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Abstract
We explore the Covid-19 diffusion with an agent-based model of an Italian region with a population on a scale of 1:1000. 
We also simulate different vaccination strategies. From a decision support system perspective, we investigate the adoption 
of artificial intelligence techniques to provide suggestions about more effective policies. We adopt the widely used multi-
agent programmable modeling environment NetLogo, adding genetic algorithms to evolve the best vaccination criteria. The 
results suggest a promising methodology for defining vaccine rates by population types over time. The results are encouraging 
towards a more extensive application of agent-oriented methods in public healthcare policies.
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Introduction

Modelling diffusion phenomena is a subject of increasing 
interest in many different research areas, e.g. the spread of 
information in a social context, the supply chain in business 
process management, as well as the virus diffusion in an 
environment. The last topic recently received large attention 
for the practical applications in the context of a pandemic 
emergency [1]. Modeling efforts can be helpful to address 
the analysis of the contagions’ sequences exploring alterna-
tive scenarios for policy-making.

Three main simulation approaches are System Dynam-
ics (SD) [2], Discrete- Event Simulation (DES) [3], Agent-
Based Modeling (ABM) [4]. ABM typically deals with 
complex systems, where the interaction between multiple 
actors are neither easily predictable with systems of equa-
tions, as in SD approaches, nor with sequences of events, as 
in DES [5, 6].

Agent-based approaches can also apply Artificial 
Intelligence (AI) techniques for decision-making, e.g., 

optimisation with search heuristics, genetic algorithms or 
reinforcement learning. This paper proposes to apply an 
AI technique on the top of an ABM concerning the virus 
spreading by consider- ing where contagions may occur, i.e. 
the interactions among people and the environment.

In the recent Covid-19 pandemic, the introduction of 
vaccines cope with the fight against the virus diffusion. In 
this context, the vaccine distribution policies play a relevant 
role. The question to address is: which groups should be vac-
cinated first? Our results suggest how Genetic Algorithms 
(GA) can be applied to an ABM in order to provide parameter 
estimates for administering the vaccine to groups of people.

The paper is organised as follows. "Background" reviews 
the background and the related work. "S.I.s.a.R. model" details 
the model adopted in this paper. "Research framework and 
methodology" presents the methodology, while "GA results" 
introduces GA results. Finally, we conclude the paper in "Con-
clusions and future work" with some remarks and future work.

Background

The diffusion processes have been largely studied in dif-
ferent research areas. Typical applications include the 
spread of innovation [7], the introduction of new products 
in a market [8], the diffusion of news or rumors in social 
media by exploring an agent-oriented perspective [9, 10], 
as well as different real-world social media networks [11]. 
Healthcare process management benefits from modeling and 
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simulation-based approaches [12–14]. With regard to the 
virus spread, modeling efforts mostly focused on both sys-
tems of equations in complex networks [15] and agent-based 
approaches [16]. ABM has been widely adopted in public 
health simulation studies [17], also in vaccine decision-
making [18]. In this perspective, ABM investigates complex 
health behaviour by simulating the actions of individuals 
influenced by their physical and social environment [19].

Agent-Based Modeling. This paper focuses on ABM [20] 
to study the emergent phenomena [21] in a complex adaptive 
system [22]. Several ABM toolkits have been proposed in 
the last decades [23]. One of the most used environment is 
the free and open-source multi-agent programmable mod-
eling tool NetLogo [6], which have an interesting online 
application to directly execute models in a Web Browser, i.e. 
NetLogo Web1. Our model reproduces the virus diffusion on 
a real-world regional scale to explore initial parameter varia-
tions (see Section 3). The implementation provides a useful 
tool to realize what-if analysis [24] and represent various 
scenarios.

AI techniques for decision-making. Modelling can be 
helpful for decision-making to test policy adoption before 
the effective application. ABM already explored decision 
support on diffusion processes [25]. In this work, we focus 
on a system able to set the initial parameters of the model. 
AI techniques have been largely applied on the top of mod-
eling and simulation [26], also in the healthcare management 
domain [27]. GA techniques [28] can provide suggestions 
to the choice of parameters in clinical challenges, by adopt-
ing stochastic replicates to sample the responses for a given 
intervention [29].

S.I.s.a.R. model

This work focuses on a recent modelling effort to simulate 
the Covid-19 epidemic diffusion in a region [30]. The Net-
Logo model (henceforth S.I.s.a.R. model) is publicly avail-
able on the Web with an executable version of the simula-
tion program2. The model takes its cue from the well-known 
S.I.R. model [31] that considers three agents’ states: Sus-
ceptible (S), Infected (I), and Recovered (R). Similarly, the 
S.I.s.a.R. model considers four types of agents’ states to 
better investigate the Covid-19 pandemic, by introducing 
symptomatic (s) and asymptomatic (a) people, in addition 
to susceptible and recovered.

Agents are computational entities having several features 
defined by internal variables. The number of agents for each 
category are computed from the corresponding frequency 

distributions in the entire population. For instance, a variable 
defines the working condition of agents, including categories 
of interest in the contrast of Covid-19 pandemic, i.e. hospi-
tal healthcare operators, nursing home healthcare operators, 
teachers, students, workers, fragile workers.

The model concerns a reduced scale of 1:1000 of an Ital-
ian northern Region (Piedmont), but can be reshaped to sim-
ulate other areas. A set of political interventions similar to 
the real ones, impacts the simulation, e.g., national or local 
government decisions, restrictions in people movements.

The S.I.s.a.R. model considers people as active agents 
that can move in the environment, according to their behav-
ioural rules, and if they are allowed for by the policies.

Agents’ interactions. A relevant feature of the model 
involves movements of people (agents), as well as the inter-
actions between an agent and the environment which is at 
the core of ABM [32].

Figure 1 describes the daily cycle of the simulation, 
mentioning the variables used to shape agents’ four types 
of interactions:

(A)	 in houses (at night), hospitals, nursing homes;
(B)	 in schools, workplaces in general, among people stable 

there;
(C)	 in the same places (excluding schools) by people tem-

porary there and in open spaces;
(D)	 interactions mainly in open spaces.

The description of the functioning of the model is out of 
the scope of the current work, for more details refer to the 
working document in the project site3.

Model validation. To validate the model, we analyse the 
results of the Covid- 19 simulation in the Piedmont region, 
started in February 2020. To improve the readability of 
the outputs, graphic representations describe the infecting 
agents as an horizontal segment with a vertical connection to 
another agent receiving the infection, as proposed in Fig. 2.

Research framework and methodology

The proposed methodology explores the adoption of GA to 
find optimal parameters of a vaccination campaign on the 
top of S.I.s.a.R. model. A vaccination campaign makes it 
possible to immunize large numbers of people. However, the 
vaccine is not immediately available to the whole popula-
tion. As a matter of health policy, a choice has to be made 
about which parts of the population to vaccinate first.

Modeling vaccine effects. We know how the vaccine 
works after a certain amount of time. For instance, between 

1   See https://​netlo​goweb.​org/
2   See: https://​terna.​to.​it/​simul/​SIsaR.​html 3   See: https://​terna.​to.​it/​simul/​howSI​saRwo​rks.​pdf
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the first and second dose the efficacy is 52%, and the protec-
tion concerns starts about twelve days after the first dose 
[33]. In the model, we compute a delay of 40 days for a 
vaccine to be effective from the first dose. Once agents have 
become immune, we simulate a main scenario where they 
can be contagious (ImmuneInfecting).

Vaccine administrations. The goal of the vaccination 
campaign simulation is to find vaccination sequences by 
people groups to reduce the number of symptomatic infected 
people. The S.I.s.a.R. model focuses on a realistic setting, 
where the vaccination campaign starts after one year since 
the discovery of the virus. In Italy, the first dose of the vac-
cine starts the 10th February 2021, i.e. the 373th day since the 
start of the simulation. New rounds of vaccine administra-
tions occur at regular intervals of about two months. Another 
relevant date is day 413 (March 22nd, 2021) with the initial 
effectiveness of the vaccinations. Finally, the execution of 
the ABM lasts 738 days, i.e., the conclusion is one year after 
the first dose.

Selecting optimal parameters. The population can be 
divided into categories of interest for the implementation 
of vaccinations, i.e. seven groups of people (Table 1). In the 
model, the daily vaccinations quantities are similar to those 
of Piedmont. The quotas apply to each group to determine 
the number of vaccination for each day. We start from the 
first group, which absorbs its quantity; if in that day there 
are residual vaccine doses, we move to the second group, 

and so on. The experimental setting concerns the adoption 
of GA to define the percentage of groups to be involved first. 
We exploit BehaviourSearch4 tool in addition to NetLogo in 
order to apply GA, with a limit of 300 runs. To increase the 
computational capabilities we perform GA by using an High 
Performance Computing infrastructure5 [34].

GA results

The results concerning GA applications have to be compared 
with the baseline scenario where no vaccine has been intro-
duced. By running the model without any vaccination cam-
paign, at the end of the simulation the number of infected 
agents is around 325,000, or 7.5% of the whole regional 
population.

The basis of our work is the agent-based simulation of 
an epidemic with propagation generated by highly mutable 
individual agent contacts. This is a model that inherently 
generates high variability in epidemic trends because even 
rare sequences of contagions can lead to very different 
overall outcomes. For this reason, in comparative applica-
tions the simulation is performed in repetition batches of 

Fig. 1   A day in the simulation, with N repetition where N is the duration of a specific outbreak

4   See: https://​ccl.​north​weste​rn.​edu/​netlo​go/​docs/​behav​iorsp​ace.​html
5   See https://​hpc4ai.​it/
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ten thousand times and those considered are mean values. 
The GA uses a subset of cases, carefully chosen as a rep-
resentative case. Within hundreds of thousands repetitions 
the extreme cases compensate themselves and also they 
change quickly.

The set of plots in Fig. 2 details some meaningful 
results. First, Fig. 2a describes the sequence of conta-
gions without vaccinations (baseline). The crucial dates 

are: the blue line stands for the starting point of the vac-
cination campaign, while the red line represent the start 
of the effectiveness of the initial vaccinations. Second, 
Fig. 2b describes the sequence of contagions after day 
413 in the case of no vaccination campaign. The Immu-
neInfecting scenario is described by the sequence of 
contagions in Fig. 2c, after day 413, i.e. after the effec-
tiveness of the initial vaccinations. Compared to the 
baseline, the curve is less steep and the total number 
of infected is lower. Finally, the best GAs strategy is 
described in Fig. 2d, which is sparse because vaccination 
works well, and there are few cases and the interval in 
the abscissa is short.

Fig. 2   The sequence of contagions in different cases: (a) without vac-
cinations (blue line for the starting point of the vaccination campaign, 
red line for the start of the effectiveness of the initial vaccinations); 
(b) without vaccinations, after day 413 (c) with vaccination campaign 

(vaccinated people still spreading the infection), after day 413; (d) 
GAs vaccination campaign, with vaccinated people still spreading the 
infection (best GAs strategy),, after day 413

Table 1   Categories of persons for vaccine administration

Group Description

g1 Three sub-categories related to nursing homes:
i.health fragile people in nursing homes
ii.nursing home operators
iii.healthcare operators

g2 Teachers of public and private schools
g3 Workers with medical fragility
g4 Plain workers
g5 Fragile people
g6 Regular people not young not worker not teacher
g7 Young people (excluding fragile cases)

Table 2   Results of the simulated vaccination campaigns in different 
scenario. The second row describes the results minus the number of 
symptomatic people when the vaccination campaign effects started 
(at day 413)

At day 413 Baseline ImmuneInfecting GAs

TotalFinal
TotalFinal—At day 

413

197
-

325
128

236
39

200
3
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A comment on GA results

The simulation in the baseline scenario obtains about 
325,000 infected cases, while the ImmuneInfecting sce-
nario obtains an improvement with a decrease of about 
215,000 infected at the end of the simulation. The model 
with GA selection of groups to be vaccinated first obtains 
a further improvement reaching about 200,000 infected. 
The results are similar by excluding symptomatic people 
when the vaccination campaign effects started (at day 
413), as in the second row of Table 2.

The advantage of the GAs strategy is relevant in the 
realistic case of the vaccinated people still spreading the 
infection. The main attention of the GAs initially relates 
to g4, and g6 groups (regular workers and regular per-
sons). They correspond to categories of people who are 
at risk because they move frequently. Finally, the best GA 
scenario provides the effects in Fig. 3 on the sequence of 
groups to be vaccinated first.

Conclusions and future work

The goal of this work is to suggest how to apply AI tech-
niques on top of ABM to investigate a health decision prob-
lem. We described the main steps of a research framework 
regarding the definition of optimal parameters to address a 
vaccination campaign. Specifically, we applied GA on a real-
istic Covid-19 diffusion model. As future work, we plan to 
improve the scenario analysis by adding cases with different 
probabilities of infection for immunized persons. We want 
to explore a best-checking replicates test, by adding to GAs 
the capability to replicate a specific search with the same 
parameters, but changing the vaccinated people randomly.

Funding  Open access funding provided by Università degli Studi di 
Torino within the CRUI-CARE Agreement.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest. This article does not contain any studies with human partici-
pants performed by any of the authors.

Fig. 3   GA vaccination sequence. On the y axis the number of vaccinated subjects of each group. If vaccination is complete, the line is horizontal
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