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Abstract

Objective: To investigate the associations of Pittsburgh compound-B (PiB)

uptake in white matter hyperintensities (WMH) and normal appearing white

matter (NAWM) with white matter (WM) integrity measured with DTI and

cognitive function in cognitively unimpaired older adults. Methods: Cognitively

unimpaired older adults from the population-based Mayo Clinic Study of Aging

(n = 537, age 65–95) who underwent both PiB PET and DTI were included.

The associations of WM PiB standard uptake value ratio (SUVr) with fractional

anisotropy (FA) and mean diffusivity (MD) in the WMH and NAWM were

tested after adjusting for age. The associations of PiB SUVr with cognitive func-

tion z-scores were tested after adjusting for age and global cortical PiB SUVr.

Results: The WMH PiB SUVr was lower than NAWM PiB SUVr (P < 0.001).

In the WMH, lower PiB SUVr correlated with lower FA (r = 0.21, P < 0.001),

and higher MD (r = �0.31, P < 0.001). In the NAWM, lower PiB SUVr only

correlated with higher MD (r = �0.10, P = 0.02). Both in the WMH and

NAWM, lower PiB SUVr was associated with lower memory, language, and glo-

bal cognitive function z-scores after adjusting for age and global cortical PiB

SUVr. Interpretation: Reduced PiB uptake in the WMH is associated with a

loss of WM integrity and cognitive function after accounting for the global cor-

tical PiB uptake, suggesting that WM PiB uptake may be an early biomarker of

WM integrity that precedes cognitive impairment in older adults. When using

WM as a reference region in cross-sectional analysis of PiB SUVr, individual

variability in WMH volume as well as age should be considered.

Introduction

White matter (WM) Pittsburgh compound-B (PiB)

uptake is increasingly being used as a reference region to

calculate the PiB standard uptake value ratios (SUVr) in

longitudinal PET imaging studies,1–5 as an alternative to

PiB uptake in the cerebellum. However, the basis of PiB

uptake in the WM is not fully understood. WM PiB

uptake increases with age, with a parallel increase in glo-

bal cortical PiB uptake.6 On the other hand, b-amyloid

PET tracer uptake is lower in demyelinating lesions7–12 as

well as in nonspecific WM hyperintensities (WMH) in
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older adults.13,14 Studies of PiB uptake in demyelinating

and remyelinating WM lesions in animal models9 and

patients with multiple sclerosis (MS)11 have suggested

that WM PiB uptake may be used as an imaging biomar-

ker for myelin integrity if age correction is employed. We

recently showed that PiB uptake is lower in WMH than

in normal appearing WM (NAWM) in patients with

MS.12 Furthermore, PiB uptake in the WMH, and also in

the NAWM correlated with cognitive function in patients

with MS.12 These earlier studies in patients with MS sug-

gest that PiB uptake may be utilized as a biomarker of

WM integrity, particularly for detection of early neurode-

generative alterations in the WM that precedes cognitive

impairment in older adults.

Fractional anisotropy (FA) and mean diffusivity (MD)

on diffusion tensor MRI (DTI) are well-known imaging

biomarkers for the density of axons and myelin in the

WM.15,16 Therefore, WM FA and MD measurements may

help understand the basis of PiB uptake in the WM. In

the current study, we investigated the PiB uptake in the

WMH and NAWM in cognitively unimpaired older

adults and the relationships of WMH and NAWM PiB

uptake with age, FA and MD on DTI, and cognitive func-

tion. We hypothesized that lower PiB uptake values in

the WMH and NAWM would be associated with lower

FA and higher MD values on DTI and lower cognitive

performance.

Methods

Study population

Participants from the Mayo Clinic Study of Aging

(MCSA), which is a prospective population-based study of

cognitive aging,17 were included. Clinical evaluation and

neuropsychological testing were performed to identify cog-

nitively unimpaired older adults (age 65–95) who under-

went both PiB PET and MRI that included a DTI scan

(n = 537). Briefly, all raw cognitive test scores were stan-

dardized in the MCSA 50+ population using the baseline

cognitively unimpaired enrollment visits between the years

2004–2012 and weighted to the Olmsted County popula-

tion. The neuropsychological testing assessed four cogni-

tive domains of memory, language, attention-executive

function, and visual-spatial skills as previously described.17

The average of individual domain z-scores was used to cal-

culate a global cognitive function z-score.17 Cognitively

unimpaired participants were classified based upon a con-

sensus diagnosis by physicians, neuropsychologists, and

study coordinators who evaluated the participants.

The study protocol was approved by the Institutional

Review Boards and all participants signed informed

consent.

MRI methods

MRIs were performed on 3.0 Tesla scanners (GE, Mil-

waukee, WI, USA). A T2-weighted fluid-attenuated inver-

sion recovery (FLAIR) and a T1-weighted 3D high

resolution magnetization-prepared rapid acquisition gra-

dient-echo (MPRAGE) sequence (TR/TE/T1, 2300/3/

900 msec, spatial resolution = 1 9 1 9 1.2 mm3, slice

thickness of 1.2 mm, flip angle 8°, 26-cm field of view)18

were included in the standardized protocol for anatomic

segmentation and labeling of WMH and NAWM on the

PiB PET and DTI images. WM was segmented into

WMH and NAWM using a semiautomated segmentation

algorithm on FLAIR-MRI as previously described.19

FLAIR images were registered to the corresponding

MPRAGE using SPM12, and the corresponding WMH

segmentations were transformed using these same param-

eters. The minimal size for the WMH that was detected

in FLAIR-MRI was approximately 5 mm3.

MPRAGE images were segmented using SPM1220 with

the Mayo Clinic Adult Lifespan Template (https://

www.nitrc.org/projects/mcalt/).21 These segmentations

were used to generate a WM mask by thresholding the

SPM12 WM segmentation to include those voxels with

P ≥ 0.5. Any voxels segmented as WMH in the coregis-

tered, resampled FLAIR images were also included as

WM to account for T1-hypointense lesions being erro-

neously called gray matter. We then eroded this WM seg-

mentation mask by three voxels, to exclude those voxels

most severely affected by partial volume averaging of

cerebrospinal fluid (CSF) and gray matter (i.e., U-fibers

and periventricular voxels). Remaining WM voxels were

then used for all analyses. These WM voxels were split

into two subclass masks: those segmented as WMH, and

all others, which we called NAWM.

A single-shot echo-planar DTI pulse sequence was per-

formed with a SENSE factor of two in the axial plane.

The DTI sequence’s parameters were TE = 68 msec;

TR = 10,200 msec; an in-plane matrix of 128/128; field of

view 35 cm, and 2.7 mm as the slice thickness for

2.7 mm isotropic resolution. The DTI volumes consisted

of 41 diffusion-encoding gradient directions and a set of

five of nondiffusion T2-weighted volumes (b0s). Diffusion

MRI brain voxels were segmented using an automated

method.22 After correcting for subject motion and resid-

ual eddy current distortion, diffusion tensors were fit on

extracted brain voxels using weighted least squares opti-

mization and FA and MD images were calculated from

eigenvalues of the tensors using Dipy.23 DTI FA and MD

images were registered to the T1-weighted image using

SPM12 by using the average b0 image to compute an

affine transformation for DTI and applying this to the FA

and MD images.
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PiB PET methods

PET/CT scanner (Discovery, GE Healthcare, Waukesha,

WI) operating in three-dimensional mode was used for PiB

PET imaging. The participants were injected with PiB (tar-

get injection dose = 15 mCi [555 MBq]) and after waiting

for an uptake period of 40 min, a PiB scan was acquired as

four 5-min of dynamic frames that were checked for

motion and averaged to create a static PiB PET image. The

full width at half maximum of the PET scanners’ point

spread function was approximately 4–5 mm in air, and

approximately 8 mm in water phantoms.24 Further, a stan-

dard iterative reconstruction (256 matrix, 300 mm field of

view, 1.17 9 1.17 9 3.27 mm voxel size) with corrections

for attenuation, scatter, random coincidences, and radioac-

tive decay were applied as well as a 5-mm Gaussian postfil-

ter as previously described.1 PiB PET image analysis was

performed using an automated image processing pipeline,

which was previously described.18 The cerebellar crus gray

matter was used as a reference region to create normalized

PiB PET standardized uptake value ratio (SUVr) images.

To calculate the global cortical PiB SUVr, a mask of the

bilateral temporal, parietal, prefrontal, orbitofrontal and

anterior cingulate gray matter regions was used.

Finally, the mean value for each of DTI FA and PiB

PET SUVr over all voxels in each of the WMH and

NAWM segmentation masks was computed.

Statistical analysis

PiB SUVr, FA and MD were compared between WMH

and NAWM using paired t-tests to account for the within-

subject matching. Pearson correlations were used to test

for associations of PiB SUVr, FA and MD with age in

WMH and NAWM. Regression models and partial Pear-

son correlations were used to test for associations of PiB

SUVr with FA and MD in the WMH and NAWM, after

adjusting for age, since age significantly influences WM

PiB SUVr,6 FA,25,26 and MD.26 We used mixed effects

models to compare (1) associations of each imaging bio-

marker (PiB SUVr, FA and MD) with age between WMH

and NAWM; (2) associations of PiB SUVr with FA and

MD between WMH and NAWM, adjusted for age, with all

of the PiB SUVr, FA and MD in the data, and two values

per subject according to WMH or NAWM. The mixed

effects models accounted for within-subject correla-

tions. We used a group variable for WMH/NAWM, where

0 = WMH and 1 = NAWM, and tested for an interaction

by group. A significant interaction would indicate a differ-

ence in slopes for WMH and NAWM. Regression models

and partial Pearson correlations were also used to test for

associations of PiB SUVr, in the WMH and NAWM with

memory, language, attention-executive function, visual-

spatial function and global cognitive function z-scores.

Because age significantly influences WM PiB SUVr,6 and

both age and global cortical PiB SUVr influence cognitive

function,27,28 the associations of PiB SUVr with cognitive

function domain z-scores were tested in these models after

adjusting for both age and global cortical PiB SUVr.

Assumptions underlying the regression models were

assessed using standard analysis of the residuals, and

assumptions underlying the mixed models were assessed

using methods from Fox and Weisberg (2014).29

Results

Demographics and characteristics of
participants

The mean age of the cohort at time of imaging was

75.9 � 7.3 years. Of the participants, 43% were women

and 29% were APOE e4 carriers. The short test of mental

status30 [mean � standard deviation (SD) = 35.4 � 2.0],

clinical dementia rating scale sum of boxes

(mean � SD = 0.05 � 0.23) and global cognitive func-

tion test z-score (mean � SD = 0.15 � 0.86) were within

normal limits (Table 1). On the MRI, the mean WMH

volume was 18.06 � 17.39 cc, and as expected, the WMH

volume increased with age (r = 0.54, P < 0.001). The

mean � SD global cortical PiB SUVr was 1.49 � 0.42.

PiB uptake, FA, and MD in the WMH and
NAWM

The WMH PiB SUVr (mean � SD = 1.88 � 0.20) was

lower compared to NAWM PiB SUVr (mean � SD =

Table 1. Participants’ characteristics.

n = 537

Age, years 75.9 (7.3)

Women (%) 231 (43%)

Education, years 14.7 (2.6)

APOE e4 carrier status (%) 156 (29%)

Short test of mental status30 35.4 (2.0)

CDR sum of boxes 0.05 (0.23)

Memory function z-score 0.23 (1.01)

Language function z-score 0.02 (0.90)

Attention-executive function z-score �0.09 (0.86)

Visual-spatial function z-score 0.23 (0.88)

Global cognitive function z-score 0.15 (0.86)

Global cortical PiB SUVr 1.49 (0.42)

White matter hyperintensity volume, cc 18.06 (17.39)

Mean (standard deviation) for the continuous variables and count (%)

for the categorical variables.

CDR, clinical dementia rating scale; PiB, Pittsburgh compound-B;

SUVr, standard uptake value ratio.
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2.08 � 0.20) using paired t-tests (P < 0.001) (Fig. 1).

Both the WMH and NAWM PiB SUVrs increased with age

(P < 0.001) (Table 2), but this relationship was steeper in

the NAWM compared to WMH using mixed effects models

(differences in slopes P < 0.001) (Table S1). On DTI, the

WMH FA (mean � SD = 0.37 � 0.05) was lower com-

pared to NAWM FA (mean � SD = 0.45 � 0.02), and the

WMH MD (mean � SD = 921 � 99 9 10�6 mm2/sec)

was higher compared to NAWM MD (mean �
SD = 755 � 35 9 10�6 mm2/sec) using paired t-tests

(P < 0.001) (Fig. 1). Both the WMH FA and NAWM FA

decreased with age (P < 0.001) (Table 2), and this relation-

ship was steeper in the WMH than in the NAWM using

mixed effects models (differences in slopes P < 0.001)

(Table S1). Both the WMH MD and NAWM MD increased

with age (P < 0.001) (Table 2), and this relationship was

steeper in the WMH than in the NAWM using mixed

effects models (differences in slopes P < 0.001) (Table S1).

Lower PiB SUVr correlated with lower FA in the WMH

(r = 0.21, P < 0.001), but not in the NAWM (r = 0.07,

P = 0.10) after adjusting for age. Lower PiB SUVr corre-

lated with higher MD both in the WMH (r = �0.31,

P < 0.001), and NAWM (r = �0.10, P = 0.02) after

adjusting for age (Table 2, Fig. 2). However, we did not

observe a difference in slopes of the associations of PiB

SUVr and MD in the WMH with the NAWM (P = 0.34)

using mixed effects models (Table S1).

Higher WMH PiB SUVr correlated with higher

NAWM PiB SUVr (r = 0.94, P < 0.001), after adjusting

for age. Similarly, higher WMH FA correlated with

higher NAWM FA (r = 0.48, P < 0.001), and higher

WMH MD correlated with higher NAWM MD

(r = 0.67, P < 0.001), after adjusting for age. Higher glo-

bal cortical PiB SUVr correlated with higher PiB SUVr

both in the WMH (r = 0.20, P ≤ 0.001) and NAWM

(r = 0.25, P ≤ 0.001), after adjusting for age. While

WMH volume did not correlate with WMH PiB SUVr

(r = �0.069, P = 0.11), higher WMH volume correlated

with lower WMH FA (r = �0.69, P ≤ 0.001) and higher

WMH MD (r = 0.83, P ≤ 0.001). In Figure 3, examples

of PiB PET, DTI, T2-FLAIR and MPRAGE MRIs of two

Figure 1. Box plots of Pittsburgh compound-B standard uptake value ratio and diffusion tensor imaging fractional anisotropy and mean

diffusivity in white matter hyperintensities versus normal appearing white matter. DTI, diffusion tensor imaging; FA, fractional anisotropy; MD,

mean diffusivity; NAWM, normal appearing white matter; PiB, Pittsburgh compound-B; SUVr, standard uptake value ratio; WMH, white matter

hyperintensity.

Table 2. Associations of Pittsburgh compound-B standard uptake

value ratio and diffusion tensor imaging fractional anisotropy and

mean diffusivity in the white matter hyperintensities and normal

appearing white matter.

Pearson correlations

WMH

R (P)

NAWM

R (P)

PiB SUVr and age 0.14 (<0.001) 0.28 (<0.001)

FA and age �0.35 (<0.001) �0.17 (<0.001)

MD and age 0.48 (<0.001) 0.46 (<0.001)

FA and PiB SUVr,

adjusted for age

0.21 (<0.001) 0.07 (0.10)

MD and PiB SUVr,

adjusted for age

�0.31 (<0.001) �0.10 (0.02)

FA, fractional anisotropy; MD, mean diffusivity; NAWM, normal

appearing white matter; PiB, Pittsburgh compound-B; SUVr, standard

uptake value ratio; WMH, white matter hyperintensity.
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participants; a 67-year-old woman and an 88-year-old

man, are displayed.

Associations with cognitive function

In the WMH, lower PiB SUVr was associated with lower

memory (r = 0.15; P < 0.001), lower language (r = 0.19;

P < 0.001), and lower global (r = 0.14; P = 0.002) cogni-

tive function z-scores, after adjusting for age and global

cortical PiB SUVr. Similarly, in the NAWM, lower PiB

SUVr correlated with lower memory (r = 0.11;

P = 0.010), lower language (r = 0.16; P < 0.001), and

lower global (r = 0.10; P = 0.022) cognitive function z-

scores after adjusting for age and global cortical PiB SUVr

(Fig. 4). PiB SUVr was not associated with attention-

executive function and visual-spatial function z-scores

neither in the WMH, nor in the NAWM after adjusting

for age and global cortical PiB SUVr.

In an exploratory analysis of individuals with low glo-

bal cortical PiB SUVr levels (<1.42)31 (n = 272), lower

PiB SUVr correlated with lower global cognitive function

both in the WMH (r = 0.11, P = 0.08) and NAWM

(r = 0.08, P = 0.20), after adjusting for age and global

cortical PiB SUVr. Although the strengths of the correla-

tions were similar to the entire cohort, the results did not

reach statistical significance.

Discussion

WM uptake is commonly observed in b-amyloid PET

studies using different b-amyloid tracers, independent of

cortical b-amyloid deposition, both in cognitively

impaired and unimpaired individuals.32–36 WM PiB

uptake is being accepted as a reference region to normal-

ize cortical PiB uptake on serial imaging.1–5 However, the

basis of WM PiB uptake is not yet well-understood. As a

reference region for serial PET image analysis, WM seems

to be more robust to imprecision in registration, less

noisy due to a larger region to average the signal,37 and

have higher sensitivity due to not being at the edge of the

scanner field,4,5 in comparison to cerebellum. Thus,

understanding the basis of WM PiB uptake is critical for

the appropriate use of WM PiB uptake in calculations of

serial PiB SUVr.

In this study, we made several critical observations: (1)

While PiB SUVr in the WMH was expectedly lower com-

pared to PiB SUVr in the NAWM, both WMH and

NAWM PiB SUVrs increased with age in cognitively

unimpaired older adults. (2) In the WMH, lower PiB

SUVr correlated with lower FA and higher MD after

adjusting for age, whereas in the NAWM, the lower PiB

SUVr only correlated with higher MD, but the correlation

between PiB SUVr and FA did not reach statistical

Figure 2. Associations of Pittsburgh compound-B standard uptake value ratio adjusted for age and diffusion tensor imaging fractional anisotropy

and mean diffusivity in white matter hyperintensities and normal appearing white matter. Regression lines and confidence limit bands show the

relationship between DTI FA and predicted PiB SUVr with age adjustment representing a 75-year-old participant. The lowest FA value detected in

the NAWM was 0.40. The highest MD value detected in the NAWM was 886 mm2/sec. FA, fractional anisotropy; MD, mean diffusivity; NAWM,

normal appearing white matter; PiB, Pittsburgh compound-B; SUVr, standard uptake value ratio; WMH, white matter hyperintensity.
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significance. (3) Both in the WMH and in the NAWM,

lower PiB SUVr, correlated with lower memory, language,

and global cognitive function z-scores after adjusting for

age and global cortical PiB SUVr.

WM PiB uptake increases with aging,6 which is con-

sistent with our current finding of an increase in PiB

uptake both in the WMH and NAWM with age. While

the basis of increasing PiB uptake in the WM with

aging is not known, PiB uptake is associated with

higher lipid composition of the WM, which may cause

a predilection to lipophilic tracers,38 slower blood perfu-

sion rate39 and therefore slower delivery of the radioli-

gand40 and clearance rates41,42 compared to gray matter.

Because global perfusion rate declines with aging, it is

possible that age-associated decrease in global

perfusion43 and slower kinetics in the WM39,41,42 lead

to an increase in WM PiB uptake with aging. Besides

perfusion and composition changes, it is also unclear if

the potential change in compactness of WM with age

may impact PiB uptake.

Any one of these normal aging processes may also be

modified by an underlying disease process. For example,

WM degeneration due to demyelinating or dysmyelinat-

ing diseases may show similar reductions of PiB uptake.

In the current study, we focused on a cognitively unim-

paired older cohort in order to investigate early WM

alterations that relate to cognitive performance even in

the absence of cognitive impairment. Our findings in the

current cohort are consistent with our findings in MS

with lower PiB uptake in the WMH compared to

Figure 3. Examples of two participants from the cohort. Note that the WM masks were eroded by three voxels intentionally to avoid regions

that are most prone to partial volume averaging with CSF and gray matter. Both participants had high WMH load observed on FLAIR-MRI, but

the younger participant had higher WMH volume. They both had lower WMH PiB SUVr compared to NAWM PiB SUVr on PET, lower WMH FA

compared to NAWM FA and higher WMH MD compared to NAWM MD on DTI. The older participant with high global cortical PiB SUVr had

higher WMH PiB SUVr and NAWM PiB SUVr compared to the younger participant with low global cortical PiB SUVr on PET. The first participant

(A–E) was a 67-year-old woman. WMH volume was 121.9 cc on T2-FLAIR-MRI (A). WMH (purple) and NAWM (copper) masks were registered

and displayed on the MPRAGE image (B). On PiB PET (C); global cortical PiB SUVr was 1.21, WMH PiB SUVr was 1.38, and NAWM PiB SUVr was

1.60. On DTI (D), WMH FA was 0.27, NAWM FA was 0.40, (E) WMH MD was 1128 9 10�6 mm2/sec and NAWM MD was 803 9 10�6 mm2/

sec. The second participant (F-J) was an 88-year-old man. WMH volume was 85.9 cc on T2-FLAIR MRI (F). WMH (purple) and NAWM (copper)

masks were registered and displayed on the MPRAGE image (G). On PiB PET (H), global cortical PiB SUVr was 2.27, WMH PiB SUVr was 1.84, and

NAWM PiB SUVr was 2.16. On DTI (I), WMH FA was 0.32, NAWM FA was 0.46, (J) WMH MD was 1130 9 10�6 mm2/sec and NAWM MD was

839 9 10�6 mm2/sec. DTI, diffusion tensor imaging; FA, fractional anisotropy; FLAIR, fluid-attenuated inversion recovery; MD, mean diffusivity;

MPRAGE, magnetization-prepared rapid gradient-echo; NAWM, normal appearing white matter; PiB, Pittsburgh compound-B; SUVr, standard

uptake value ratio; WMH, white matter hyperintensity.
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NAWM.12 Our findings are also consistent with recent

reports on reduced PiB uptake in the WMH of older

adults,13,14 in demyelinating WM lesions of patients with

MS,7,10,11 and in animal models of demyelination.9 It was

hypothesized that PiB binds to the beta-pleated sheet of

the myelin basic protein in the WM.7 However, both the

age-related myelin loss,25,26 and the age-related increase

in WMH, which in-part is associated with loss of mye-

lin,44,45 would cause a reduction in PiB uptake in the

WM with aging. Thus, the increase in PiB uptake with

aging appears to be through an independent mechanism

contributing to WM PiB uptake, and competing with the

decreasing PiB uptake with increasing WMH. In keeping

with that, we observed an increase in PiB uptake both in

the WMH and NAWM with aging. Interestingly, the

increase in WMH with aging was attenuated compared to

the NAWM with a statistically significant difference

between the slopes, suggesting that the PiB uptake in the

WMH is further modified by mechanisms that are inde-

pendent of aging-related increase of PiB uptake in the

WM. Overall, our data indicate that both aging and loss

of WM integrity affect WM PiB uptake through compet-

ing mechanisms.

To better understand the basis of lower PiB uptake in

the WMH, we studied the relationship of PiB uptake with

FA and MD measurements on DTI. FA and MD measure-

ments on DTI are widely used as biomarkers of WM

integrity particularly in neurodegenerative diseases.15,16

Furthermore, WM FA decreases and WM MD increases

with increasing volume of WMH.46,47 Previous DTI stud-

ies showed that FA in the WM tracts slowly decline after

the compact myelination in the WM terminates in the

fourth decade.25,26 Furthermore vacuolation, myelin pallor

and decrease in myelin density contribute to WMH on

MRI in older adults.44,45 In our study, as expected, we

found lower FA and higher MD in the WMH compared

to NAWM. Moreover, FA decreased and MD increased

with age both in the WMH and NAWM, consistent with

DTI studies in aging cohorts.15,16 Overall, although DTI is

accepted as a biomarker of WM integrity, it lacks speci-

ficity. A decline in FA may be related to both the integrity

of myelin and axonal density.48,49

In the current study, lower PiB SUVr correlated with

lower FA in the WMH, but the correlation between PiB

SUVr and FA was not statistically significant in the

NAWM. In contrast, lower PiB SUVr correlated with

higher MD both in the WMH and NAWM. When the

entire WM is analyzed as in this study, FA may have

limited power in detecting WM integrity compared to

MD, because FA is more prone to the influences of

crossing-fibers.50 b-amyloid PET tracers such as PiB that

bind to WM as an off-target phenomenon38,41 have

been proposed as potential biomarkers of myelin

integrity.7–12,51–54

Figure 4. Associations of Pittsburgh compound-B standard uptake value ratio with memory, language, and global cognitive function z-scores

adjusted for age and global cortical Pittsburgh compound-B standard uptake value ratio in white matter hyperintensities and normal appearing

white matter. Regression lines and confidence limit bands show the relationships between memory, language, and global cognitive function z-

scores and PiB SUVr with age and global cortical PiB SUVr adjustment representing a 75-year-old participant with a global cortical PiB SUVr of

1.50. NAWM, normal appearing white matter; PiB, Pittsburgh compound-B; SUVr, standard uptake value ratio; WMH, white matter

hyperintensity.
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We previously showed that PiB uptake both in the

WMH and NAWM correlated with cognitive function in

patients with MS.12 In the current cohort of cognitively

unimpaired older adults, lower PiB SUVr correlated with

lower memory, language, and global cognitive function

both in the WMH and NAWM, after adjusting for age

and global cortical PiB SUVr to account for age and b-
amyloid pathology that may influence global cognitive

function.27,28 Alterations in biomarkers of WM integrity

on DTI precede cognitive impairment in older adults.55

Our findings suggest that WM PiB uptake may be an

early biomarker of WM integrity. Longitudinal follow-up

of the current cohort is ongoing for further investigation

into this possibility.

Our study did not examine whether PiB SUVr is

affected differently according to the size or spatial loca-

tion of WMH. It is possible that PiB SUVr may be

greater in smaller WMH lesions due to their spatial

smoothness or in subcortical versus periventricular ver-

sus deep WM due to partial volume averaging with

NAWM. Future work will be needed to assess these

questions. Even though we eroded the WM mask to

avoid partial volume averaging of CSF and gray matter,

with the current resolution of the PiB PET scans, partial

volume averaging of CSF and gray matter PiB uptake is

still possible. We observed that greater PiB uptake in the

WM is associated with greater cortical b-amyloid deposi-

tion. It was recommended that WM regions close to

gray matter should be avoided when WM is used as the

reference region.1,4 Thus, the rate of annual increase in

WM PiB SUVr was slower when eroded subcortical WM

region of interest was analyzed.6 Furthermore, the corre-

lation between lower PiB SUVr in the WM and lower

cognitive function is opposite of the correlation that

may be expected between b-amyloid deposition and cog-

nitive function (i.e., higher cortical PiB SUVr associated

with lower cognitive function). Thus, association of

reduced WM PiB uptake with loss of WM integrity and

lower cognitive function appears to be independent from

the partial volume averaging of the cortical PiB SUVr.

Although WMH in aging is in-part associated with a

decrease in myelin integrity,44,45 the increase of PiB

uptake both in the WMH and NAWM with aging sug-

gests that additional aging-related mechanisms are influ-

encing WM PiB uptake. Furthermore, in individuals

with more WMH, the increase in WM PiB uptake with

aging may attenuate. These factors should be considered

when WM PiB uptake is used as a reference region for

the evaluation of cortical PiB uptake. Previous studies

have suggested that the rates of WM PiB SUVr increase

may be minimal in the short term, such that it may be

reasonable to use WM as a reference region for short-

term longitudinal studies.6 However, this may not be

the case for long-term studies with increasing age and

severity of WMH. Future work is needed to determine

the relative rates of PiB SUVr change longitudinally in

NAWM and WMH to evaluate this possibility. On the

contrary, when using WM as a reference region in

cross-sectional analysis, individual variability in WMH

volume as well as age should be considered as variables

that influence PiB SUVr.
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