoV, 1 min), 177 ± 45 µL (HuNoV, 2 min),
220 ± 26 µL (HuNoV, 3 min), or 223 ± 23 µL (HuNoV, 4 min).

2.4. Evaluation of Infectivity of HuNoV in Clam Extracts Using HIEs

HIE culture and HuNoV infection were performed as described previously [8,14,15].
Briefly, a jejunal HIE (J2) culture, provided from the Baylor College of Medicine under
the Material Transfer Agreement, was maintained and propagated as Matrigel-embedded,
3-dimensional (3D) HIEs in complete medium with growth factors (CMGF(+)) or IntestiCult
Organoid Growth Medium (Human, STEMCELL, Vancouver, BC, Canada).

To prepare monolayer HIE cultures for HuNoV infection, the 3D HIEs (passages 25–28)
were dissociated with TrypLE Express (Thermo Fisher, Waltham, MA USA) and seeded
onto collagen IV-coated 96-well plates at the number of approximately ~105 cells/well in
the CMGF(+) or IntestiCult media supplemented with ROCK inhibitor Y-27632 (10 µM,
Sigma, Burlington, MA, USA) for 2 days. The medium was then replaced with IntestiCult
Organoid Differentiation Medium (Human, STEMCELL), and the cultures were maintained
for an additional 2 days. The monolayer HIEs were then inoculated with 5 µL of the clam
samples diluted 1:20 in a final volume of 100 µL of CMGF(-) medium in the presence
of 500 µM GCDCA, which promotes GII.4 HuNoV infection [8]. After 1 h of incubation
at 37 ◦C, the cells were washed twice with CMGF(-) and further incubated in IntestiCult
Organoid Differentiation Medium containing 500 µM GCDCA until 24 h post-infection (hpi).
The cells and medium were then collected and subjected to RNA extraction using the Direct-
zol RNA MiniPrep kit (Zymo Research, Irvine, CA, USA) following the manufacturer’s
instructions. The RNA was eluted in 50 µL of distilled water.

HuNoV RNA genome equivalents (GEs) were determined by reverse transcription-
quantitative PCR (RT-qPCR) analysis in a 20 µL reaction volume using a TaqMan Fast
Virus 1-Step Master Mix (Thermo Fisher) and GII specific primer/probe sets [16]. Five
microliters of RNA in each sample were used for this assay. A standard curve generated
using plasmid-containing HuNoV genome sequences was used to quantitate viral GEs. We
defined the limit of detection in the RT-qPCR analysis as 20 GEs/rxn (3.0 log10 GEs/well)
based on a standard curve.
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2.5. Evaluation of Viral Recovery Efficiency after Homogenization

The RNA was extracted from 5 µL of the inoculum containing 30 µL of HuNoV-
containing stool filtrates mixed with 170 µL of CMGF(-) (input) or the HuNoV-inoculated
clam extracts (samples) and then subjected to RT-qPCR analysis to measure the HuNoV
GEs. The percentage of recovery efficiency was calculated as HuNoV GEs in clam samples
relative to that in the inoculum.

2.6. Statistical Analysis

Statistical analysis was performed with ANOVA, followed by Dunnett’s multiple-
comparison test or two-tailed Student’s t-test using GraphPad Prism 9 software. p-values
of <0.05 were considered statistically significant.

3. Results

Heat treatment experiments were carried out using a water bath at 90 ◦C. Measure-
ments of the internal and external temperatures during heating showed that, while the
water temperature was stable at around 90 ◦C during the heating process, the temperature
of the clam body required 2 min before reaching a stable temperature at 90 ◦C (Figure 1C).

We then evaluated the effects of different times of heat inactivation on the HuNoV-
inoculated clams. The clam bodies were either spiked with PBS as a non-infection control
or HuNoV using a microsyringe. The inoculated clam tissue, either left unheated or
heated at 90 ◦C for 1, 2, 3, or 4 min, was homogenized. We first evaluated the recovery
efficiency of spiked HuNoV in clam homogenates (Figures 2A and S1). Approximately
60% of the inoculated HuNoV GEs (62.0 ± 7.3%) were recovered from HuNoV-spiked
clam homogenates without heating, whereas the treatment at 90 ◦C for 1 min significantly
reduced the recovery (27.7 ± 15.9%) as compared to the unheated samples. The treatment
at 90 ◦C for 2 min further reduced the recovery (12.0 ± 3.5%), while the recovery remained
unchanged thereafter (Figure 2A). In addition, to see if heated clam homogenates affect the
recovery of HuNoV, we quantified HuNoV RNA extracted from pre- or post-heated clams
inoculated with HuNoV. The results showed no significant difference of viral GEs between
them (Figure S2).

Figure 2. Thermal inactivation of HuNoV in freshwater clams. The clam tissue was spiked with either
PBS or HuNoV-containing stool filtrate. The spiked clam tissue was next left untreated or heat-treated
at 90 ◦C for 1, 2, 3, or 4 min and then homogenized. (A) Viral GEs in the clam extracts were quantified
by RT-qPCR, and the recovery efficiency was calculated as in the Materials and Methods. ** p < 0.01
vs. unheated HuNoV-spiked clam samples (0 min), one-way ANOVA followed by Dunnett’s multiple
comparison test. (B) The samples were inoculated against differentiated HIEs, and HuNoV GEs in
the HIEs were determined as in the Materials and Methods. The limit of detection in the RT-qPCR
analysis is 3.0 log10 GEs/well. ** p < 0.01, two-tailed Student’s t-test. Results are shown as the mean
± standard the deviation calculated from 3 independent experiments (n = 3).

Then, the infectious virus was quantified, following replication in the culture, by
determining the viral GEs at 1 or 24 hpi, as described in the Materials and Methods
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section. HuNoV in clam homogenates was infectious and able to be replicated in HIEs
showing a 42.5-fold increase in GEs at 24 hpi (4.5 ± 0.5 GEs/well) as compared to 1 hpi
(3.0 ± 0.0 GEs/well), while the PBS-injected samples contained no infectious virus, as
expected (Figure 2B). Furthermore, all groups of heat treatment showed no viral replication
at 24 hpi, suggesting that the 90 ◦C for 1 min treatment inactivates HuNoV in clam bodies
(Figure 2B), although improvement of the viral growth efficiency in HIEs is required for
optimal inactivation studies, as discussed below.

4. Discussion

Generally, if no cultivation system is available to grow a certain human pathogen,
employing cultivable surrogate virus(es) is used to study the biological characteristics,
including tolerability against disinfectants or heating [6]. However, the properties of the
surrogate viruses are not always the same as the human pathogen. Indeed, previous reports
demonstrated that HuNoV is resistant to 70% alcohol [12], whereas surrogate viruses such
as murine norovirus (MNV), feline calicivirus (FCV) and porcine enteric calicivirus, but not
Tulane virus, are sensitive to this treatment [17]. A study on heat inactivation of MNV in
shellfish showed that the heat treatment at 90 ◦C for 90 s resulted in an approximate 2 log10
reduction of the infectious virus measured by using plaque assays [5]. The authors also
demonstrated that the 90 ◦C for 180 s completely inactivated MNV and hepatitis A virus
(HAV), another important human pathogen related to viral foodborne illness [5]. Whether
the heat treatment at 90 ◦C for 1 min is sufficient for the inactivation of MNV or HAV, as
well as HuNoV, remains to be verified.

Recently, a propidium monoazide (PMA) viability RT-qPCR assay, which is expected to
measure only infectious virions containing intact viral RNA but not non-infectious virions
containing degraded RNA, was applied to study the inactivation of HuNoV in clams [18].
That study demonstrated that HuNoV spiked in clams and heated at 90 ◦C for 10 min
resulted in a 3.52 log10 reduction of HuNoVs determined by a PMA viability RT-qPCR
assay [18]. Since the growth of HuNoVs in HIEs is still lower than that of surrogate viruses
in their cultivable cells, improvement of the growth efficiency is required to be utilized as
general evaluation methods for HuNoV inactivation. For example, conditions to cultivate
HuNoV in genetically modified lines and with improved medium conditions to achieve
at least three logs of replication are being sought for optimal inactivation studies [9,19].
In addition, the improvement of the HuNoV quantification method (e.g., lowering of the
limit of detection in RT-qPCR analysis) is required for applying to actual contaminated
samples that might be destined for heat inactivation. Meanwhile, comparisons between the
PMA viability RT-qPCR assay and our evaluation method using HIEs would be beneficial
to develop a general pragmatic method to evaluate HuNoV inactivation.

In this study, we used freshwater clams to evaluate HuNoV inactivation using HIEs,
because the HuNoV genome is frequently detected in clams, as well as oysters, among
bivalve mollusks [20]. It would be worth comparing HuNoV inactivation patterns in
between clams and oysters, which needs further investigation.

In summary, we evaluated the heat inactivation of HuNoV in freshwater clams using
HIEs and showed that treatment at 90 ◦C for 1 min inactivates HuNoV in the clam bodies.
Although our current HIE system is suboptimal for evaluating actual contaminated samples,
this information could be valuable when developing guidelines to inactivate HuNoV, which
will contribute to reducing the risk of foodborne illness associated with HuNoV.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/v14051014/s1: Figure S1: Raw data for Figure 2A. Recovery of
HuNoV in freshwater clams after heat treatment. Figure S2: Recovery of HuNoV in the presence of
heated clam tissue.
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