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Abstract

Nosocomial diseases due to Candida albicans infections are in constant rise in hospitals, where they cause serious
complications to already fragile intensive care patients. Antifungal drug resistance is fast becoming a serious issue due to
the emergence of strains resistant to currently available antifungal agents. Thus the urgency to identify new potential
protein targets, the function and structure of which may guide the development of new antifungal drugs. In this context,
we initiated a comparative genomics study in search of promising protein coding genes among the most conserved ones in
reference fungal genomes. The CA3427 gene was selected on the basis of its presence among pathogenic fungi contrasting
with its absence in the non pathogenic Saccharomyces cerevisiae. We report the crystal 3D-structure of the Candida albicans
CA3427 protein at 2.1 Å resolution. The combined analysis of its sequence and structure reveals a structural fold originally
associated with periplasmic binding proteins. The CA3427 structure highlights a binding site located between the two
protein domains, corresponding to a sequence segment conserved among fungi. Two crystal forms of CA3427 were found,
suggesting that the presence or absence of a ligand at the proposed binding site might trigger a ‘‘Venus flytrap’’ motion,
coupled to the previously described activity of bacterial periplasmic binding proteins. The conserved binding site defines a
new subfamily of periplasmic binding proteins also found in many bacteria of the bacteroidetes division, in a
choanoflagellate (a free-living unicellular and colonial flagellate eukaryote) and in a placozoan (the closest multicellular
relative of animals). A phylogenetic analysis suggests that this gene family originated in bacteria before its horizontal
transfer to an ancestral eukaryote prior to the radiation of fungi. It was then lost by the Saccharomycetales which include
Saccharomyces cerevisiae.
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Introduction

Candida spp are ubiquitous commensal organisms that can cause

serious disseminated infections, particularly in immunocompro-

mised and intensive care patients. Candida spp. are the fourth

leading cause of nosocomial bloodstream infections in the United

States, with treatment costs estimated to be more than $2–$4

billion annually [1] and with mortality rates estimated between

38% to 49% [2]. Candidiasis is the most common invasive fungal

infection reported in cancer patients (58%–69%) [3], and over the

past decade, the incidence of these fungal infections has increased

significantly [4]. Although resistance to antifungal drugs remains

uncommon on community acquired infections, they are in

constant rise in nosocomial infections [5]. Since it has been

demonstrated that clinical isolates of the Candida species C. albicans,

C. glabrata, C. tropicalis, and C. krusei have acquired resistance

against first-line agents for treatment of invasive candidiasis by

mutations in the gene encoding the target enzyme (glucan

synthase) [5,6,7], it appears important to anticipate and enlarge

the antifungal drug spectrum by identifying new original targets.

In this context, our laboratory led a prospective structural

genomics project (PROFUN [8]) in search of new antifungal

targets.

The gene selection was based on the comparison of the

following fungi genomes: Candida albicans (SC5314), Saccharomyces

cerevisiae (S288C), Neurospora crassa (OR74A), Magnaporthe grisea (70-

15 (Mat1-1)), Schizosaccharomyces pombe, Aspergillus fumigatus (Af293),

Phanerochaete chrysosporium, Cryptococcus neoformans ((Serotype D)

JEC21+B3501), Cryptococcus neoformans ((Serotype A) H99). This

study aimed to identify virulence-related targets by focusing on

genes conserved in pathogenic fungi and absent from the

Saccharomyces cerevisiae genome. The CA3427 gene belongs to

this category and encodes a 299 amino acid-long, 33.7 kDa

molecular weight protein of unknown function (UNIPROT:

Q59X88).

The comparison of the CA3427 sequence with its database

homologs clearly highlights a new functional family conserved

(.30% identity over its entire lenght) across most fungi genomes
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and present in some flavobacteria. It only shares a weak similarity

(,20% identity over the full length sequences) with the Pyrimidine

precursor biosynthesis THI13 enzyme from S. cerevisiae. To gain

insights into the function and druggability of CA3427 we

determined its crystal structure by the multi-wavelength anoma-

lous dispersion (MAD) method [9]. Interestingly, two crystal forms

were obtained which seem to correspond to a large conformational

change induced by the binding of a small ligand at a specific site of

the protein.

Methods

Cloning expression and purification
As part of the larger structural genomics PROFUN project,

CA3427 was produced using the protocol previously described for

other targets [10]. Briefly, the cDNA was isolated by PCR using

sequence primers specific to the CA3427 gene preceded by 59-

CATCACCATCAATTG (Direct primer) and 59-TCACCATC-

CAATTG (Reverse Primer) applied to a template of purified

genomic DNA from the Candida albicans strain NIH 3147 (ATCC

number MYA-2876D). Gene cloning was performed using the

ligation-independent cloning (LIC) method and our pSF-04

expression vector [10]. The PCR products were directly purified

using the NucleoSpin Extract kit (Macherey Nagel). Then,

0.2 pmol of the purified PCR product was treated with T4

DNA polymerase in the presence of 2.5 mM of dCTP for

30 minutes at 22uC before inactivating the enzyme (20 minutes at

75uC). In a parallel procedure, the pSF-04 expression vector was

digested with the Mfel restriction enzyme to excise the insert

bearing the lacZ encoding sequence. pSF-04 was then purified on

agarose gel using the NucleoSpin Extract kit (Macherey Nagel)

and treated with T4 DNA polymerase in the presence of 2.5 mM

of dGTP for 30 minutes at 22uC before inactivating the enzyme

(20 minutes at 75uC).

The CA3427 cloning was performed as follows. A hybridization

reaction was carried out by mixing 0.01 pmol of pSF-04 and

0.02 pmol of the insert in a reaction volume of 3 ml, followed by a

5 minutes incubation at 22uC and the subsequent addition of 1 ml of

25 mM EDTA. After a second incubation of 5 minutes at 22uC, the

resulting product was used to transform E. coli DH5a. Transfor-

mants were selected on LB plates containing 100 mg/ml ampicillin,

and positive colonies were isolated. This cloning procedure allowed

the addition of a (His)6 tag followed by the GHHHQL sequence to

the N-terminal of the CA3427 gene product and of a C-terminal

QLDGDLEAA linker to the GFP protein.

An expression screen was then performed using our standard

procedure [11]. The GFP reporter was used to quantify (and

determine the optimal condition for) the soluble expression of the

CA3427 protein through fluorescence measurements [12]. The

subsequent removal of the GFP-encoding gene was done by NotI

digestion followed by the circularization of the plasmid.

The plasmid born CA3427 gene was over-expressed in E. coli

BL21 in 1L flasks containing TB medium over one night at 17uC
after induction with IPTG (500 mM) at OD600 nm = 0.5. The

selenomethionine-substituted protein was produced using the

appropriate protocol to inhibit methionine synthesis in the

presence of selenomethionine and M9 minimal medium [13].

After centrifugation, the pellet was resuspended in buffer A

(50 mM NaH2PO4, 300 mM NaCl pH 8.0) with 5% glycerol and

0.1% Triton X-100 then sonicated and centrifuged again.

The cleared lysate was applied to a 5 ml HiTrap Chelating

Column (GE Healthcare) charged with Ni2+ and equilibrated with

buffer A. The column was washed with 10 column volumes of

buffer A, 10 column volumes of buffer A containing 25 mM

Imidazole and 5 column volumes of buffer A containing 50 mM

Imidazole at a flow rate of 1 ml.min21. Elution was performed

with a linear gradient over 7 column volumes from 50 mM to

500 mM Imidazole. The fractions corresponding to the elution of

CA3427 with 150–200 mM Imidazole were run on a desalting

column (Fast Desalting Column HR 10/10, Pharmacia) and we

controlled the recombinant protein sequence by mass spectroscopy

and N-terminal Edman sequencing. After purification, the

fractions contained at least 98% pure protein in 10 mM Tris

buffer at pH 7. Upon isoelectric focusing chromatography, the

recombinant CA3427 protein showed a PI<5. The analysis by

dynamic light scattering of the purified recombinant CA3427

protein indicated a monodisperse solution with a gyration radius of

<2.5 nm, compatible with a monomer.

Crystallization
The C. albicans CA3427 recombinant protein was concentrated

to 18.5 g/L in 10 mM MOPS buffer at pH 7.5 using a centrifugal

filter device (Ultrafree Biomax 10K, Millipore, Bedford MA,

USA). The screening for crystallization conditions was performed

using a standard strategy [10].

The best crystals were obtained using the hanging drop vapor

diffusion method with a 1 ml reservoir. Crystallization droplets

were made of 0.5 ml of protein mixed with 0.5 ml of the reservoir

solution made of 21% PEG8000, 0.2 M Calcium Acetate, 0.1 M

Tris, 30% Glycerol at a pH of 7.0 (structure 1) and 13%

PEG8000, 0.2 M Calcium Acetate, 0.1 M Tris, 10% Glycerol at a

pH of 7.0 (structure 2). Crystals appeared within a few days.

To explore the CA3427 specificity, we performed co-crystalli-

zation experiments with a variety of ligands at a concentration of

1 mM (pyridoxal phosphate, histidine, lysine, arginine, Glutamine,

Leucine, Isoleucine). None of them resulted in a liganded structure

with extra electron density in the CA3427 binding site.

Data collection
Crystals of the CA3427 protein were mounted in a Hampton

Research 0.2 mm3 loop, flash frozen to 100K in a cold nitrogen gas

stream and subjected to X-rays. The two datasets were collected on

a MarCCD (165 mm) camera at the European Synchrotron

Radiation Facility (ESRF) on the BM30A-FIP beamline.

The first C. albicans CA3427 structure (PDB: 2X7P) was

determined using the MAD method based on a two-wavelenght

data set (Table 1) obtained with a selenomethionine-substituted

protein crystal. The crystals belong to the orthorhombic space

group P212121 with unit cell parameters a = 42.588 Å,

b = 66.849 Å, c = 113.990 Å, a= b= c= 90.

The second dataset (PDB: 2X7Q) was collected at a wavelength

of 0.975627 Å. The crystals belong to the P212121 space group

with unit cell parameters a = 41.411, b = 65.724, c = 128.203,

a= b= c= 90.

Structures determination and refinement
The diffraction data were indexed with MOSFLM [14] and

scaled with the SCALA [15] software from the CCP4 suite [16].

Phase determination was performed by using the SOLVE

program [17] on two wavelengths corresponding to the peak

(0.979774 Å) and the inflexion point (0.979958 Å) in the 43.437 to

2.341 Å resolution range. A single solution was found with a mean

figure of merit of 0.4 for all the data between 35 and 2.5 Å. The

phases obtained were improved by using autoSHARP [18]. The

electron-density map was used to construct the main chain of the

molecules by using COOT [19]. Refinement was performed using

the Phenix software [20] including manual rebuilding and rigid

body refinement followed by several cycles of positional refinement.

3D-Structure of the Conserved Fungi Protein CA3427

PLoS ONE | www.plosone.org 2 April 2011 | Volume 6 | Issue 4 | e18528



For the second crystal form, we used molecular replacement on

the CaspR server [21] and the MAD-solved three-dimensional

structure of CA3427 as template. The structure was refined using

COOT and iterative steps of manual rebuilding and positional

refinement using Phenix. PROCHECK [22] was used to assess the

quality of the structures. All statistics are presented in Table 1.

The atomic coordinates and structure factors for the crystal

structures of the CA3427 protein from Candida albicans are

available in the RCSB Protein Data Bank under PDB id 2X7P

and 2X7Q.

Phylogenetic analysis
The evolutionary relationship of CA3427 with its homologs was

assessed as follows. We searched for orthologous sequences against

the 82 available reference fungi genomes [23]. All BLAST [24]

searches were performed on the servers hosting the corresponding

fungi genomes with default parameters: BROAD Institute Fungal

Genome Initiative [25], Department of Energy Joint Genome

Institute [26], National Center for Biotechnology Information

[27], Resources for Fungal Comparative Genomics [28] and

Fungal Genome Research website [29]. Only 60 species showed

an unambiguous homolog which were used to build the

phylogenetic tree and compare it with a reference tree. To collect

a larger panel of homologous sequences, the CA3427 sequence

was used as a seed for BLAST search against the Ref-Seq database

(NCBI). Sequences of bacterial origin, all belonging to the

bacteroidetes/Flavobacteria clade, were readily identified as best

matching the CA3427 protein sequence (E value,10220), as well

the two additional unexpected homologs of eukaryotic origin, one

from the choanoflagellate Monosiga brevicollis and the other one

Table 1. X-ray data collection (ESRF) and refinement statistics.

Data collection 2X7P 2X7Q

Beam line BM30A ID29

Method MAD Molecular Replacement

Wavelength (Å) 0.979774 0.979958 0.975627

Space group P 21 21 21 P 21 21 21

Unit cell (Å) a = 42.588 b = 66.849 c = 113.990 a= 90 b= 90 c= 90 a = 41.411 b = 65.724 c = 128.203 a= 90 b= 90
c= 90

Resolution range (Å) 43.337 to 2.341 43.337 to 2.341 46.127 to 2.0

(highest resolution shell) (2.62 to 2.51) (2.47o 2.34) (2.11 to 2.0)

Observations 61514 (1615) 76662 (4193) 147779 (16688)

Unique reflections 10802 (534) 13379 (1175) 17895 (2314)

Multiplicity1 5.5 (2.4) 5.5 (3.0) 8.0 (6.8)

Completeness1 98.8 (89.6) 99.1 (94.4) 76.7 (72.6)

,I/sI.1,2 7.6 (3.9) 4.1 (3.0) 6.5 (2.7)

Rsym (%)1,3 6 (16.5) 7 (22.7) 9.6 (26.5)

Refinement

Rcryst (%)4 20.9 21.8

Rfree (%) 25.6 23.6

Dbond (Å) 0.001 0.002

Dangle (u) 0.394 0.478

Nu Protein atoms 2463 2466

Nu water 140 220

Nu Heterogen atoms 46 8

Average B factor (Å2)

All atoms 22.9 14.3

Protein main chain 22.2 13.7

Water 26 18.1

Ligand 28 18.8

Ramachandran plot (%)

Most favored 261 258

Allowed 18 21

Generously allowed 0 0

Disallowed regions 1 1

1values in parentheses are for the highest resolution shell.
2,I/s I., is the mean signal to noise ratio, where I is the integrated intensity of a measured reflection and s is the estimated error in the measurement.
3Rsym~

P
h

P
i Ih,ij {SIhTj=

P
h

P
i Ih,ij , where I is the integrated intensity of reflection h having i observations and SIhT is the mean recorded intensity of reflection h

over multiple recording.
4Rcryst =

P
Fo {j jFck k=

P
Foj j, where Fo are observed and Fc calculated structure factor amplitudes. Rfree is calculated from a randomly chosen 9.9% of reflections.

doi:10.1371/journal.pone.0018528.t001
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from the placozoan Trichoplax adhaerens. All those sequences turned

out to respect the residue conservation previously identified for the

fungal CA3427 homologs strengthening the definition of a new

periplasmic binding protein (PBP)-like subfamily. We then selected

15 non redundant representatives of the fungi that were retained

for a detailed phylogenetic analysis together with 9 bacterial

sequences as well as the choanoflagellate and the placozoan

sequences. To identify a suitable outgroup of PBP-related

sequences for rooting purpose, we selected more divergent, yet

highly significant (E value,1026), bacterial homolog sequences

from a cyanobacterium, a firmicute, a beta and an alpha

proteobacterium, none of them sharing the new subfamily

signature. To optimize the multiple alignment, proteins were

truncated at the domain boundaries of the CA3427 sequence. This

dataset was used to study the evolutionary relationship within this

new PBP-like subfamily using the phylogeny.fr web server [30].

Details of the parameter used for the computation are provided in

the figures legends.

Results and Discussion

Overall structure of CA3427
CA3427 is an a/b protein with two domains organized into a

C-clamp shape (Fig. 1A–B). Domain I, encompassing residues 1 to

81 and 190 to 299, is composed of a 5 stranded b-sheet (b2 b1 b3

b10 b4) with b10 anti-parallel to the others, surrounded by 10

helices (a1 to a4 and a8 to a13). The smaller domain II,

encompassing residues 88 to 183, is also arranged in a 5 stranded

b-sheet (b7 b6 b8 b5 b9) with b9 anti-parallel to the others,

surrounded by 3 a-helices (a5 a6 a7). The two domains delimit a

large groove and are linked by a hinge region (residues 82–87 and

184–189).

Comparison of the two CA3427 structures
The two crystal forms correspond to distinct conformations of

the CA3427 protein with a root mean square deviation (RMSD) of

1.55 Å based on a-carbons superimposition of the overall

structures. Most of the RMSD value results from a change in

the relative position of the two domains rather than from local

rearrangements (Fig. 1C, see Movie S1 for an animated view).

This is well demonstrated by measuring the distances between

three a-carbons delimiting the groove: E40, S140 and D236. The

distances separating E40 from S140 varies from 12.44 Å to 8.41 Å

between the two structures, and from 20.93 Å to 18.33 Å for the

distance between D236 and S140.

To determine the motion best describing the transition between

the two crystal structures, we performed a normal mode analysis

on the El Némo server [31] using the two structures. The C-

terminal tag was truncated in order to avoid irrelevant motions.

Normal modes were computed on one structure and for each

mode, we computed the RMSD of each model fitted onto the

alternative structure. The first 6 modes corresponding to self

rotations and translations applied to the whole system, were not

taken into account further. The lowest RMSD value (1.029) was

found to correspond to normal mode number 7, exhibiting a small

torsion and a closure of the two domains. It clearly corresponds to

a clamp motion, also known as a ‘‘Venus flytrap’’ motion, folding

the two domains onto each other using the flexibility of the hinge

region [32].

Analysis of the CA3427 putative binding site
The two CA3427 structures exhibit extra electron density within

the groove between the two domains, suggesting the localization of

a ligand binding site. One region of extra density is common to

both structure, and can be interpreted as a glycerol molecule

(present in the crystallization medium). The other one, only

showing in the open conformation, was interpreted as acetates, a

PEG fragment (also present in the crystallization medium) and a

carbon dioxide molecule. Although these molecules present in the

crystallization medium are probably not the functional CA3427

ligands, we used them to identify the putative binding site

consisting of the residues less than 5 Å apart from the co-

Figure 1. CA3427 structures. A) 2x7p is represented with alpha helices in red and beta-sheet in yellow. Secondary structures are numbered along
the protein sequence. Carbon dioxide, glycerol and PEG molecules are in ball and sticks with green carbon and red oxygen atoms. 2 Water molecules
are represented as blue spheres. B) Surface representation of the open conformation, 2x7p. The strictly conserved residues in the groove are colored
in red and residues with conserved properties are marked in yellow. Carbon dioxide, glycerol and carboxyl molecules are in ball and sticks with green
carbon and red oxygen atoms. Two water molecules are represented as blue spheres. C) The two conformations (2x7q: cyan, 2x7p: red) are
superposed on domain I (bottom). The venus flytrap motion is illustrated by a black arrow (see Movie S1 for an animated view).
doi:10.1371/journal.pone.0018528.g001

3D-Structure of the Conserved Fungi Protein CA3427

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e18528



crystallized molecules (Fig. 2A, Tables 2 and 3). Except for a small

cluster of strictly conserved polar residues (Glu 11, His 12, Glu 164

and Thr 167) located at the PEG/Glycerol interface, this putative

binding site is mainly hydrophobic (Fig. 2A). If we take into

account the water molecules (2048, 2049) filling the remaining

space of the groove between the two domains, the hypothetical

binding site can be extended to include 4 supplementary

conserved hydrophobic residues (G114, V119, L273, L279). This

putative binding site could accommodate extended hydrophobic

molecules such as long acyl chains (.C18) or carotenoids (Fig. 2B).

We noticed that the position of the conserved histidine (H11),

glutamate (E164) and threonine (T167) residues are not consistent

with the usual geometry of catalytic triads in hydrolases. The

precise function of the CA3427 protein thus remains to be

determined.

The differences between the two CA3427 crystal forms were

also analyzed in greater detail by comparing each domain

separately. Superimposition of the domain I (RMSD = 0.53 Å)

revealed only one major side chain reorganization within the

predicted binding site. When the PEG/acetates molecules are

present in the structure, the E11-Oe2 forms a hydrogen bond with

Y237-OH (distance 2.7 Å). Upon pointing outwards from the

Figure 2. CA3427 putative binding site. A) Stereo view of the binding site with non polar residues and tyrosine in yellow, polar residues in light
blue, acidic residues in red and proline in green sticks. Carbon dioxide, glycerol and PEG molecules are in ball and sticks with green carbon and red
oxygen atoms. Two water molecules are represented as blue spheres. (B) Surface representation of the CA3427 structure with a modeled C18 acyl
chain (blue ball and stick) fitted in the Fo-Fc electron density map (green) computed on the open conformation structure (1.5s). The conserved
residues in the predicted binding site are colored in red.
doi:10.1371/journal.pone.0018528.g002
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binding pocket, it clears the space needed to accommodate the ligand.

In the second structure, the above distance becomes 4.5 Å and the

E11 side chain now points towards the inner part of the cavity. The

domain II superimposition of the two structures (RMSD = 0.51 Å)

again revealed a single noticeable difference within the binding site.

The R112 side chain points towards the inside of the groove in the

unliganded structure and outwards in the liganded one. Finally, in the

closed conformation (i.e. without PEG/acetates molecules), D236-

Od1 (Domain I) and K170-Nf (Domain II) are linked by a salt bridge

(distance 3 Å) that is disrupted in the presence of ligand (distance

4.8 Å), thus opening the ‘‘Venus flytrap’’.

CA3427 exhibits a PBP fold
In search for hints about the biochemical function of the CA3427

protein, we compared the newly determined structures against those

in the Protein Data Bank [33] using Dali [34,35] and VAST [36,37]

through their online servers. The best matching structural homologs

all correspond to Periplasmic Binding Proteins (PBP) with RMSD

between 2.9 and 4 Å and very low sequence similarity (lower than

16% identical residues) with CA3427 (Table 4). All these matching

Table 2. Putative ligand-protein interactions.

LI LN AL RI RN D LI LN AL RI RN D

309 CA CA - 97 ASP 3.29 315 ACY O - 44 ARG 2.94

310 CL CL - 71 GLY 2.86 315 ACY OXT - 37 LYS 3.48

- 73 GLU 3.84 - 38 VAL 3.83

311 GOL C3 - 154 GLY 3.24 - 40 GLU 2.79

311 GOL O3 - 154 GLY 2.83 - 44 ARG 2.83

312 GOL C1 - 13 PHE 3.36 316 ACY C - 60 LEU 3.94

- 164 GLU 3.57 - 62 GLU 3.92

- 166 PHE 3.89 - 116 GLY 3.48

- 245 TRP 3.52 316 ACY CH3 - 63 ALA 3.77

312 GOL C2 - 87 LEU 3.63 316 ACY O - 116 GLY 3.16

- 164 GLU 3.37 316 ACY OXT - 60 LEU 3.65

- 166 PHE 3.9 - 62 GLU 2.78

312 GOL C3 - 85 PRO 3.34 - 116 GLY 3.29

- 86 LEU 3.97 317 ACY C - 252 ASN 3.82

- 87 LEU 3.35 317 ACY O - 252 ASN 2.93

312 GOL O1 - 12 HIS 3.64 - 254 ARG 3.6

- 13 PHE 3.73 317 ACY OXT - 259 PRO 3.75

- 164 GLU 2.69 318 ACY C - 52 ASN 3.35

- 166 PHE 3.18 318 ACY C - 197 ASP 2.98

- 245 TRP 3.17 318 ACY CH3 - 197 ASP 3.92

312 GOL O2 - 86 LEU 3.31 318 ACY O - 52 ASN 2.66

- 87 LEU 2.84 - 197 ASP 2.57

- 164 GLU 2.71 318 ACY OXT - 50 ASN 3.43

312 GOL O3 - 85 PRO 3.87 - 52 ASN 3.3

- 248 THR 2.74 - 197 ASP 3.31

313 AE3 C1 - 42 SER 3.53 2592 CO2 C - 88 TRP 3.61

- 60 LEU 3.63 - 163 TRP 3.77

313 AE3 C2 - 9 ILE 3.71 2592 CO2 O1 - 88 TRP 3.99

- 41 GLY 3.74 - 163 TRP 3.76

- 42 SER 3.41 - 164 GLU 3.31

- 60 LEU 3.83 2592 CO2 O2 - 88 TRP 3.63

313 AE3 C3 - 9 ILE 3.49 - 163 TRP 3.88

- 190 TRP 3.53

313 AE3 C4 - 11 GLU 3.7 1307 GOL C1 - 13 PHE 3.85

- 190 TRP 3.74 - 87 LEU 3.97

313 AE3 C5 - 190 TRP 3.37 - 164 GLU 3.63

313 AE3 C6 - 12 HIS 3.85 - 245 TRP 3.95

- 13 PHE 3.88 1307 GOL C2 - 85 PRO 3.49

- 164 GLU 3.72 - 87 LEU 3.95

313 AE3 O2 - 60 LEU 3.98 - 248 THR 3.75

313 AE3 O4 - 11 GLU 3.83 1307 GOL C3 - 85 PRO 3.73

- 164 GLU 3.08 - 87 LEU 3.44

- 167 THR 3.44 - 248 THR 3.64

314 ACY C - 83 LYS 3.92 1307 GOL O1 - 86 LEU 3.95

- 264 THR 3.92 - 87 LEU 2.87

314 ACY CH3 - 85 PRO 3.79 - 164 GLU 3.11

314 ACY O - 186 PRO 3.67 1307 GOL O2 - 248 THR 2.89

- 187 TRP 3.65 - 249 VAL 3.86

- 188 SER 3.79 1307 GOL O3 - 85 PRO 3.25

- 264 THR 3.23 - 184 TYR 3.67

LI LN AL RI RN D LI LN AL RI RN D

314 ACY OXT - 83 LYS 3.44 - 248 THR 3.76

315 ACY C - 37 LYS 3.58 1308 CA CA - 52 ASN 2.9

- 40 GLU 3.93 - 197 ASP 3.05

- 44 ARG 3.33 1309 CA CA - 71 GLY 2.91

315 ACY CH3 - 37 LYS 3.29 - 73 GLU 3

List of the shortest interatomic distances (,4 Å) between each of the ligands
and the putative binding site amino acids. The distances were computed using
NCONT (CCP4). Distance values are in bold for 2X7P, for 2X7Q otherwise. LI:
ligand residue number, LN: ligand residue name, AL: ligand atom name, RI:
protein residue number, RN: protein residue name, D: shortest interatomic
distance between the ligand and the protein residue.
doi:10.1371/journal.pone.0018528.t002

Table 2. Cont.

Table 3. Average B factor values for the interpreted ligands.

PDB LIGAND B factor* Occupancy

2X7P CA 309 57.1 1

CL 310 55.9 1

GLYCEROL 311 32.4 1

GLYCEROL 312 20.7 1

PEG 313 28.1 1

ACETYL 314 28.3 1

ACETYL 315 30.9 1

ACETYL 316 24.9 1

ACETYL 317 24.3 1

ACETYL 318 24.6 1

CO2 2592 22.8 1

2X7Q GLYCEROL 307 14.5 1

CA 308 20.5 1

CA 309 24.2 1

*computed using CCP4.
doi:10.1371/journal.pone.0018528.t003
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proteins are of bacterial origin and members of the class II PBP-like

fold family: two similar intertwined domains of 3 layers (a/b/a)

each. The b part is a duplication of mixed beta-sheet of 5 strands

ordered as 2-1-3-5-4 with strand 5 antiparallel to the others. This

PBP structural module, associated with a large variety of functions

[38], is found in prokaryotic and eukaryotic protein families, as well

as in the soluble part of the eukaryotic ionotropic glutamate

receptors [39]. Due to their functional versatility, PBP have been

considered promising protein engineering targets for biotechnology

and drug delivery applications [38,39,40].

The multiple sequence alignment of fungal proteins homologous

to CA3427 highlights the conservation of the residues delimiting

the groove (Fig. 3) further supporting its functional relevance.

Moreover, the known binding sites of other PBP proteins are

Table 4. Closest structural homologs of 2X7P and 2X7Q (Dali server).

PDB ID Z-score RMSD (Å) LALI NRES ID (%) PDB DESCRIPTION

2X26 25.4/24.7 3.3/3.6 283/280 308 12/12 Periplasmic aliphatic sulphonates-binding

3IX1 24.8/26 3.1/2.8 276/279 301 16/15 N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine

3E4R 23.3/25.5 3/3 274/277 291 14/13 Nitrate transport protein

2I48 21.9/23.1 3.3/3.4 286/286 399 10/10 Bicarbonate transporter

Left and right values correspond to 2X7P and 2X7Q, respectively. RMSD (root mean square deviation): average distance between the Ca backbone atoms of the
superimposed proteins. LALI: total number of aligned residues. NRES: length of the homologous protein sequence. ID: percentage of identical residues within the
optimal alignment.
doi:10.1371/journal.pone.0018528.t004

Figure 3. Multiple alignment of 29 selected sequences used for phylogeny. All fungi sequence names are in black except C. albicans (in red)
D. hanenii and Y. lipolitica (in green). Other eukaryote sequence names are in magenta, bacterial sequence names are in light blue for Flavobacteria/
Bacteroidetes and dark blue for the last 4 bacteria (outgroup). All the sequences are aligned together in one shot but similarity at each position is
computed separately for the outgroup and the other sequences except for position 41 and 163 where strict conservation (white letters with red
background) is observed. Red or orange letters in the alignment represent similarity (computed using a Risler matrix with a 0.9 threshold in ESPript)
within each group. The secondary structure of CA3427 computed with DSSP, is also represented above the alignment. Purple triangles represent the
binding site defined in the CA3427 structure. This alignment shows clearly the conservation of the binding site among different eukaryotes and
Flavobacteria/Bacteroidetes but not in the outgroup.
doi:10.1371/journal.pone.0018528.g003
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always located at the interface between the two domains as seen in

the CA3427 structure. The corresponding conserved residues

(Fig. 2A) thus define a new subfamily of PBP-related proteins,

likely sharing a common ligand and a related function.

It hence appears that CA3427 was wrongly annotated

(UNIPROT: Q59X88) as involved in the synthesis of thiamine,

on the basis of its weak homology with the Saccharomyces cerevisiae

ThI13 protein (UNIPROT: Q07748) (,20% identity over the full

sequences length, blastp E value 0.29), since none of the binding

site residues are conserved between the two sequences. In fact, the

THI13 orthologue in Candida albicans corresponds to the Q5A3Y5

protein with which it shares 75% identity over 338 residues (E

value: 102156). The function of the new PBP-like family defined by

CA3427 remains to be determined.

Figure 4. Phylogeny. A) Phylogeny of the CA3427 homologs in Fungi. The reference list of fungal species is from [23]. Multiple strains of the
same species have been removed for clarity. The CA3427 sequence (in red in all trees) is from C. albicans strain SC5314. This unrooted tree was
computed on the Phylogeny.fr web server [30], using the default option of the ‘‘advanced mode’’ w/o Gblocks. The final alignment includes 209
ungapped positions. Branch support estimates are indicated in red, and branches have been collapsed for values ,50%. CA3427 homologs were
found in all species except for saccharomycetales (in green), and cluster according to [23]. No species from the WGD clade (e.g. Saccharomyces
cerevisiae) appear to possess a CA3427-like protein. B) Evolutionary relationships between the bacterial PBPs and their eukaryotic
CA3427-like homolog. The phylogenetic analysis includes representative sequences from Cytophaga-Flavobacteria (light blue), Fungi (black and
green) (as in Fig. 2), other eukaryotes (in magenta), and more remote bacterial sequences defining and outgroup (dark blue). This tree was computed
on Phylogeny.fr web server [30], using the default option of the ‘‘advanced mode’’ without Gblocks. Branch support estimates are indicated in red,
and branches have been collapsed for values ,50%. The topology of this tree is consistent with the hypothesis that the original CA3427-like PBP was
transferred into the eukaryotic gene pool from a cytophagia/flavobacteria into an ancestral opisthokont.
doi:10.1371/journal.pone.0018528.g004
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Interestingly, this new protein family is also well represented in

flavobacteria and other members of the Cytophaga-Flexibacter-

Bacteroides phylum of eubacteria to the exclusion of other

prokaryotes. None of these proteins were functionally character-

ized. The binding site of CA3427 is strongly hydrophobic and can

accommodate acyl chains much longer than C18 (Fig. 2B). It

could thus participate in the detection, transport and/or

processing of high molecular weight lipids (or carotenoids) in

flavobacteria and fungi. Members of the CA3427 family are also

present in two ancestral eukaryotes, the choanoflagellate Monosiga

brevicollis and the placozoan Trichoplax adhaerens. These sequences

share more than 30% identical residues with the CA3427 protein.

In order to investigate on the evolutionary origin of the C3427

protein family, we performed phylogenetic reconstructions.

Figure 4A shows that the CA3427 phylogeny precisely follows

the reference fungi classification [23]. A single inconsistency is the

absence of a CA3427 homolog in Saccharomyces cerevisiae. In fact, all

known species from the WGD (Whole Genome Duplication)

saccharomycetales clade lack a CA3427 homolog, strongly

suggesting that the loss of this gene coincided with the separation

of the WGD clade from the CTG clade (the species that translate

CTG as Serine instead of leucine) of saccharomycetales (e.g.

Debaryomyces). In a more comprehensive phylogenetic recon-

struction we included all members of the CA3427 family and, as

an outgroup, representatives of bacterial PBP sequences not

exhibiting the CA3427 binding site. The resulting tree (Figure 4B)

strongly suggests that the eukaryotic and flavobacteria members of

the CA3427 family originated from a common ancestral gene.

The presence of CA3427 homologs in the Bacteroides phylum

of eubacteria strongly suggest that the PBP-like CA3427 protein

has a very ancient bacterial origin. The divergence between the

mainstream PBPs and the CA3427-like subfamily probably

occurred early on the branch leading to the Bacteroidetes, after

its separation from the branch leading to the other main groups of

eubacteria (i.e. Proteobacteria, Planctomyces, Firmicutes).

Finally, the surprising presence of a CA3427 homolog in the

genome of the choanoflagellate Monosiga brevicollis as well as in the

genome of placozoan Trichoplax adhaerens, the most basal

invertebrate form, supports a scenario of horizontal transfer by

which all eukaryotic CA3427 homologs originated from the above

Bacteroidetes ancestor. Interestingly, Bacteroidetes species such as

Algoriphagus are commonly found in association with modern

choanoflagellates [41], thus providing opportunities for gene

exchanges. The shared presence of CA3427 homologs in most

fungi, the only sequenced choanoflagellate (closest unicellular

relative of animals) and the only known placozoan (the closest

multicellular relative of animals) strongly suggests that the transfer

of the bacterial gene to an ancestral eukaryote occurred at the very

basis of the opisthokont lineage, before the radiation of fungi [42]

(Fig. 5). This gene was later lost in the branch leading to modern

animals. Unexpectedly, the CA3427-like family of PBP thus

provides a new marker to probe the early scheme of eukaryotic

evolution [42].

We solved the 3-D structure of the Candida albicans CA3427

gene product, selected on the basis of its conservation among

pathogenic fungi, and thus a potential target for new antifungal

drugs. The structure of the protein unambiguously revealed a PBP

fold, despite a low level of sequence similarity with previously

known members of this family. In addition, the 3D structures

allowed the precise delineation of a binding site, defined by highly

conserved residues in the vicinity of co-crystallized ligands. The

conformational change of the CA3427 protein upon ligand

binding illustrates the venus fly trap motion already documented

in other PBP structures [38,39,40,43]. A phylogenetic analysis of

the CA3427 protein family indicates that it originated in

Bacteroidetes before being transferred to an ancestral eukaryote

prior to the divergence between the fungi and animal lineages.

The intriguing (albeit remote) possibility that the acquisition of this

gene might be linked to the evolution towards multicellularity is a

strong incentive for further functional studies. Furthermore, the

conservation of this family of proteins in all pathogenic fungi

coupled to its absence in animals makes it a good target for the

design of new drugs against candidiasis and other diseases caused

by fungi.

Supporting Information

Movie S1 Animated gif for the Morphing of the CA3427
venus flytrap motion. The two structures were submitted to

the Morph Server [44], the pictures were generated by pymol and

concatenated to an animated gif with the ImageMagick convert

function. The movie illustrates the venus flytrap motion of 2x7q

leading to the 2x7p conformation. The strictly conserved residues

in the groove are colored in red and residues with conserved

properties are marked in yellow. Ligands are modeled as they

appear in the opened conformation (2x7p). Carbon dioxide,

glycerol and carboxyl molecules are in ball and sticks represen-

tation with green carbon and red oxygen atoms. Two water

molecules are represented as blue spheres.

(GIF)
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Figure 5. Parsimonious evolutionary scenario for the presence
of CA3427-homologs in modern eukaryotes. A horizontal transfer
(HGT) is proposed to have occurred from a bacteroidetes to an ancestral
unicellular heterotrophic eukaryote prior to the divergence of the main
branches leading to fungi and animalia. The branching of the various
phyla is adapted from [42].
doi:10.1371/journal.pone.0018528.g005
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