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Abstract
We present a computational model for trans-vascular oxygen transport in synthetic tumor

and host tissue blood vessel networks, aiming at qualitatively explaining published data of

optical mammography, which were obtained from 87 breast cancer patients. The data gen-

erally show average hemoglobin concentration to be higher in tumors versus host tissue

whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-

weighted blood oxygenation) can be above or below normal. Starting from a synthetic

arterio-venous initial network the tumor vasculature was generated by processes involving

cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood

flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation

were carried out for ninety tumor and associated normal vessel networks starting from vari-

ous assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the

extra-vascular partial oxygen pressure distribution can be related to various tumor compart-

ments characterized by varying capillary densities and blood flow characteristics. The

reported higher average hemoglobin concentration of tumors is explained by growth and

dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consump-

tion in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are

above normal. Such tumors are likely associated with high tumor blood flow caused by

high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding

oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be

achieved by reducing tumor vessel radii during growth by a randomly selected factor, simu-

lating compression caused by intra-tumoral solid stress due to proliferation of cells and

extracellular matrix. Since compression of blood vessels will impede chemotherapy we con-

clude that tumors with oxy- to total hemoglobin concentration below normal are less likely to

respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemo-

therapy of locally advanced breast tumors.
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Introduction
Adequate supply of tissue with oxygen and nutrients critically depends on the structure and
function of its vasculature. For tumors to grow beyond 2mm in size, new vasculature must
develop, i.e. angiogenesis must occur [1]. The vasculature of solid tumors, however, is known
to differ distinctly from that of surrounding normal tissue. Whereas vasculature in normal tis-
sue is arranged in a hierarchy of arteries, arterioles, capillaries, venules and veins and grows
under tight control of inter-capillary distances, tumor vasculature develops in a chaotic manner
without such control, leading to spatial vascular heterogeneity. In solid tumors necrotic regions
and regions of low microvessel density (MVD) may occur, whereas tumor blood vessels are
more abundant at the tumor-host interface [2]. Tumor vessels are known to be immature, frag-
ile, tortuous, dilated, to form (large diameter) arterio-venous shunts and often it is even diffi-
cult to distinguish arterioles and venules, i.e. the classification of tumor vessels as arterioles,
capillaries and venules is no longer adequate [2–8]. In addition, tumor vessels exhibit high per-
meability to macromolecules [3]. The structurally abnormal tumor vasculature results in spa-
tially and temporally heterogeneous blood flow, affecting tissue oxygenation (acute or
perfusion-limited hypoxia). From intravital dorsal window microscopy on tumor models it is
known that blood flow through tumor capillaries is frequently sluggish and at times may even
be stationary and reverse direction. It follows that blood flow through tumors may not follow a
constant unidirectional path. In addition, red blood cell (RBC) flux varies greatly among tumor
vessels, many tumor vessels do not carry RBCs but contain plasma only [2–4, 6, 7]. Further-
more, tissue solid pressure, generated by proliferating cancer cells and modifications of the
extracellular matrix of tumors, may compress tumor blood vessels thus reducing or impairing
blood flow [9–11]. Tumor cells separated from nearby capillaries beyond the diffusion limit of
oxygen suffer from chronic (diffusion-limited) hypoxia. Hypoxic tumor cells are known to be
resistant to ionizing radiation, since oxygen is needed to stabilize radiation-induced DNA
defects and, in addition, are considered to be resistant to some anticancer drugs. Therefore,
tumor hypoxia is associated with poor prognosis, because it causes resistance to standard thera-
pies and promotes more aggressive phenotypes [12, 13].

Because of their limited spatial resolution present-day non-invasive imaging techniques
used in clinical practice do not allow to visualize tumor vasculature, blood flow and distribu-
tions of oxygen and nutrients at the capillary and cellular level, despite the diagnostic relevance,
e.g. ofMVD and the presence of hypoxic tumor cells. Therefore, computational modeling is an
appropriate tool to analyze the interrelation of clinically amenable characteristics of tumor vas-
culature and oxygenation.

Tissue oxygenation has been measured in human tumors by various methods such as nee-
dle electrodes [14]. In this way oxygen partial pressures were found to be highly heteroge-
neous in tumors with median oxygen pressures below that of the host tissue. More
importantly, tumors often exhibit hypoxic regions with oxygen partial pressures below 10
mmHg. Today, non-invasive positron emission tomography (PET) is employed clinically to
image oxygenation status of tumor tissue [15]. Complementary to tissue oxygenation mea-
surements magnetic resonance imaging (MRI) [16, 17] and tissue optical imaging, such as
optical mammography assess (RBC-volume weighted) blood oxygenation of vascular
segments.

Optical mammography [18–20] has been developed over the past one to two decades and a
large body of data on deoxy-,oxy-, and total hemoglobin concentrations cHbD, cHbO and cHb in
normal breast tissue and breast tumors has been collected from many patients [21–24]. Because
of light scattering photon trajectories through the breast are much (about 5 times) longer com-
pared to the geometrical distance between the point of entry and point of exit of the photons,
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resulting in high sensitivity towards absorption. However, spatial resolution is generally poor
and only average hemoglobin concentrations can be deduced. Tissue hemoglobin concentra-
tion cHb equals the sum of hemoglobin mass of each vessel segment taken over the vessel net-
work within a selected tissue volume per unit volume of tissue and approximately reflects
fractional blood volume. The ratio of oxy- to total hemoglobin concentration, called tissue
blood oxygen saturation Y, is the average of RBC-volume-weighted true blood oxygenation
taken over all vessel segments of the tissue volume selected. Tissue blood oxygen saturation
reflects the balance between vascular flux of oxygen that enters the tissue, i.e. oxygen supply,
and oxygen flux from the vascular network into tissue, reflecting oxygen demand. Besides tis-
sue hemoglobin concentration, tissue blood oxygen saturation is thus another parameter char-
acterizing tumor and host vascular networks.

On average tissue hemoglobin concentration cHb of breast tumors was found to be larger
than in host tissue by a factor of 3.5 [22]. This observation can qualitatively be explained by a
larger blood volume in tumors compared to their host tissue. However, tissue blood oxygen sat-
uration in breast tumors was observed by most authors to be both above or below normal [21–
23] whereas some papers reported tissue blood oxygenation in tumors to generally be below
that of their host tissue [25, 26]. Up to now, there were no microscopic theoretical models
available to account for tissue blood oxygenation in tumors allowing to analyze clinical data.
Computational models as the one we present in this paper contain detailed information about
the vasculature as well as the emerging oxygen distributions of tumors and host tissue. By
coarse graining the obtained detailed information and comparing it with low resolution clinical
data, one can infer potential vascular structure in the tumor of patients—with some uncertainty
of course.

Mathematical modeling and numerical simulation of growth of solid tumors has been
actively pursued since many years, for a recent review see e.g. [27]. In this paper 3D host vas-
culature is obtained by applying stochastic vessel network generation algorithms (see S1 of
[28]). During tumor growth, remodeling of the host vasculature occurs involving vessel
cooption, angiogenesis, vessel circumferential growth, vessel regression and collapse, simu-
lated by corresponding stochastic vessel network remodeling processes (see S1 of [28]). In
the present paper we adopted a simplified tumor growth model where a spherical tumor is
expanding at constant rate. Host tissue and tumor are represented as hybrid models consist-
ing of their vascular network surrounded by a homogeneous medium, representing host cells
or tumor cells, respectively. Intravascular and extravascular oxygen transport has been stud-
ied by several authors. Oxygen dissolved in plasma, being in chemical equilibrium with oxy-
gen bound to hemoglobin, extravasates and diffuses in tissue, where it is metabolized.
Oxygenation by isolated vascular tubes has been studied theoretically in detail since the origi-
nally proposed “Krogh”model [29], see e.g. [30]. Also in several works, simplified two-
dimensional tumor tissues, supplied by point-sources of oxygen, were considered, and the
resulting oxygen concentration distributions were analyzed [31–37]. However, these models
require appropriate intravascular O2 concentrations as input parameters. Previously, Gold-
man [38] coupled oxygen in a vascular network and tissue via boundary conditions which
relate the radial transvascular oxygen flux at each point on the vessel surface to the PO2 gra-
dient at the respective tissue location. For further reading focusing on skeletal muscle oxy-
genation, see [39] and the Refs. therein. Secomb and coworkers [40–43] used a Green’s
function method for solving the diffusion equation in tissue, treating vessels as distributions
of oxygen sources and tissue represented as a distribution of oxygen sinks. We followed the
computational method of Beard [44], discretizing the diffusion equation for oxygen by a
finite difference approach with source terms added locally corresponding to the surface area
of nearby vessels. Our computational method is sufficiently fast to simulate tissue volumes of
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0.5 cm3. Only stationary solutions are sought, ignoring transient variations of blood flow
through tissue discussed above. For each vascular network generated our model allows us to
calculate various biophysical and metabolic quantities, in particular partial oxygen pressure
distributions in tissue, blood flow (perfusion), true vessel length weighted blood oxygen satu-
ration distribution in the vascular network, tissue hemoglobin concentrations and tissue
blood oxygen saturation, the latter two quantities being dominated by high caliber vessel.
Blood vessels that set themselves apart by their diameter (approx. 100 μm) from the bulk of
other vessels were found in corrosion casts of blood vessels of leiomyomata [45]. Moreover,
in mammary carcinoma vessels of up to 200 μm diameter were observed [46].

Recently it was reported [47] that breast cancer patients who underwent neoadjuvant che-
motherapy before surgery and were not classified as complete responders by immuno-histo-
chemistry at the end of chemotherapy, tended to initially exhibit tumor blood oxygenation
below that of host tissue. On the other hand, patients who were ranked as pathological com-
plete responders exhibited the same tissue blood oxygen saturation on average in tumor and
host tissue. Thus, tissue blood oxygen saturation may have diagnostic value for therapy control
and it is important to understand what causes tissue blood oxygen saturation in tumors to fall
above or below normal.

It is the aim of the present paper to gain information on host and tumor vascular networks
from clinical data on tissue hemoglobin concentration and tissue blood oxygen saturation of
breast tumors and their surrounding host tissue. To this end various synthetic host and tumor
vascular networks were generated and tissue total hemoglobin concentration as well as tissue
blood oxygenation calculated. As expected, tumor total hemoglobin concentration was always
found to be larger than that of host tissue, consistent with clinical data. Within reasonable lim-
its of metabolic rates of oxygen consumption by normal and tumorous breast tissue, simulated
tumor blood oxygen saturation always fell above normal, in contrast to clinical data, indicating
that increased perfusion and hence increased oxygen supply outweighs higher oxygen con-
sumption in tumorous tissue. Tumor blood oxygen saturation was simulated below normal
depending on the degree of vascular compression of (high-caliber) tumor vessels assumed to
be caused by tumor solid stress. Although qualitative agreement with clinical data on tissue
blood oxygenation was achieved, other processes than compression of high-caliber tumor ves-
sels may lead to perfusion impairment in at least parts of a tumor and hence tumor blood oxy-
gen saturation to drop below normal.

The main part of this paper is organized as follows: first, we briefly explain our tumor
growth model including the generation of host and tumor vasculature. Then we discuss the
mathematical models used to account for blood flow, intravascular and extravascular oxygen
transport, which are well known [30, 40] but reviewed here for clearness and readability. Fur-
ther below we describe our method to solve the obtained coupled equations describing intra-
and extravascular PO2 distributions efficiently. Section ‘Theoretical models’ concludes with a
description of three model variants, the results of which are presented in the following section
‘Results and Discussion’. There we initially provide examples of simulated PO2 and hematocrit
distributions of host and tumor tissue, illustrating compartmentalization in tumors. Next we
validate our model by comparing simulation results on host und tumorous tissue with biophys-
ical and biochemical data available in the literature. Then we focus on clinical data on tissue
hemoglobin concentration and tissue blood oxygenation of breast tumors, determining which
simulation model variant provides qualitative agreement. Additionally, we correlate various
simulated quantities of host and tumor that are not easily amenable to clinical measurements.
Finally we discuss the limitations of our model and summarize our results in the conclusion
section.
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Theoretical models

Overview of tumor growth model for hemodynamic and oxygen transport
simulations
Ideally, one would start from digitized 3D blood vessel networks of each breast cancer patient
to simulate hemodynamic properties, as well as intravascular and extravascular oxygen trans-
port in tumor and surrounding host tissue. Although 3D vascular networks of tumors grown
in animal tumor models can be generated from μ-CT data [48, 49], such techniques are not
applicable to humans. Therefore, 3D vascular trees of tumors and surrounding host tissue are
algorithmically constructed, following methods developed by us previously and applied to
model vasculature in melanomas and gliomas [28, 50–54]. The model described in detail in
Ref. [28] represents an extension of the model used in [55] which is based on wall shear stress
guided random growth of interdigitating vascular trees on a lattice. In contrast to previous
work, the model of the tumor spheroid employed in this paper is very simplified.

Fig 1 illustrates the theoretical model of tumor growth used in the present paper. Starting
from synthetic host vasculature, a small spherical nucleus (Rtum(t = 0) = 250 μm) is inserted at
the beginning (t = 0) of the growth process into host tissue. The tumor spherically expands and
its radius is assumed to grow linearly in time with speed vtum = 2 μm/h up to a preselected time
tend, taken to be 600 h. In real tumors, competition for space and nutrients causes confinement
of cell proliferation to a few cell layers behind the invasive edge and therefore eventually leads
to a linear expansion rate. The tumor tissue is assumed homogeneous. We surround the tumor
with a concentric shell of thickness Rg, within which angiogenesis, i.e. sprouting of new vessels
is activated. The distance Rg represents the diffusion length of vascular endothelial growth fac-
tors (VEGFs), i.e. the distance that growth factors diffuse, before their concentration drops to

Fig 1. Model Overview. Left hand side: the tumor spheroid is represented by a homogeneous sphere, the radius of which
Rtum grows at constant speed vtum and is surrounded by a concentric shell of thickness Rg, the diffusion length of vascular
endothelial growth factors. Vascular remodeling is thought to take place within the tumor and surrounding concentric shell.
Right hand side: block diagram outlining basic simulation procedure. The modification of the present vasculature is
implemented by stochastically applying the processed depicted in Fig 2. At the end of each time step, blood flow is
recomputed, time t and tumor radius Rtum incremented. The iteration steps are repeated until the final simulated time tend is
reached.

doi:10.1371/journal.pone.0161267.g001
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insignificant levels due to degradation and binding. Vascular remodeling takes place during
each time step delta t = 1 h, corresponding to the following biological processes: sprout initia-
tion, sprout migration, vessel wall degeneration, vessel collapse and regression and vessel dila-
tation due to circumferential vessel growth. These biological processes are implemented as
probabilistic addition (angiogenesis), deletion (collapse) of vessel segments, as well as probabi-
listic and deterministic changes of segment associated variables (e.g. wall thickness or vessel
radius, see below). During each time step, we iterate over lattice sites or vessel segments as
required and perform the local alterations. Since the probability for vessel collapse and regres-
sion depends on wall shear stress, blood flow through host and tumor vasculature is calculated
as Poiseuille flow and updated after each time step. Furthermore, for angiogenesis (sprout initi-
ation, sprout migration) to occur, VEGFs have to be present in tumor tissue. To this end more
advanced growth models, such as the one described in [28], calculate a VEGF concentration
field during each time step. For this purpose the (extravascular) oxygen concentration field is
calculated in tumor tissue and hypoxic tumor cells are taken as sources for VEGF, assuming
the same preset blood oxygen saturation throughout the entire vasculature, however. In the
present work we focus on a realistic oxygen transport model taking the decrease of intravascu-
lar oxygen concentration due to oxygen extravasation into account. In order to reduce model
complexity we assume vascular remodeling to take place within the tumor and surrounding
concentric shell, i.e. assume sufficient VEGF to be within the tumor and its outer shell for
angiogenesis to occur. The considerable simplification of our present tumor growth model is
justified because vascular morphologies obtained in this way are consistent with data from real
tumors [56, 57] and predictions of more detailed tissue models. The simulation growth process
was deliberately stopped at t = 600 h when the tumor diameter had grown to ca. 3mm to mini-
mize boundary effects which would occur if the tumor was allowed to grow to the size of the
simulation box.

By simulating tumor growth and vascular remodeling, a tumor-specific vascular network
emerges at the end (t = tend) of each growth process. Because of the stochastic nature of the
growth processes involved, each simulation yields a different network. Based on the networks
obtained, relative blood volume, tissue perfusion, hematocrit, and tissue hemoglobin concen-
tration cHb are calculated. In addition, using a sophisticated model of oxygenation (see below),
tissue blood oxygen saturation Y = cHbO/cHb and maps of oxygen partial pressure (PO2) were
simulated. Note that the assumed spheroidal tumor region generally differs in its physiology,
e.g. metabolic rate of oxygen consumption, from that of the surrounding host tissue. If not
stated otherwise, results for host tissue refer to the entire (unaltered) network at t = 0.

Artificial blood vessel networks in normal breast tissue. We briefly review the genera-
tion of 3D host vascular networks and refer the reader to the supplemental material S1 of
Ref. [28] for details. Simulations are performed on a cubical domain with lateral length of L = 8
mm. Starting point are arterial and venous root nodes, (endpoints of feeding arterioles and
draining venules) located at boundary sites of the face centered cubic lattice. Structural ele-
ments of different shape (linear, tripod) are added to randomly selected terminal branches of
the vascular trees one at a time. This process is continued until further addition of vessel seg-
ments causes segments to overlap, which is forbidden by definition. In the subsequent stage of
the construction scheme, trees generated in this way are pruned and extended to obtain the
final network. It comprises the following steps. Firstly, nearby open ends at terminal branches
are temporarily connected by vessel segments representing capillaries. Radii of capillaries, of
arterial and venous terminal segments are set to 2.5 μm, 2.5 μm and 3.8 μm, respectively,
whereas radii of parent segments are determined fromMurray’s law, i.e. rac ¼ raa þ rab with rc
being the radius of the parent vessel, ra, rb the radii of the two downstream vessels and α = 3
has been selected. Secondly, blood flow through the temporary network is calculated, including
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shear wall stress of segments. With the capillaries removed additional vessel segments are sto-
chastically attached to or removed from terminal branches with probability based on wall
shear stress, corresponding to wall shear stress guided random growth of interdigitating vascu-
lar trees on a lattice [55]. This process is repeated until the number of capillaries reaches a pla-
teau, i.e. the lattice is filled with a interdigitating trees exhibiting a homogeneous distribution
of capillaries. The resultingMVD is determined by the lattice constant hgen, where hgen = 130
μm has been selected in the present paper.

Variations of host vessel networks among patients of a cohort were introduced by arbitrarily
adopting nine root node geometries, illustrated in Fig 3, differing in location and number of
arterial (venous) inlet (outlet) vessels. Starting from each root node geometry ten host vascular
networks were grown which differed among each other because of the statistical nature of the
growth process. Thus a total of 90 different vascular networks were generated, representing
normal tissue vasculature. Using these networks we demonstrated that the specific arrange-
ment of host vessels prior to tumor growth can play a significant role for the outcome of tumor
vascular remodeling. We believe that all generated vascular morphologies are physiologically
plausible. However, we did not make an effort to determine the frequency with which configu-
rations RC1 − RC9 might occur in real breast tissue (s. ‘Limitations‘).

Details of vascular remodeling during growth of synthetic tumor blood vessel net-
works. Starting from one of the 90 vascular networks representing host tissue the associated
tumorous vessel network is formed by following processes, also ilustrated in Fig 2:

1. Angiogenic sprouting: In normal tissue, lattice sites occupied by vessels, have a chance

(probability Dt=tðsproutÞEC ) to spawn a sprout segment on an adjacent lattice bond provided the
site is close enough to the tumor, i.e. within the growth factor diffusion distance Rg rather
than requiring the growth factor concentration to be sufficiently high, as previously postu-
lated [51]. Furthermore, no other branching points must be nearby, i.e. within the distance
of d(br, min). Vessels within the tumor sphere, switch to circumferential growth (s. below).
The direction of sprouting is chosen randomly, which is non-critical, since the net effect is
either way an increase of vascular density near the invasive edge, extending Rg units into
normal tissue.

2. Sprout growth: sprouting vessels have a chance (probability Dt=tðsproutÞEC ) to be extended by

another lattice bond. Sprouts have a total life time of tðmigrÞEC . When sprouts hit an existing
vessel during their lifetime, they are connected to it. Sprouts that are consequently circulated
become normal vessels. Otherwise sprouts are prone to collapse after their lifetime.

3. Circumferential growth: vessels switch from sprouting to circumferential growth after their

residence time tðswitchÞEC within the tumor. After switching to circumferential growth we
assume each endothelial cell (10 × 10 μm2 surface area) at the inner wall to duplicate every

tðprolÞEC hours leading to an increase of vascular radius r. We impose an upper limit on the
radius (r(max)) after which circumferential growth stops.

4. Degradation of vessel wall stability: vessels possess a wall stability value w as an abstract
measure of the state of degeneracy of their vessel wall. The stability measure w is initialized
relating it to the wall thickness of healthy vessels [28, Suppl.1, Eq (2)]. The wall stability of
tumor vessels decreases over time at the rate Δw until zero. Once zero, vessels are allowed to
collapse and regress (see below).

5. Vessel collapse and regression: If the wall shear stress f of a segment falls below a threshold
(f(coll)) and w = 0, then the segment is removed from the network at probability p(coll),
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representing collapse, occlusion and complete regression. In this study we set p(coll) to 1,
making collapses deterministic.

The vasculature obtained at the end of the tumor growth process (t = 600 h) comprises the
part of the network altered by the tumor and the remaining normal vasculature. Parameters
used for simulations of oxygen transport (s. Table 1) are to a large extent taken from [58], com-
piled from various sources, not specifically for breast tissue.

Fig 2. Vascular Remodeling Processes. The dynamical processes of vascular network remodeling (A-E) are illustrated by exemplary state
transitions with the current state shown in the left hand side box and the resulting state on the right. Preconditions are indicated above the center
arrows, and transition probabilities are denoted below, respectively. (A) depicts the start of a new sprout (gray) which can happen on any site on the
network provided that given preconditions are true. Here, one of several preexisting segments (blue) is split to create a new branching point. Space
occupied by the tumor spheroid (orange), and space where angiogenic sprouting may take place (green), i.e. where Rtum < |x| < Rtum + Rg, is indicated
by colored background. “In tissue” refers to the exterior of the spheroid, i.e. where |x| > Rtum. “In tumor”means the opposite, obviously. The path length
on the network to the next branching point dbr must be larger than the lower limit d(br, min). The new segment is initialized with an associated life-time of
τ = 1. (B) depicts the further extension of the sprout from (A). Additional segments inherit τ from the parent segment. Moreover τ is incremented,
globally, for all sprouts once per time step Δt. (C) depicts the degradation of vessel walls. The variablew represents the stability of the vessel wall, here
depicted as varying wall thickness. It decreases continuously at the rate Δw, resulting in a value ofw0 at the next time step. In (D) an unstable vessel
(red) is removed, representing occlusion of blood flow and complete disintegration. Such event is assumed to happen only to vessels with maximally
degenerate wallsw = 0 and low wall shear-stresses f, where f < f(coll). The emerging dead ends (gray) trivially have f < f(coll), and therefore collapse
rapidly, resulting in a long ranged effect. Since collapses can happen anywhere, we left the background blank. (E) depicts the dilation of tumor vessels.
Their radii increase at rate Δr up to the upper limit r(max).

doi:10.1371/journal.pone.0161267.g002
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Mathematical modeling of oxygen transport in networks and tissues
Hemodynamic and blood oxygen transport model. The concentration of oxygen dis-

solved in blood plasma or in tissue is proportional to the oxygen partial pressure, i.e. cp = αp P
and ct = αt Pt, where P, Pt are the oxygen partial pressures in plasma and tissue, respectively,
and αp, αt are the oxygen solubilities. Conventionally, the partial pressures are measured in
mmHg and solubilities inmlO2/ml/mmHg, yielding the oxygen concentrations expressed as
oxygen gas volume at standard conditions (STP 0°C, 1 bar) per unit volume of plasma or tissue.
In blood, oxygen, besides being dissolved in plasma, is bound to hemoglobin. Up to 4 mole-
cules of oxygen can be bound per hemoglobin molecule. The chemical equilibrium between
dissolved oxygen and oxygen-carrying hemoglobin depends on the number of oxygen mole-
cules bound to hemoglobin, and the reaction is sufficiently fast, that the equilibrium state
needs to be considered only. The cooperativity of oxygen-hemoglobin binding leads to the
well-known oxygen dissociation curve [59], that can be approximated by the Hill equation [30]

SðPÞ ¼ Pn

Pn þ Pn
S50

; ð1Þ

Fig 3. Illustration of vascular tree configurations. Schematic views from above on simulation cubes
indicate vascular tree root locations for configurations denoted RC1 to RC9. In RC1 to RC3 boundary sites
are occupied in alternating order either with arterial or venous nodes. In RC1 only one face of the simulation
cube is used, in RC2 two opposing sides are used and in RC3 four faces are used. In RC4, RC5 and RC6 we
place nodes at 33% and 66% of the length of the cube faces diagonals on the diagonals. As before, one, two
and four faces are used, where in total only two (RC4, RC5) and four nodes (RC6) are placed. In RC7 and
RC8 we first create fixed parent vessels protruding along the x-axis to 60% of the cube length into the interior.
On each site occupied by these parent vessels a regular root node is created for further growth. Flow
boundary conditions are specified at the actual inlets and outlets at the cube boundaries. In RC9 each
boundary site of the lattice is occupied with a root node with probability proot. Before a network is created,
proot is drawn equally distributed between 0 and 1, however a configuration is only accepted if there is at least
one arterial and one venous node.

doi:10.1371/journal.pone.0161267.g003
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where S(P) is the blood oxygen saturation, PS50 denotes the partial pressure at 50% saturation
and n is the Hill exponent (see Table 1). Consequently, the total blood oxygen concentration,
denoted by c, is the sum of the concentrations of dissolved and bound oxygen.

c ¼ cp þ cb ¼ apP þ Hc0SðPÞ; ð2Þ

whereH is the hematocrit, i.e. the volume fraction of red blood cells (RBCs), and c0 denotes the
concentration of oxygen per unit volume of RBCs at maximal saturation (s. Table 1).

Table 1. Oxygen transport parameters.

Symbol Unit Value Ref/Note

n 2.7 [58]

PS50 mmHg 27 [58]

αp mlO2 ml−1 mmHg−1 3.1 � 10−5 [58] (a)

αt mlO2 ml−1 mmHg−1 2.8 � 10−5 [58] (a)

c0 mlO2/ml 0.5 [60] (b)

Dt μm2/s 2410 [58]

Dp μm2/s 2750 [58]

PM50(normal) mmHg 4 (c)

PM50(tumor) mmHg 2 (c)

M0(normal) μlO2 ml−1 min−1 3.7 (d)

M0(tumor) μlO2 ml−1 min−1 14.8 (d)

γ μm3 O2 μm
−2 s−1 mmHg−1 0.0033 − 0.021 (e)

ηplasma mPa 1.2 [61]

H(BC) 0.45

PðBCÞ
c mmHg 100 [62]

ΔP(BC) mmHg/μm 1 [62]

PðBCÞ
0

mmHg 55 [62]

hv μm 4

h μm 40

Shows parameters for throughout all simulations except case METAB whereM0(tumor) is picked at random,

for each simulation. n is the Hill-Exponent, PS50 is the PO2 where the the Hill-curve S(P) is 1/2, αp, αt denote
the oxygen solubilities in plasma and tissue, respectively, c0 is oxygen concentration in saturated red blood

cells, Dp, Dt denote the diffusion coefficients in plasma and tissue, PM50 denotes the M-M pressure whereM

(P) =M0/2,M0 denotes the maximal oxygen consumption rate, γ is the transvascular mass transfer

coefficient. For blood flow, ηplasma is the blood plasma viscosity, H(BC) is the inlet hematocrit, and PðBCÞ
c , ΔP(BC)

and PðBCÞ
0 are the coefficients of the radius dependency of the inlet PO2 PðBCÞðrÞ ¼ minfPðBCÞ

0 þ rDPðBCÞ;PðBCÞ
c g.

The lattice constants h and hv refer to the numerical grid on which the tissue PO2 distribution is defined, and

the step width with which Eq (5) is integrated.

(a) Assuming 22.4 l/mol under normal conditions.

(b) Computed as the product of the hemoglobin binding capacity (Hüfner factor) 1.36ml O2/g and theMCHC

(mean corpuscular hemoglobin concentration) 0.34 g/ml.

(c) Literature [32, 37, 39, 41] values for PM50 range from 1 to 4mmHg. PM50 represents a threshold below

which cells become hypoxic. We lowered PM50 in tumor tissue by a factor of 1/2 because cancer cells are

generally associated with a resistance to hypoxia.

(d) The maximal consumption rateM0 was estimated assuming zeroth order kineticsMRO2 =M0, using that

MRO2 �MTT = �cHb, blood � OEF withMTT = rBV/rBF, rBV = 0.008, rBF = 0.06min−1 [8], cHb, blood = 14 gHb/dl,

andOEF = 0.32.

(e) The lower bound is obtained for r = 60 μm and the upper bound for r = 3 μm.

doi:10.1371/journal.pone.0161267.t001
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Oxygen transport within a single vascular cylindrical tube. The intravascular PO2 varia-
tion along the longitudinal axis of a cylindrical vascular tube is described by P(x), where x is
the spatial coordinate. Following [40], we make the zeroth order approximation that the varia-
tion of PO2, hematocrit, and flow velocity in the radial direction within vascular tubes are neg-
ligible. This approximation reduces the problem to advection in one dimension. Radial
transport, i.e. transvascular oxygen exchange is accounted for by the addition of suitable mass
transfer terms (see below). Hence, the product of the oxygen concentration with the blood flow
rate q yields the oxygen flux ι representing the total amount of oxygen at any given point that
flows per unit time through the tube’s cross-sectional area

iðPÞ ¼ qcðPÞ: ð3Þ

While blood flows along the vessel, some oxygen is continuously lost through the vessel
wall. The respective transvascular flux density jtv is given in units of amount of oxygen per
lumen surface area and time. It causes a change in the longitudinal oxygen flux, which is
expressed as

di
dx

¼ q Hc0
dS
dP

dP
dx

þ ap
dP
dx

� �
¼ �2prjtvðxÞ; ð4Þ

where the second expression is just the evaluation of dι/dx, and r is the vessel radius. Reorder-
ing yields the derivative of P

dP
dx

¼ �2rpjtvðxÞ
q Hc0

dS
dP
þ ap

h i : ð5Þ

For simplicity only losses due to diffusion are considered. This is certainly a good approxi-
mation for normal vessels because oxygen is a light molecule and has a proportionately high
diffusion speed. Its diffusion constant in water is ca. 2 � 103 μm2/s. Walls of tumor vessels, on
the other hand, are leaky e.g. for plasma which is why a significant convective transport is plau-
sible. Interstitial fluid velocities of up to v = 1 μm/s have been reported near tumor vessels [63–
66]. In order to judge whether diffusive or convective transport in tissue is dominant, we calcu-
lated the Peclet number Pe = vL/D which relates advective transport rate to diffusive transport
rate over a certain distance L. A reasonable L is 100 μm, corresponding to typical intercapillary
separations, yielding Pe = 1/20. It follows that the transport is diffusion dominated. Intravascu-
lar radial oxygen transport is in itself a complex problem. To make transvascular oxygen flux
workable, the mass transfer coefficient (MTC) γ is introduced that relates the transvascular
oxygen flux density with the PO2 difference between the plasma and tissue partial oxygen pres-
sure P and Pt.

jtvðxÞ ¼ g � ðPðxÞ � PtðxÞÞ: ð6Þ

Since vessels are represented as lines, we also assume that Pt is constant over the entire cir-
cumference. Note that γ2πr = K−1, where K is the radial transport resistance used in [40, 41,
67]. The MTC depends on several factors like tube radius, blood oxygen saturation, hematocrit,
RBC shape [30] and vessel morphology [68]. We consider a radius dependency according to a
simple fit model, based on empirical data for radial oxygen transfer in vascular tubes [58, 69,
70]: This is typically characterized by the dimensionless flux density, denoted Nusselt number
Nu ¼ 2rD�1

p a�1
p � g, where Dp and αp are oxygen diffusion coefficient and solubility in blood

plasma. We found that the data presented in the Refs. cited above, ranging up to r = 50 μm, is
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well fit by an exponential function

NuðrÞ ¼ p2ð1� exp ð�r=p1ÞÞ; ð7Þ

where p1 = 8 μm and p2 = 4.7 are fit parameters. For simplicity we omitted the dependence of
Nu on the saturation S, assuming an approximate S = 0.9.

Blood flow and hematocrit in vascular networks. The vascular network is represented by
a graph where edges represent vessel segments each connected to two nodes, whereas nodes
may be attached to one to three vessel segments. Following the work of Pries et al. [71] we cal-
culated blood pressure p at each node as well as blood flow rate q and hematocritH associated
with each vessel segment. The primary unknowns are the nodal pressures and segment hemat-
ocrits. The hematocrit may differ between various vessel segments due to phase separation.

The flow rates are given by Hagen-Poiseuille’s law for flow through pipes q = πr4Δp/(8ηl),
where r denotes the radius of the segment, l its length, η the (apparent) blood viscosity, and Δp
the difference of the blood pressure at both nodes the vessel segment is attached to. Mass con-
servation demands at each non-boundary node thatX

v

qv ¼ 0 ð8Þ

X
v

Hvqv ¼ 0; ð9Þ

where the index variable v runs over vessels adjacent to the currently considered node. Note
that depending on context, the flow rate qmust be taken as a signed quantity, e.g. in Eq (8) to
correctly account for flow into and out of the considered node. In contrast to Ref. [71] we use
pressure boundary conditions (BCs) where p at root nodes is set to a fixed value p(root) =
p(BC)(r) depending on the radius and the type of vessel (artery or vein) (s. Eq (3) in S1 Appen-
dix). Eq (8) and BCs lead to a system of linear equations, the solution of which yields the nodal
pressures. The system is very large, of the order of 106 unknowns. We found that the Conjugate
Gradient algorithm with the Multilevel (ML) preconditioner from the Trilinos software library
[72] solves it efficiently. The calculated nodal blood pressures impose flow directions upon ves-
sel segments, i.e. blood flows from the end-point with higher pressure to the end with lower
pressure.

The apparent blood viscosity in microvessels varies with r andH (Fahraeus-Lindqvist effect)
and is expressed by decomposing it into η = ηplasma ηrel(r, H), where ηplasma is the viscosity of
pure blood plasma and ηrel(r,H) is known as relative viscosity. We implemented the ηrel for-
mula from more recent work of Pries et al. [73] where ηrel is based on in vivo data. For brevity
we refer to the original publication for the expression for ηrel.

Furthermore RBCs at arterial bifurcations tend to flow into the faster perfused branch
(phase separation effect) resulting in an uneven hematocrit distribution across the network.
Pries et al. [71] devised a phenomenological formula which describes the hematocritH in the
downstream branches of a bifurcation as a function of q and r of all adjacent vessels. For details
we refer to [71]. With the help of this formula we compute the RBC flow qH in down stream
vessels of arterial bifurcations, i.e. where one vessels splits into two downstream vessels. On the
other hand, venous bifurcations have only one downstream branch whereH is determined by
Eq (9). Host vascular networks contain by default only bifurcations and the trivial case of two
adjacent vessels. In the present model of tumor vascular remodeling, we reject sprout connec-
tions to other vessels that resulted in junctions with more than three vessels attached, following
[50]. The hematocrit over the entire network can thus be computed with a simple depth-first
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search graph traversal algorithm [74] starting from the venous ends and determining the
downstream H while backtracking.

The ansatz to solve this coupled system of equations is iterative. In each iteration, the nodal
pressures are computed using the results for the vessel segment hematocrit of the previous iter-
ations, followed by the computation of the hematocrit with new flow rates. Details can be
found in [71] (see also sec. ‘Numerical solution‘).

Oxygen in vascular networks. The ansatz to determine the PO2 across the vascular net-
work is similar to the method followed for calculating the distribution of hematocrit. First we
consider the distribution at an arbitrarily selected node. To this end we define the sets I andO
that contain adjacent up-and downstream vessels. Let further Pi for i 2 I be the PO2 at down-
stream ends of adjacent inlet vessels. Then Pj for j 2 O at the upstream ends of outlet vessels
are to be determined. The main assumption made is that RBCs flowing into the junction

instantly assume a common equilibrium partial pressure ~P , that by definition equals the PO2

at all outlets Pj ¼ ~P for j 2 O. ~P is determined with the help of the oxygen mass balanceX
i2I

qiðc0SðPiÞHi þ apPiÞ ¼ ~i ¼
X
j2O

qjðc0Sð~PÞHj þ ap~PÞ; ð10Þ

where the left hand side is known and provides the total oxygen flux ~i at the node under discus-
sion. The right hand side is rearranged as

~i ¼
X
i2O

Hiqi

" #
c0Sð~PÞ þ

X
i2O

qi

" #
ap~P; ð11Þ

where quantities in brackets are known RBC, and blood, flow rates. Eq (11) was solved numeri-

cally for ~P using a bisection search. At inlet (root) nodes, boundary conditions (BCs) must be
specified. We use Dirichlet BCs where P = P(BC) is given according to a curve P(BC)(r) depend-
ing on the arteriolar radius.

PðBCÞðrÞ ¼ min ðPðBCÞ
0 þ DPðBCÞr; PðBCÞ

c Þ: ð12Þ

For the parameter values of PðBCÞ
0 , ΔP(BC), PðBCÞ

c see Table 1. The determination of PO2 across
the entire network can be defined procedurally with the help of the depth-first search graph tra-
versal [74] defined analogously to the propagation of hematocrit. Starting from venous root
nodes, the network is traversed towards the upstream ends. Let us consider a given node while
backtracking. P is known at the upstream ends of adjacent inlet vessels, and according to Eq (5)
the down-stream P is determined. Hence, Eq (11) provides P for further backtracking down-
stream. This procedure holds under the caveat that jtv is known, which is addressed below.

Oxygen in tissue. The oxygen concentration in tissue, denoted ct(y), as a function of posi-
tion y, is determined by the solution the following steady state diffusion equation, considering
a cubic domain O = (0, L)3 with lateral size L and Neumann boundary conditions.

Dtr2ct �M þ Q ¼ 0 ð13Þ

rct � n ¼ 0 on @O; ð14Þ

whereM is the oxygen consumption rate per unit volume of tissue and the last term Q repre-
sents the oxygen exchange with vessels. With the help of the solubility αt this equation is
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rewritten in terms of the partial pressure Pt.

atDtr2Pt �M þ Q ¼ 0 ð15Þ

rPt � n ¼ 0 on @O; ð16Þ

where the symbols Q = Q(Pt,y) andM =M(Pt) are redefined as functions of Pt. They emerge
from their former versions by simple scaling of their arguments by αt.

We model oxygen consumption according to the well-known Michaelis-Menten (M-M)
model [30]. The M-Mmodel takes into account that viable cells consume oxygen up to a maxi-
mal rateM0 even at high (excess) oxygen availability, and that consumption must drop to zero
when the local oxygen partial pressure drops to zero.M is consequently defined as

MðPÞ ¼ M0

P
P þ PM50

; ð17Þ

where the subscript for P has been dropped. The partial pressure at whichM equals 50% of its
maximal rateM0 is denoted by PM50.M(P) increases monotonously and approachesM0

asymptotically. The advantage of the M-Mmodel over zero-or first order kinetics is a realistic
description of hyper-and hypoxic situations. Apart from their vasculature, we assume the
tumor tissue and host tissue to be homogeneous and that it behaves according to the M-M rela-
tion. The selected parametersM0 and PM50 are thus representative of the mixture of all tissue
components. This assumption is justified by the small volume of the tumor grown. Otherwise
the expression forM(P) has to be weighted by the fraction of viable cells in tumor and host
tissue.

To find the vascular contribution Q, representing sources and drains, we follow [40] where
line-like sources are embedded into the volume (tissue) with a magnitude equal to jtv. Symboli-
cally written, this corresponds to

QðyÞ ¼
X
v2V

Z
v

2prjtvðx; rÞdðx � yÞdx; ð18Þ

where the summation is taken over all vessels and the integration along their center lines. δ is
the Dirac delta distribution and jtv is given in Eqs (6) and (7).

Numerical solution. The equation for the vascular oxygen distribution Eqs (5) and (11)
together with the diffusion equation for tissue Eq (15) form a complicated non-linear system of
equations with the partial pressures values as unknowns. The only practical way to treat this is
through a numerical solution.

Previously a similar approach to ours was followed by Beard [44] who distributes the
exchange flux with vessels to nearby sites of a discretization grid of the tissue domain. We jus-
tify this approach with a formulation based on a Finite Element Method (FEM) and in contrast
to [44] also include hemoglobin binding dynamics. As a result we obtain a sparse system of
equations which is efficiently solved by an iterative scheme.

The principal idea of the FEM is to seek an approximate solution within a finite dimensional
vector space V that is spanned by basis functions φi. Various choices are possible, e.g. Fourier
bases, but the common approach is to introduce a grid and organize the φi such that their con-
tribution is centered around a corresponding grid site xi, requiring that φi(xi) = 1 and φi(xj) = 0
for i 6¼ j. Here the choice falls for simplicity on piecewise linear (P1) tensor product bases
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which are defined on a regular cubic grid. Then φi reads

~wðxÞ ¼ max ð0; 1� jxj=hÞ
wðxÞ ¼ ~wðx0Þ~wðx1Þ~wðx2Þ
φiðyÞ ¼ wðy � xiÞ;

where h is the lattice constant and y = (y0, y1, y2) and likewise x in three dimensions. Inciden-
tally evaluation of a function f(y) = ∑fi φi(y) with some coefficients fi is equivalent to a (tri-) lin-
ear interpolation of the coefficients between grid sites that are nearest to y. Hence, let the tissue
PO2 be an element of V such that

Pt ¼
X

j

Pt;jφj: ð19Þ

At this point it is advisable to proceed with the treatment of the vascular system. It is by def-
inition already represented as discrete collection of segments but these are implicitly further
subdivided by the integration points that are introduced for the solution of the axial transport
Eq (5) (see below). We impose an equidistant subdivision with step length of approximately
hv = 4 μm. In general, the last point needs to coincide with the end of the vessel. Therefore the
true step length is adapted to the vessel length, corresponding to dlv/hve + 1 integration points.
Smaller values of hv, given all other parameters fixed, did not yield noticeably different
predictions.

In the following indices k, l are used for points on the vessel network whereas i, j denote
indices to sites on the tissue grid. Now it is convenient to introduce vector and matrix nota-
tions. Hence let coefficient vectors be denoted in bold face, such that Pt = {Pt,i} and P = {Pk}.
And let further linear operators (matrices) be denoted in bold face underlined �.

The solution procedure relies on an outer iteration where the tissue degrees of freedom {Pt,i}
and the vessel degrees of freedom {Pk} are updated in alternating order. This can be written
with the aid of two functions F(Pt) and Ft(P,Pt) determining P and Pt from the last known
quantities. An iteration variable n is introduced denoting the current step number. This is not
to be confused with n in the Hill-equation Eq (1).

for n ¼ 1; 2; 3; � � �
Pðnþ1Þ ¼ FðPðnÞ

t Þ ð20Þ

Pðnþ1Þ
t ¼ FtðPðnþ1Þ;PðnÞ

t Þ
while jjPðnþ1Þ

t � PðnÞ
t jj1 > � and jjPðnþ1Þ � PðnÞjj1 > �;

ð21Þ

where || _ ||1 denotes the maximum norm. We set the initial guess for tissue Pð1Þ
t to Proot,max/2

on all grid points, i.e. to half the maximal inlet PO2. P needs no initial value since it is entirely
determined by Pt. The iteration is stopped when the change between the updates becomes less
than �, where we consider � = 0.1mmHg to be small enough. Usually 200 to 400 iterations are
needed for convergence, when applied to our tumor networks.

Evaluation of F: The vascular tree is traversed down stream as explained. At each vessel, first
the upstream PO2 is determined according to Eq (11) or according to the boundary condition
Eq (12) if it is an inlet node.

Then Eq (5) is integrated with the implicit Euler method [75]. Explicit methods are not well
suited to the problem since their stability requirements [75] lead to a step size hv< const � q.
Since many tumor vessels are slowly perfused this would lead to sub-micrometer steps, incur-
ring a prohibitive performance penalty. Note that the representation of Pt as superposition of
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basis functions readily provides a means to obtain its function value for the r.h.s of Eq (5).
Since the bases φi have a small support this can be efficiently implemented. Moreover storage
of all Pk values is not required. Instead we perform required operations “on the fly” when the
vascular PO2 is computed in F. This means we either record oxygen exchange contributions
for Pt into the system matrix Eq (35) or compute observables for final output. It is sufficient to

just store Pk at the upstream end of each vessel which is just ~P from Eq (11).
Evaluation of Ft: Our approach for the solution of the diffusion Eq (15) can be derived from

the Galerkin method, where in brief, the general idea is as follows. First, the standard scalar
product over the space of integrable functions over O is introduced (f, g) =

R
fgd x. Furthermore

instead of the true solution, an approximation within the vector space V is searched for. This
solution is defined as f 2 V for which the residual R after evaluation of the differential equation
w.r.t. f is minimal, i.e. we look for f 2 V such that (R, R) =min. Here Pt takes the role of f and
we have

R ¼ atDtr2Pt �MðPtÞ þ QðPtÞ: ð22Þ

It can be shown that minimization of ||R|| is equivalent to finding the Pt where R is orthogo-
nal to V

ðR;φiÞ ¼ 0 8i: ð23Þ

Eventually this results in an equation per grid site i in the unknowns {Pt,i}. The l.h.s. of Eq
(23) decomposes into the summands

atDtðr2Pt;φiÞ ð24Þ

ðMðPtÞ; φiÞ ð25Þ

ðQðPtÞ;φiÞ; ð26Þ

for which algebraic expressions are needed.
The benefit of considering a finite element formulation lies in the straight forward treatment

of the transvascular exchange Q with its Dirac delta. Also FEMmakes it straight forward to use
higher order elements for better accuracy. Here however we use P1 elements. Moreover, if the
integration of Eqs (24)–(26) is performed by the trapezoidal rule, then the resulting discretized
equations look identical to standard finite differences, s. e.g. [76]. We use this to obtain for a
smooth function g

ðg;φiÞ � h3gðxiÞ; ð27Þ

i.e. g is sampled at grid points, where we have control values gi = g(xi). Likewise, one obtains for
a sufficiently smooth function f

ðr2f ;φiÞ � h3½Dh f �i þ boundary terms; ð28Þ

where

ðDh f Þi ¼
X

j2Neighbors of i
ðfj � fiÞ=h2: ð29Þ

Dh is the discrete Laplacian [75] known from finite differences. Neighbors of i denotes the 6

nearest grid neighbors. At the boundaries we modify Dh to account for the missing neighbors

[75]. The consumption termM(Pt) is expanded to first order around the oxygen level from the
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last step. Following the above rationale, it is evaluated per grid point which yields

1

h3
ðM;φiÞ � MðPðnÞ

t;i Þ þM0ðPðnÞ
t;i Þ½Pðnþ1Þ

t;i � PðnÞ
t;i �; ð30Þ

where 0 denotes the first derivative. More conveniently in matrix notation and with dropped
super scripts, we write for the right hand side of Eq (30)

MAþMB I Pt; ð31Þ

where I denotes the identity, and

MAi ¼ MðPðnÞ
t;i Þ �M0ðPðnÞ

t;i ÞPðnÞ
t;i ð32Þ

MBi ¼ M0ðPðnÞ
t;i Þ ð33Þ

The last contribution is derived by expanding Eq (26). For better readability, the super
scripts are dropped again. Also the dependence of r and γ on the current vessel v is implied but
for readability not indicated.

ðQðPtÞ;φiÞ ¼
Z
O

X
v2V

Z
v

2prjtvdðx � yÞφiðyÞdxdy

¼
X
v2V

Z
v

2prjtvφiðxÞdx

¼
X
v2V

Z
v

2prg½PðxÞ � PtðxÞ�φiðxÞdx

¼
X
v2V

Z
v

2prgPðxÞφiðxÞdx
" #

�
X

j

X
v2V

Z
v

2prgPt;jφjðxÞφiðxÞdx
" #

ð34Þ

The expression given in Eq (34) approximates the total volume rate of oxygen that extrava-
sates from the entire vascular system into the tissue volume associated with the basis function
φi. Now the integral over the vessel network is approximated with a Riemann sum based on the
integration points {Pk} from step Eq (20). Each integration point k represents a finite length
segment Δxk = hv except at the end points of each segment where Δxk = hv/2. In order to achieve
good accuracy, we require hv<< h. Else, the integration kernel 2πγφi or 2πγφi φj will be
under-sampled. This limitation could be removed to some degree by interpolation of the
numerical solution of P(x), decoupling it from the integration quadrature formula. From Eq
(34) one obtains for the total volume rate of extravasated oxygen per cell volume

1

h3
ðQðPtÞ;φiÞ �

X
k

Dxk2pr
h3

gPkφiðxkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QAi

�
X

j

Pt;j

X
k

Dxk2pr
h3

gφjðxkÞφiðxkÞ
" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QBij

: ð35Þ

The factor Δxk2πr/h
3 is intuitively understood as vessel surface area per cell volume associ-

ated with vessel centerline integration step k. Finally, the completely assembled system of equa-
tions reads

½atDtDh �MB I �QB�Pt ¼ MA� QA: ð36Þ

It is easy to see that this is a sparse symmetric system. The Laplacian gives rise to 6 off-diag-
onal entries. The operatorQB gives rise to 26 off-diagonal entries corresponding to the nearest
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and second nearest grid neighbors. For points which are spaced further apart, φi and φj have
no overlap so their product in Eq (35) becomes zero.

In order to improve the efficiency we approximate Pt(xk) with the value from the current
site Pt,i. This approximation is justified physically since the oxygen diffusion length consider-
ably exceeds the lattice spacing h. Consequently,QB is diagonalized such that the new version,

now denoted ~QB , reads

~QBij ¼
X
k

Dxk2pr
h3

gφiðxkÞdij: ð37Þ

This is a sparse linear system where the only off-diagonal terms stem only from the Lapla-
cian, removing the off-diagonal entries corresponding to the second nearest neighbors. We
solved these systems with an algebraic multigrid method (Trilinos ML [72]). We found the dif-

ference between the ~QB andQB solutions negligible.

The computational cost of our method scales well in the number of discretization points
since the obtained sparse systems can be solved in O(n log n) time. In contrast the Green’s
functions method [41] gives rise to dense systems and is therefore much more computationally
demanding.

We take grid constants h of 40 μm, which is rather coarse for resolving the approximately
exponential decay of the O2 concentration around isolated tumor blood vessels. The therewith
associated diffusion range can be estimated, assuming zeroth order kinetics in one dimension,

by ldiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DatPt=M0

p
. This estimate is obtained from dPt(x)/dx = −M0/Dαt, under the bound-

ary conditions that Pt(0) = P0, dPt/dx(ldiff) = 0, and Pt(ldiff) = 0. We obtain, ldiff = 295 μm in nor-
mal tissue, and 148 μm in tumor, using the parameters in Table 1 and assuming that P0 = 40
mmHg. In two dimensions, the Krogh model for a capillary of 3 μm radius, yields approxi-
mately ldiff = 150 and 80 μm in normal and tumor tissue, respectively. However, we do not use
Fick’s law as in jtv = −DαtrPt to determine the amount of extravasated oxygen. Instead, jtv is
computed from the difference between P and Pt at the vessel center line. Therefore the result
does not depend critically on the precise resolution of tissue PO2 gradients.

We repeated our calculations with a grid constant h of only 20 μm. As a result, the peaks of
the calculated Pt distributions are better resolved. Concomitant changes in the predicted aver-
ages are rather small. For instance we obtain lower average OEF (0.1 versus 0.11), lower Pt (25
vs. 28mmHg—the most significant change), and higher Y (0.75 vs. 0.73), in tumors of case
CMPR. However, these variations are well within experimental uncertainties. Therefore, our
overall results and conclusions are left unaltered.

In Fig D in S1 Appendix we investigated the convergence of the on-axis oxygen partial pres-
sure P(x) with decreasing lattice constant h and conclude that at h = 40 μm the accuracy is
between 3 to 13% depending on the location along the vessel. Differences of the absolute values
of the intravascular and extravascular partial oxygen pressures P(x) and Pt(y) with respect to
the Green’s function technique of Secomb et al. [41] are illustrated in Fig C in S1 Appendix.
Overall, we estimate uncertainties of absolute intravascular and extravascular partial oxygen
pressures to be in the order of 10 – 20%.

Simulation setup
Expressions for tissue hemoglobin concentration and tissue blood oxygen saturation.

For a comparision of simulated tissue hemoglobin concentration cHb and tissue blood oxy-
genation Y with clinical data we provide expressions for these quantities based on host and
tumor vascular networks. Corresponding expressions for other quantities of interest are
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given in S2 Appendix.

cHb ¼ MCHC � rRBCV ¼ MCHC
jOj

X
v2V

pr2v lvHv ð38Þ

Y ¼ cHbO

cHb

¼
X
v2V

pr2vHvlvP
u2Vpr2uluHu

1

lv

Z
v

SvðxÞdx
� �

; ð39Þ

where V is the set of vessel segments of host or tumor tissue,MCHC is the mean corpuscular
hemoglobin concentration, |O| the relevant tissue volume, rv, lv, Hv, Sv(x) designate radius,
length, hematocrit and blood oxygen saturation of vessel segment v. In Eq (39) integration of
blood oxygenation is taken over the length of the vessel segment.

Tissue total hemoglobin concentration cHb is the sum over the hemoglobin mass of all vessel
segments per unit volume of tissue. Tissue blood oxygenation Y is the average of RBC-volume-
weighted blood oxygen saturation taken over all vessel segments. It follows that high-caliber
vessels contribute dominantly to cHb and Y, being less sensitive to the capillary plexus.

Simulation model variants. In the following we discuss three different scenarios denoted
BASE, CMPR and METAB. Cases BASE and METAB use the same tumor vascular networks
(t = 600 h), but differ in their assumptions made to calculate tissue metabolic rate of oxygen
consumption variables. CMPR, on the other hand, augments the processes that cause remodel-
ing of the tumor vasculature by accounting for vascular compression by solid pressure, leading
to tumor vascular networks at t = 600 h that differ from the networks of the scenarios BASE
and METAB.

Case BASE This is our base case with parameters for growth of breast tumor vasculature
listed in Table 2. Blood flow, hematocrit distribution, blood and tissue oxygen concentrations
were calculated using each of the 90 realizations of tumor vasculature (t = 600 h) together with

Table 2. List of parameters for tumor growth.

Parameter Value Unit Description

Rtum(t = 0) 250 μm Initial tumor radius

vtum 2 μm/h Tumor radius expansion rate

Rg 200 μm Growth factor diffusion range

tðswitchÞ
EC

12 h Circumferential growth switch delay

tðsproutÞEC
2 h Time between sprouting events

tðmigrÞ
EC

50 h Sprout activity duration

d(br,min) 80 μm Sprout sites minimum separation

tðprolÞEC
144 h Endothelial cell proliferation time

r(sprout) 2.6 μm Initial sprout vessel radius

r(max) 10 *, 14 ** μm Maximum dilatation radius

p(coll) 1 Vessel collapse probability

Δw 0.05 μm/h Vessel stability (w) decrease rate

f(coll) 0.25 Pa Critical wall shear stress

h(gen)
† 130 μm Lattice constant of initial network generation

* case BASE.

** case CMPR. Increased maximal dilatation radius compensated for by overall compression of tumor vessels (see text).
† The lattice constant h(gen) corresponds to the vessel segment length in the initial (t = 0) networks. Simulation of tumor growth and vascular remodeling is

performed at only 10 μm lattice spacing. This is possible since segments of the initial t = 0 lattice coincide with bonds and sites of the finer 10 μm lattice.

doi:10.1371/journal.pone.0161267.t002
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parameters related to oxygen transport given in Table 1. The maximal oxygen consumption
rate of tumor tissue was assumed amounting toM0(tumor) = 4 �M0(normal) and PM50(tumor)
was assumed equal to 1/2 � PM50(normal), reflecting the enhanced need for oxygen of prolifer-
ating tumor cells. Reports on measured oxygen consumption of solid tumors are scarce in the
literature. We include a recent report on metabolic rate of oxygen consumption of viable multi-
cellular spheroids of human colorectal carcinoma cells [77] indicating thatM0(tumor) might
even be underestimated. Compared to previous simulations concerning melanomas [28],
changes in the tumor growth parameters (s. Table 2) include d(br,min), governing theMVD near
the tumor rim, f(coll), and r(max) determining the centralMVD and rBV. Other parameters such

as the sprouting time tðsproutÞEC , and vessel wall degradation rate Δw are unaltered.
Case CMPR: Vascular compressionWe allowed for compression of tumor vessels during

tumor growth by extravascular stress on simulated tissue blood oxygen saturation Ytum based
on the final t = 600 h tumor vasculature. Compression of tumor vessels will change the relation
of Ytum and the tissue blood oxygen saturation of the surrounding normal breast tissue Ynorm

obtained from the corresponding vascular network at t = 0. Elevated interstitial fluid pressure
(IFP) is known to be a hallmark of tumors [10], primarily caused by the increased leakiness of
tumor vessels and the lymph drain being impaired in solid tumors. Yet the precise mechanisms
by which extravascular pressure compresses tumor vessels are still under debate [78, 79]. The
uncontrolled proliferation and growth of tumor cells within a restricted volume generates
extravascular solid stress. Solid stress accumulates within the tumor volume through an
increase in tumor cell density and hyperproduction of interstitial matrix molecules such as col-
lagen and hyaluronan [9–11]. Collagen fibers are resistant to tensile stress whereas hyaluronan
resists compression thus transferring stress on tumor vessels. On the other hand water-loaded
hyaluronan can be considered to be part of the relative immobile fluid phase of the interstitial
fluid, contributing to IFP apart from contributions of the freely mobile fluid phase. Further-
more, solid stress can be exerted on the tumor volume by the surrounding normal tissue. It was
estimated that solid stress becomes significant for tumor volumes larger than 0.065mm3, corre-
sponding to a sphere of Rtum = 250 μm [80]. A detailed simulation of solid stress during pro-
gression of the tumor is beyond the scope of the present paper. Therefore we assume that all
vessels of the tumor vasculature experience compression during the growth process, i.e. a
reduction of their radius by a constant factor. The fundamental difference to the case BASE is
that in this way high-caliber vessels experience a reduction in radius, which cannot be achieved
by the previous model that predicts either growth or complete removal of vessels. Hence we
introduce a new “compressed” vessel radius, denoted ~r which enters the blood flow and oxygen
computation. We consider a function ψ(|x|) of the spatial coordinate x that represents the mag-
nitude of compression relative to the base radius, depending on the distance from the tumor
center |x|. Therefore we define ~r ¼ c � r. We let ψ describe a linear transition between full com-
pression of magnitude 1 − ξcpr, in the tumor center and zero in normal tissue. Thus, vascular
radii ~r within the tumor, with the exception of a small transition zone of width wcpr, are
reduced relative to r by a factor of ξcpr. Since compression affects all vessels, and to obtain a
common mean capillary diameter of cases BASE and CMPR, r(max) was increased in case
CMPR from r(max) = 10 μm to 14 μm. This compensation helps to separate the effect of com-
pression of large vessels from an overall compression of all radii.

cðxÞ ¼

xcpr for x < R� wcpr

1 for x > Rþ wcpr

xcpr � x�Rþwcpr

2wcpr
� ðxcpr � 1Þ else;

ð40Þ

8>>>><
>>>>:
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where R = Rtum is short for the tumor radius and wcpr is assumed 200 μm. We assume that vary-
ing degrees of compression are present in the tumors of the patient cohort due to phenotypical
differences from tumor to tumor or differences in the micro environment of the host. There-
fore a new ξcpr was drawn for each simulation from a uniform distribution over the interval
between 0.5 and 1. The lower bound of 0.5 was deliberately chosen since it appears to be the
lower bound of what was reported for experiments, i.e. relief of stress resulted in two times
increase of vessel diameters [81].

Case METAB: Variation of tumor oxygen consumption rate In contrast to case CMPR sce-
nario, METAB uses the identical tumor vascular networks as case BASE. However, rather than
selecting the same maximal oxygen consumption rateM0 for all tumors as in scenario BASE we
consider variations of the maximal tumor oxygen consumption rateM0 among various tumors
reflecting phenotypical differences. In this way we probe the impact of tumor tissue oxygen con-
sumption versus tumor vascular restructuring on intra-and extravascular oxygen distributions.
Therefore,M0 / (ml O2/ml/min) is drawn from a lognormal distribution withmu = log(0.0149)
and sigma = 0.3 on a tumor by tumor basis, yielding a medianM0 identical to case BASE and a
standard deviation of 32% of the median. The oxygen consumption rate of normal tissue is kept
at its original value (s. Table 1). Furthermore oxygen partial pressures PM50 were kept
unchanged.

Results and Discussion

Tumor compartmentalization and contributions of tumor core to
hemoglobin concentration, fractional blood volume and tissue blood
oxygenation
Using the model parameters listed in Table 2 together with the root node geometries illustrated
in Fig 3 we simulated vascular networks corresponding to normal breast tissue (t = 0, “initial”)
and tumors (t = 600h, case BASE, case CMPR). As can be seen from Fig 4, tumor vascular net-
works are highly compartmentalized, comprising a central core with lowMVD and a highly

Fig 4. Radial distributions of the microvascular density,MVD, and the relative blood volume, rBV. The
simulation box was divided in 100 μm thick concentric shells over which the regionalMVD and rBV were
determined to obtain radial profiles depending on the distance from the center |x|. Plotted is the ensemble
mean of these profiles, where the error bars display the standard deviation (STD). As can be seen, a
compartmentalization into varying degrees of vascularization (MVD) and vascular dilatation (rBV) exist which
is typical for Melanoma [56] and Glioma [57]. Fig 4 provides evidence that these features are also present in
breast tumors. The STD ofMVD further shows that theMVD of the tumor core is below normal in most
realizations of the ensemble which conforms to our expectations for tumors. Oscillations are an artifact of the
confinement of the vessels to a lattice.

doi:10.1371/journal.pone.0161267.g004
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vascularized peripheral shell of a few hundred micrometer thickness, consistent with previous
results [28, 50–54]. The arterio-venous organization is lost, and the remaining high caliber ves-
sel protruding into and through the tumor are connected with a chaotic network of dilated
capillaries. Although central tumorMVD is lower than normal (s. Fig 4A), relative blood vol-
ume rBV is above normal within the tumor core (s. Fig 4B). It follows that vessels crisscrossing
the tumor core are predominantly of high caliber. As was mentioned above, all vessel segments
contribute to the average blood oxygen saturation hSi proper (s. S2 Appendix), independent of
their volume.

Fig 5 provides examples for vascular networks corresponding to tumor model CMPR, and
root node geometry RC9 (cf. Fig 3). Distributions of partial oxygen pressure (PO2) of blood
vessels, P, and of tissue, Pt, as well as corresponding distributions of blood oxygen saturations S
are shown at the start (t = 0, top row) and at the end (t = 600 h, bottom row) of the growth pro-
cess. The other cases (BASE, METAB) and root node geometries exhibit similar looking distri-
butions of PO2 and blood oxygen saturation S in normal tissue and tumor periphery.
However, the vascularization at the tumor center can be lower or higher than for the example
shown, which is accompanied with varying degrees of oxygenation. We made sure that in good
approximation cases BASE and CMPR exhibited similar radialMVD and rBV profiles. This
requirement is critical since we aim to analyze the effect on tissue blood oxygen saturation Y by
varying the compression factors ξcpr among the ensemble of 90 tumor vascular networks (see
below), while retaining agreement with clinical data onMVD and rBV. We consider details of
the oxygen distribution shown for instance in Fig 5C. Immediately obvious, we see severe hyp-
oxia at the tumor center due the sparse vasculature there. As one would expect, Pt is highest
near vessels and falls off into non-vascularized spaces over a scale of 100 to 200 μm, corre-
sponding to the oxygen diffusion-range.

Redirection of hematocrit modulates blood oxygen saturation
Tumor vessels in the central region of the tumor vary significantly in their oxygen content.
Some vessels carry highly saturated blood, in particular when connected to nearby arterioles.
When isolated vessels thread the tumor over distances of several hundred micrometers,
blood oxygen saturation S visibly decreases to the point where vessels are completely depleted
of oxygen. The tissue PO2 near such vessels follows this trend. Remarkably, the (neo-)vascu-
lar plexus around the tumor rim is dominated by severe oxygen deprivation. However, the
few high caliber vessels which advance towards the tumor center carry normal amounts of
oxygen. We explain this by the phase separation effect taken into account in our simulations.
This means that red blood cells (RBCs) at bifurcations prefer to flow into the more strongly
perfused branch [71]. Accordingly, simulated hematocrit distributions exhibit high hemato-
crit in central tumor vessels, as exemplarily shown in Fig 6. We conclude that RBCs are redi-
rected into central vessels, consequently leading to a lack of RBCs in the peripheral capillary
plexus and a drastically decreased oxygen carrying capacity. The impaired oxygen carrying
capacity, in turn, results in fast oxygen depletion to hypoxic levels which could drive further
invasive behavior in real tumors. On average, the hematocrit taken over the concentric core
region 100μm beyond the invasive edge is elevated to 117% of baseline hematocrit in normal
tissue. In contrast, the average taken over annular shells near the invasive edge of 50 μm
thickness drops to 66%.

For some applications, such as models of tumor growth, it might be sufficient to implement
a simplified model of tissue oxygenation, setting intravascular PO2 constant, thus treating it as
input parameter. Therefore, in S1 Fig we briefly consider such a simplification and highlight
qualitative differences to results obtained by our full model of oxygenation.
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Fig 5. Blood oxygen saturation and oxygen partial pressure corresponding to case CMPR, root node configuration RC9. The
left column (A, C) shows the PO2 of vessels, P and of tissue, Pt in a slice through the center of the simulation domain. The camera is
looking vertically onto the horizontal cutting plane so that the whole lateral extent of 8mm is shown. The vessel network is visualized as
a collection of cylinders that have been truncated 100 μm above and below the central plane. The resulting cross sectional areas are
light grey. Otherwise the color code indicates the PO2, P, of vessels and Pt of tissue, respectively. In the right column (B, D), only the
network is shown color coded by saturation S. The top row (A, B) shows the initial state at t = 0. The bottom row (C, D) shows the final
state at t = 600 h.

doi:10.1371/journal.pone.0161267.g005
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Model validation: vascular morphology, blood flow and oxygenation
In order to validate our simulation model we calculated various biophysical quantities and
compared the results with data available in the literature. Values listed in Tables 3 and 4 repre-
sent averages (means) over the results of all 90 vascular networks, including standard devia-
tions, at a given time. The initial networks (t = 0) are taken to represent vasculature in normal
breast tissue, neglecting the influence of the small tumor of radius 250 μm at the center of the
simulation domain. Data given in column “Initial” are therefore associated with normal breast
tissue. Data for the cases BASE, CMPR and METAB were calculated at the end (t = 600 h) of
the tumor growth process.

Explicit formulas for the parameters listed are given in S2 Appendix. It should be kept in
mind that for most biophysical variables, results corresponding to a particular vascular network
represent (weighted) averages taken over all vessel segments of the network (s. S2 Appendix). For
comparison, Tables 3 and 4 also include clinical data, data obtained from animal models and the-
oretical results taken from the literature. In the following we comment on some of the simulated
and literature data. Additional details are provided in S4 Appendix.

In general, good to fair agreement was achieved between simulation results and correspond-
ing literature data. In particular total hemoglobin concentration and tissue blood oxygenation
Y, known from optical mammography were reproduced both for normal breast tissue and
breast tumors. Likewise, simulated vascular volume densities fall within the range of rBV values
reported in the literature. In Table 3 we take simulated length density LD, i.e. the total length of

Fig 6. Hematocrit distribution corresponding to Fig 5D, showing the same slice of the vessel network,
but color coded forH.Our blood flow model includes the phase separation effect which leads to a severe
reduction of the hematocrit in the peripheral tumor network and an elevated hematocrit in the vessels at the
tumor center.

doi:10.1371/journal.pone.0161267.g006
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the vascular network divided by the tissue volume (s. S2 Appendix), as measure for microvessel
densityMVD, conventionally obtained by microscopically counting the number of microves-
sels per area of a tissue section. Simulated length density LD and clinicalMVD of normal breast
tissue agree quantitatively and length densities LD of the tumor model variants fall within the
range ofMVD reported for breast cancers in the literature. Average vessel radii corresponding
to the tumor model variants BASE, CMPR and METAB are about 60% of those reported by
Stamatelos, probably because the maximal dilatation radius was limited to 10 μm (BASE/
METAB) and 14 μm (s. Table 2). Tumor vessel surface density SD and tumor vessel surface
density over tumor vascular volume density SD/rBV are consistent with the data reported by
Stamatelos et al. [7].

Regional blood flow, rBF, i.e. perfusion, is given by the ratio of total blood flow entering a
selected tissue region O to its volume |O| (s. S2 Appendix). To calculate host perfusion rBFnorm
of the entire simulation cuboid we sum the flow rates q over all arterial root nodes and divide
by the volume of the simulation box |O| = L3. Good agreement between simulated perfusion
rBFnorm and clinical data was achieved. However, for a partial volume, such as a small spherical
tumor inside the tissue cuboid, some caution must be taken. Assuming a constant surface flux
density of blood, the perfusion of the small spherical volume scales as 1/Rtum. Indeed, perfusion
rates rBFtum predicted for the relatively small tumors, simulated here, are much larger than
clinical rBF data from breast tumors which are typically of several cm3 in volume. To estimate
the perfusion rBFscaled that corresponds to larger simulated tumors, we scale rBFtum in the

Table 3. Morphological data: Simulation results and literature values.

Symbol Unit Initial Clin./Lit. BASE/METAB CMPR Clin./Lit.

MVD, LD mm−2 111 ± 0.4 115 ± 8 [84] 112 ± 19 133 ± 18 88 (15 − 348) [85]

20 (0 − 157) [86]

21 (9 − 101) [7] (a)

rBV % 0.98 ± 0.10 0.8 ± 0.3 [22] (b) 1.9 ± 0.6 1.8 ± 0.9 2.4 ± 1.5 [22] (b)

3.4 ± 0.6 [87] (c) 4.3 ± 1.3 [87] (c)

0.67(0.2 − 3.4) [7] (a)

r μm 4.1 ± 0.1 - 5.9 ± 0.4 5.2 ± 1 9.23 ± 0.27 [7] (a)

SD mm−1 2.8 ± 0.04 - 4.2 ± 1 4.4 ± 1.1 0.5 − 5.4 [7] (a)

SD/rBV μm−1 0.29 ± 0.03 - 0.22 ± 0.03 0.27 ± 0.06 0.165 [7] (a)

rBF mlg−1 min−1 0.053 ± 0.014 0.06 [8] 1.6 ± 1.3 1.2 ± 1.3 0.32 [8]

0.056 ± 0.014 [88] 0.19 ± 0.1 [87]

0.04 ± 0.01 [87] 0.29 ± 0.17 [88]

0.028 ± 0.017 [89] 0.07 − 0.16 [90] (d)

0.001 − 2 [7] (a)

rBFscaled mlg−1 min−1 - - 0.12 ± 0.04 0.091 ± 0.050 -

Shows averages and standard deviations taken over 90 initial networks (t = 0 h) and tumors (t = 600 h) for cases BASE, CMPR and METAB. Morphological

data for BASE is the same as METAB. We compiled clinical data, data from animal models and theoretical data taken from literature in the columns “Clin./

Lit.” for normal (left) and tumor tissue (last col.), respectively. Microvascular density obtained by our model and from [7] is given as the line density LD
whereas data from [85, 86] are the medians of histologicalMVD. rBFscaled is the initial tissue rBF scaled by the ratio of perfusions, rBF, of the iso-volumetric

tumor sphere at t = 0 and at t = 600 h (see text).

(a) Obtained from digitized animal model tumor network obtained by μ-CT.

(b) rBV estimated from cHb assuming 2.18 μmol/l hemoglobin in blood.

(c) Data from [87] was obtained by PET of human breasts. Note that PET data from [87] for tumor tissues are considered unreliable (see text).

(d) obtained from human breast cancer xenografts in animal model.

doi:10.1371/journal.pone.0161267.t003
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following way: rBFscaled = rBFnorm � rBFtum/rBFsph,norm. Here, rBFsph,norm denotes the perfusion
of the isovolumetric spherical volume Vsph of normal tissue (t = 0) that corresponds to the
tumor spheroid at t = 600 h. The perfusion rates rBFtum and rBFsph,norm are obtained from sum-
mation of blood flow q over those vessels that penetrate the surface of the sphere Vsph and have
a blood flow direction into the spherical tissue volume. Scaled perfusion rBFscaled is lower by a
factor 2—3 compared to clinical data on breast cancers. However, scaled perfusion falls within
the range of perfusion values reported by Stamatelos [7] and Kallinowski et al [82] for human
breast cancer animal models. In addition, Table 3 lists the regional blood flow of the small
spherical tumor rBFtum proper.

The metabolic rate of oxygen consumptionMRO2 of normal tissue is mainly determined by
the assumed Michaelis-Menten maximal rateM0 (s. Table 1), since (average) partial oxygen pres-
sure Pt in tissue is considerably larger than the Michaelis-Menten oxygen half pressures. As a
result, the simulatedMRO2 for normal breast tissue favorably compares with clinical data. To

Table 4. Oxygenation data: Simulation results and literature values.

Symbol Unit Initial Clin/Lit. BASE CMPR METAB Clin/Lit.

hSiniq - 0.98 [91] (e) - - - -

rJin μlO2 ml−1 min−1 12 ± 3 - 331 ± 266 249 ± 282 331 ± 265 11 − 27 [90] (d)

rJin,scaled μlO2 ml−1 min−1 - - 25 ± 10 18 ± 12 25 ± 10 -

jtv μlO2 min−1 cm−2 0.12 ± 0.001 0.6 [92] (f) 0.24 ± 0.02 0.20 ± 0.02 0.24 ± 0.06 -

MRO2 μlO2 ml−1 min−1 3.3 ± 0.1 4.5 ± 1 [87] 12 ± 1 12 ± 2 13 ± 3 6.6 ± 2.8 [87] (c)

33 ± 5 [93] (i) 40.6 ± 7.8 [77] (g)

21 − 52 [83] (g)

33.4 ± 8.3 [83] (h)

4.5 − 11.8 [90] (d)

OEF 0.34 ± 0.10 0.65 ± 0.1 [87] 0.068 ± 0.050 0.11 ± 0.09 0.068 ± 0.051 0.23 ± 0.08 [87]

0.44 ± 0.06 [93] (i) 0.3 − 0.52 [90] (d)

OEFscaled - - 0.55 ± 0.19 0.88 ± 0.46 0.55 ± 0.22 -

cHb μmol/l 24 ± 3 17.3 ± 6.2 [22] 47 ± 14 43 ± 19 47 ± 14 53 ± 32 [22]

16 ± 4 [23] 70 ± 35 [23]

Y 0.70 ± 0.10 0.74 ± 0.14 [22] 0.81 ± 0.10 0.73 ± 0.14 0.81 ± 0.10 0.72 ± 0.14 [22]

0.74 ± 0.09 [23] 0.71 ± 0.10 [23]

P mmHg 39 ± 6 - 45 ± 11 34 ± 13 45 ± 12 -

Pt mmHg 36 ± 6 30 [94] (k) 35 ± 14 29 ± 14 35 ± 14 30 (0 − 100) [14] (j)

65 (12 − 100) [14] (j)

40 − 50 [95] (k)

This is a continuation of Table 3 with data of tumor and normal tissue oxygenation. hSiniq denotes the flow-weighted blood oxygen saturation at input. rJin
denotes the oxygen supply at input rJin = c0 HhSiniq � rBF. For tumors, rJin,scaled denotes the scaled quantity where rBFscaled is used. In addition to the

following notes, see Table 3 for further notes.

(e) Oxygen saturation of human arterial blood at sea level.

(f) Obtained by oxygen micro-electrode measurement in rat brains [92].

(g) Obtained from various human cancer cell spheroids, excluding breast cancer.

(h) Obtained from MDA-MB-468 human breast cell spheroids.

(i) Obtained from human brain by PET.

(j) Median and range; obtained from human breast cancer and normal tissue using polarographic needles.

(k) Obtained from peritumoral skin tissue [94] and muscle tissue in breast tumor-bearing rats [95].

doi:10.1371/journal.pone.0161267.t004
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our knowledge there are no reliable clinical data available on metabolic rates of oxygen consump-
tion of breast cancers. Therefore, we considered a maximal consumption rateM0(tumor) for
cases BASE and CMPR, consistent with the metabolic rates of oxygen consumption reported for
xeno-transplanted human breast cancers in animal models [82] (see above for case METAB).
More recently, metabolic rates of oxygen consumption, ranging from 21 − 52μlO2/g/min, were
determined frommulticellular tumor spheroids of various human cancer cell lines, including
breast cancer (33 ± 8μlO2/g/min), serving as avascular in-vitro tumor models [77, 83], also con-
sistent with our choice ofM0.

The cohort average of the predicted tumor O2 consumptionM(Pt) proper is close to the
assumed maximal rateM0, indicating that predominantly Pt> PM50, in spite of severely
decreased PO2 levels. We explain this result by the assumed value of PM50 = 2mmHg which is
quite small. Furthermore, average partial oxygen pressures in normal breast tissue and breast
tumors are consistent with clinical data.

We conclude that our model is in general capable to correctly account for the biophysical
and physiological quantities simulated taking into account their considerable standard devia-
tions and the considerable variations of clinical, animal and theoretical data available in
literature.

Variance of tissue hemoglobin concentration, tissue blood oxygen
saturation and perfusion due to individual initial vascular configurations
It is the focus of the present paper to simulate tissue total hemoglobin concentrations cHb and
tissue blood oxygen saturation Y of tumors and host tissue and compare the results with the
clinical data on breast tumors and surrounding normal breast tissue obtained from a cohort of
87 breast cancer patients using optical mammography, reported by Grosenick et al. ([22], cf.
Figs 3A, B, Fig 5]). Since the present paper frequently refers to the clinical results, we reproduce
the relevant figures, see Figs 7 and 8.

In Figs 9, 10 and 11 corresponding to the model variants BASE, CMPR and METAB,
respectively, we likewise correlate simulated tissue hemoglobin concentration and tissue blood
oxygenation in normal and tumorous tissue separately for each of the 90 network realizations
at the beginning (t = 0) and at the end (t = 600h) of the tumor growth process, thus mimicking
a patient cohort. Figs 9–13 illustrate that variations of normal vascular configurations in the

Fig 7. Physiological parameters of tumors versus those of corresponding healthy breast tissue for 87
patients. (A, left) total hemoglobin concentration cHb; (B, right) blood oxygen saturation Y. Reproduced from
data shown in Ref. ([22], Fig 3A, B).

doi:10.1371/journal.pone.0161267.g007
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cohort result in considerable data scatter of simulated parameters, explaining the observed
scatter in clinical data on the patient cohort. Additionally the root node configuration (cf. Fig
3), associated with a particular data point, is indicated by a colored symbol.

Depending on root node configuration, drastic variations in microvascular densityMVD at
the tumor center, vascular volume density rBV and tissue hemoglobin concentration cHb as
well as perfusion and tissue blood oxygenation Y in tumors are observed. The same parameters
are subject to fluctuations over the initial networks, yet in many cases to a much lesser relative
magnitude. Our main finding, that vascular compression in solid tumors is responsible for low
tissue oxygen saturation is supported by the sections below.

Perfusion and tissue hemoglobin concentration are positively correlated
Fig 12A and 12B show that perfusion rates rBF correlate positively with tissue hemoglobin con-
centration cHb in both normal tissue and tumors. According to Fig 12A, perfusion of the initial
vasculature (normal tissue) is almost linearly dependent on cHb. Since we take cHb to be propor-
tional to rBV, perfusion rBF and vascular volume density rBV are likewise well correlated, illus-
trated for scaled perfusion rBFscaled in Fig 12C, exhibiting a linear dependence approximately.
Since high caliber vessels crisscrossing the tumor core provide dominant contributions to cHb
and rBV, and, at the same time, carry high blood flow due to low hydrodynamic resistance,
such correlation is to be expected. Details of this correlation are determined not only by vascu-
lar morphology, e.g. the initial vessel network growth model, but also by boundary conditions
at inlets and outlets, i.e. the assumed blood pressure-radius relation (s. Eq (3) in S1 Appendix).

To understand the relation between number of root nodes, vascular volume density rBV
and radii of root nodes in initial networks (t = 0, normal tissue), we consider a simplified sys-
tem in S3 Appendix. There, we calculate rBV assuming perfect binary vascular trees depending
on the number of (identical) trees (i.e. number of root nodes), yet keeping the total number of
vessel segments constant. Vessel radii, in our model of the initial vasculature, are governed by
Murray’s law. Thus, the radius of mother vessels grows by a factor of 21/3 compared to their

Fig 8. Blood oxygen saturation versus total hemoglobin concentration. Error bars ([22], cf. Fig 3a,b) on
tumor data correspond to uncertainties of tumor radius aT and location zT along compression direction,
besides statistical contributions, error bars on healthy breast tissue data reflect statistical uncertainties only.
Reproduced from data shown in Ref. ([22], Fig 5).

doi:10.1371/journal.pone.0161267.g008
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daughter vessels. Geometries with fewer root nodes (e.g. RC4 through RC8, s. Fig 3) corre-
spond to more extended arterio-venous trees compared to configurations (e.g. RC1, RC2, and
RC3) with many arterial and venous roots. It follows that rBV and root node radii are larger for
geometries with fewer root nodes. Furthermore, according to the assumed blood pressure-
radius relation, larger root node radii correspond to larger arterial-venous pressure differen-
tials, increasing perfusion. Conversely, configurations with larger numbers of root nodes are
associated with lower rBV, lower root vessel radii, and hence lower arterio-venous blood pres-
sure differentials.

Thus, vascular network structure and pressure-radius relation of the feeding and draining
vessels determine vascular volume and perfusion. In a cohort of real tissue sections we expect a
similar multitude of vascular configurations with the therewith associated data scatter.

Vascular dilatation leads to elevated tumor oxygen saturation
The cHb(tumor)-cHb(normal) correlations for cases BASE and METAB (Fig 9A) and for case
CMPR (Fig 10A) qualitatively agree with the clinically observed correlation between tissue

Fig 9. Tissue hemoglobin concentrations, volume-weighted tissue blood oxygen saturations Y and
length-weighted blood oxygenation S (Case BASE). Each data point corresponds to a different simulation
run, where the color code indicates the corresponding root node configuration (cf. Fig 3, see text). Panel A
displays hemoglobin concentration cHb of tumor tissue versus cHb in normal tissue. Panel A also corresponds
to case METAB, differing from case BASE in tissue oxygen metabolism only. Panel B correlates RBC-
volume-weighted tissue blood oxygen saturation Y, Panel C length-weighted blood oxygenation S in
tumorous and normal breast tissue. Panel D shows a plot of Y against tissue hemoglobin concentration cHb
where tumor (colored symbols) and normal tissue (black symbols) are both shown as different point sets.
Black lines in Panel A, B and C represent diagonals separating tumor data above from below normal.

doi:10.1371/journal.pone.0161267.g009
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Fig 10. Tissue hemoglobin concentrations, volume-weighted tissue blood oxygen saturations Y and length-
weighted blood oxygenation S (Case CMPR). This figure is the analog of Fig 9, but for case CMPR. Each of the 90
simulation runs was carried out with a different randomly selected factor ξcpr for reducing all tumor vessel radii (s. Eq
(40)) simulating solid stress. Fig 10 Panel A-C correlate tissue hemoglobin concentration cHb, RBC-volume-weighted
blood oxygen saturation Y and length-weighted blood oxygen saturation S of tumor (t = 600 h) and normal (t = 0 h)
tissue, respectively. In Fig 10D tissue blood oxygenation Y is plotted versus tissue hemoglobin concentration cHb
separately for tumors (colored) and normal tissue (black). Fig 10E and 10F correlate tissue blood oxygen saturation Y
of tumors with factor ξcpr and average vessel radius r. Generally, Ytum decreases with decreasing average r and
decreasing ξcpr, corresponding to higher compression. Black lines in (A), (B) and (C) represent diagonals separating
tumor data above from below normal. The color code to identify root node geometry is the same as in Fig 9.

doi:10.1371/journal.pone.0161267.g010
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hemoglobin concentrations in breast tumors and surrounding normal breast tissue (Fig 7a,
([22], Fig 3a)). Since total hemoglobin concentration is approximately proportional to vascular
volume density rBV, the higher hemoglobin concentration reflects the larger rBV of tumors,
explained by neo-angiogenesis and vessel dilatation, outweighing vascular regression. For case
CMPR we raised the maximum dilatation radius r(max) from 10 μm (BASE, METAB) to 14 μm
(s. Table 2) in order to compensate for the decrease of vascular volume density rBV associated
with an overall compression of tumor vessels. Consequently, the ensemble averages of rBV
(BASE, METAB) and rBV(CMPR) are approximately the same (s. Table 3). Likewise, the corre-
lation plots cHb(tumor)-cHb(normal) shown in Figs 9A and 10A agree qualitatively, although
quantitative differences exist comparing individual representations.

For clarity we want to point out the difference between tissue blood oxygen saturation Y =
cHbO/cHb and average vascular oxygen saturation hSi. The latter quantity is the length-weighted
average of blood oxygen saturation taken over all vessel segments of the vascular network (s. S2
Appendix). High caliber tumor vessels contribute to hSi according to their—likely higher—
blood oxygen saturation, but contribute to Y additionally by their large relative RBC volume. A
plot of hSi(tumor) versus hSi(normal) shows hSi(tumor) to fall above and below normal for
case BASE (Fig 9C), whereas hSi(tumor) is generally lower than normal when M-M oxygen
consumption rate is raised toM0(tumor) = 24.6 μlO2/ml/min (s. Panel D of Fig A in S2 Fig)
and in the compression case CMPR (Fig 10C).

Figs 9D, 10D and 11B, being qualitatively similar, illustrate the correlation between tissue
blood oxygen saturation Y and tissue total hemoglobin concentration cHb for cases BASE,
CMPR, METAB, respectively. Analogous to Fig 8, separate correlations are shown for normal
and tumorous tissue. At an arbitrarily selected hemoglobin concentration cHb there exists a
lower bound on Y, clearly discernible in Figs 9D, 10D and 11B despite considerable data scat-
ter. For tumors, tissue blood oxygen saturation Y tends towards an upper limit at high tissue
total hemoglobin concentration.

Fig 11. Volume-weighted tissue blood oxygen saturations Y and hemoglobin concentrations (Case
METAB). This figure is the analog of Fig 9 for case METAB, using the same 90 vascular network realizations
at t = 0 and t = 600 h as in case BASE. For each network realization at the end of the growth process, oxygen
related parameters were simulated by randomly selectingM0 from a lognormal distribution (see text). Fig 11A
correlates tissue blood oxygen saturation in tumorous and normal tissue. In Fig 11B, tissue blood
oxygenation is plotted versus tissue hemoglobin concentration for tumors (colored symbols) and normal
tissue (black symbols) separately. The black lines in (A) represents the diagonal separating tumor data above
from below normal. The color code to identify root node geometry is the same as in Fig 9.

doi:10.1371/journal.pone.0161267.g011
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We explain this asymptotic behavior of Y by first recognizing that vascular volume—essen-
tially cHb—and perfusion rBF are positively correlated as shown in Fig 12A and 12B. An
increase in vascular volume allows for stronger perfusion at given blood pressure boundary
conditions. By definition, tissue blood oxygen saturation Y is negatively correlated with oxygen
extraction fraction OEF. Moreover, the amount of oxygen extracted from the blood stream is
bound from above by the rate of radial diffusion and the local metabolic oxygen demand of tis-
sue. An increase of vascular oxygen influx q � c beyond what can be extracted, leads to luxurious
perfusion. In this imbalanced state, most of the oxygen exits the system again through draining
vessels. In this case the oxygen extraction fraction OEF is relatively low. This means, with
increasing perfusion Y approaches asymptotically the blood oxygen saturation level at the
input.

Luxurious perfusion is evidently predicted in tumors exhibiting high tissue hemoglobin
concentrations cHb. We conclude that in such tumors particularly few and thick vessels criss-
cross the central tumor volume. Such vessels are associated with relative large blood flow rates

Fig 12. Correlation of other dynamic vascular andmetabolic quantities (Case CMPR). Fig 12A and 12B relate perfusion to tissue hemoglobin
concentration for normal tissue (t = 0) and tumors (t = 600 h), respectively, whereas Fig 12C correlates tumor scaled perfusion rBFscaled (see text) with
vascular volume density rBV. Fig 12D and 12F correlate oxygen extraction fractionOEFwith perfusion rBF for normal (t = 0) and tumorous (t = 600 h) tissue,
respectively. Fig 12E displays tissue blood oxygen saturation Y versus perfusion (t = 600 h). A comparison of Fig 12E and 12F shows implicitly the negative
correlation ofOEF and Y for normal tissue. Each data point corresponds to one of the 90 simulation runs, where the color code to identify the root node
geometry is the same as in Fig 9.

doi:10.1371/journal.pone.0161267.g012
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q, relatively high blood oxygen saturation S, besides enhanced hematocrit (s. Figs 5D and 6).
Since tissue blood oxygen saturation Y is the RBC-volume-weighted average of blood oxygen
saturation S taken over all vessel segments (s. Eq (39)), high caliber vessels predominantly con-
tribute to Y.

Paradoxically, hypoxia is prevalent in many tumors, including our simulations. However, a
physiologically normal oxygen supply requires a homogeneous distribution of a capillary bed
exhibiting a physiological surface area per vascular volume. Instead, tumor blood vessels are
very heterogeneously distributed.

The resulting simulated tissue blood oxygen saturation Y of tumors falls above normal (case
BASE, METAB), although tumor oxygen demand was raised, i.e. the Michaelis-Menten meta-
bolic rate of oxygen consumptionM0 in tumorous tissue was assumed to be four times higher
compared to normal tissue (s. Table 1).

Figs 9D, 10D and 11B are in qualitative agreement with clinical data (s. Fig 8), apart from
missing simulated data above the lower bounds of Y. This discrepancy might be explained by
partial volume effects. Implicitly our simulations assume the spherical tumor to consist of a
homogeneous distribution of viable tumor cells, apart from its vasculature, thus assuming
homogeneity with respect to oxygen consumption. However, breast tumors of patients may

Fig 13. Correlation of geometric vascular quantities (Case CMPR). Fig 13A and 13B relate vessel surface with vessel volume densities for normal (t = 0)
and tumorous (t = 600 h) tissue, respectively, whereas Fig 13C compares vessel surface densities of tumors and normal tissue. Correlations of surface to
volume ratios SD/rBV with vessel volume density rBV are shown in Fig 13D and 13E for normal tissue (t = 0) and tumors (t = 600 h), respectively. Fig 13F
relates vessel surface to vessel volume densities for tumorous(t = 600 h) and normal (t = 0) tissue. Each data point corresponds to one of the 90 simulation
runs, where the color code to identify the root node geometry is the same as in Fig 9. Black lines in (C), (F) represent diagonals separating tumor data above
from below normal.

doi:10.1371/journal.pone.0161267.g013
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contain necrotic regions or partial volumes consisting of viable tumor cells and normal breast
cells. In either case the effective oxygen demand is reduced leading to higher tissue blood oxy-
gen saturations Y at constant tissue hemoglobin concentration cHb.

Tumor blood flow rates outweigh increased oxygen demand
Clinical data on metabolic rate of oxygen consumption of tumors are scarce. Our choice of
M0(tumor) = 14.8 μlO2/ml/min corresponds to simulated metabolic ratesMRO2 in tumors to
be about 12 μlO2/ml/min (s. Table 4), consistent with the high end of oxygen metabolic rates
reported for human xeno-transplanted breast cancers in animal tumor models [82]. Consider-
ably higher oxygen consumption rates (M0 = 33.4 ± 8.3 μlO2/ml/min) of human breast carci-
noma cells (MDA-MB-468) were recently reported based on in-vitro measurements of oxygen
flux above a monolayer of the tumor cells [83]. Assuming a M-M consumption rate ofM0 =
24.6 μlO2/ml/min raised the simulated tissue metabolic rate of oxygen consumption to 18.6 μl
O2/ml/min (BASE), yet did not change the situation, i.e. tissue blood oxygen saturation Y of
tumors was simulated to be above normal (s. Panels A and B in Fig A in S2 Fig). Likewise, sim-
ulated tissue blood oxygen saturation Y of tumors (case METAB) changed only little compared
to case BASE (s. Figs 9B and 11A), when the metabolic rateM0 was randomly selected from a
lognormal distribution for each of the 90 growth processes to simulate phenotypical differences
between breast cancer patients. We therefore conclude that tissue blood oxygen saturation Y of
breast tumors below normal (Fig 7B) is unlikely caused by high metabolic rate of oxygen con-
sumption in tumorous tissue, rather than by insufficient oxygen supply.

Vascular compression is responsible for low tumor oxygen saturation
It follows that the growth processes of tumor vasculature of case BASE (METAB) need to be
augmented (case CMPR). Our method to simulate tumor vasculature had been developed pre-
viously based on morphologic data (MVD) of melanomas. It is therefore not surprising that
addition of data on tissue blood oxygen saturation Y depending on metabolic characteristics of
tumor tissue besides vascular structure and hemodynamics, requires modifications of previ-
ously employed models. Tissue blood oxygen saturation Y is (negatively) correlated with blood
oxygen extraction fraction OEF =MRO2/rJin, where rJin is the oxygen influx per unit volume of
tissue. In simulations, tumor oxygen extraction fraction can be increased and hence tissue
blood oxygen saturation Y lowered by compressing vessels, thus restricting oxygen influx,
while keeping tissue metabolic rate of oxygen consumptionMRO2 (approximately) constant.
Therefore, we tentatively assume that blood vessels are compressed during tumor growth by
solid pressure, known to be elevated in solid tumors [9, 11], caused by proliferating tumor cells
and modifications of the tumor extracellular matrix, e.g. by increased deposition of hyaluronan
[96]. Previously, compression of intratumoral vessels was observed in an animal model, attrib-
uted to proliferating tumor cells [10]. Presently, the precise mechanisms are still under debate
by which extravascular pressure compresses tumor vessels [78, 79].

For simplicity, CMPR assumes the same radius reduction factor ξcpr for all vessel segments,
where ξcpr is randomly selected for each of the 90 tumor growth processes. Case CMPR shows
tumor blood oxygen saturation Y to fall above and below normal (Fig 10B), consistent with the
clinical data. Qualitatively speaking, for a sufficiently small radius reduction factor ξcpr selected,
vessel segments whose radii fell above the maximal dilatation radius r(max) = 14 μm (CMPR) at
the start of the tumor growth process will most likely end up to be narrower compared to case
BASE, whereas radii of smaller vessel segments (r< r(max)) will be comparable for both scenar-
ios at the end of the growth process, since the higher maximal dilatation radius of case CMPR
compensates for vessel segment compression. It follows that oxygen supply by high caliber
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vessels threading the tumor center (s. Figs 5D and 6) is reduced, causing Y to fall below case
BASE. On the other hand for a radius reduction factor ξcpr close to 1, tissue blood saturation Y
of high caliber vessel segments will be comparable for cases BASE and CMPR, explaining the
difference between Figs 9B and 10B. Likewise, compared to case BASE/METAB, compression
of vessels with radii larger than r(max) contribute to the reduction of the ensemble averages of
perfusion rBF and scaled perfusion rBFscaled by 30% and 35%, respectively (case CMPR, s.
Table 3).

Fig 10E and 10F illustrate that Ytum generally decreases with decreasing factor ξcpr, simulat-
ing increasing vascular compression by solid stress and with decreasing average vascular radius
r. Although we cannot rule out other biological processes that may cause radial extent of tumor
blood vessels to shrink we take clinical data with Ytum/Ynorm < 1 to be indicative of vascular
compression. Based on data from optical mammography [22] one might expect that tumors
with Ytum < Ynorm have vascular networks with morphological characteristics that are very dif-
ferent from tumors with Ytum> Ynorm. However, our results suggest that similar vascular net-
work morphologies and similar compartmentalization cover a wide range of values for Ytum

above and below Ynorm, in good agreement with clinical data. Since compression of blood ves-
sels will impede chemotherapy we conclude that tumors with oxy-to total hemoglobin concen-
tration below normal are less likely to respond to chemotherapy. Such behavior was recently
reported for neo-adjuvant chemotherapy of locally advanced breast tumors [47].

Oxygen extraction and vascular surface density
Fig 12D and 12F correlate oxygen extraction fraction OEF with perfusion rBF for normal and
tumorous tissue, respectively. A comparison of Fig 12E and 12F illustrates implicitly the nega-
tive correlation of tissue blood oxygenation Y and oxygen extraction fraction OEF for tumor-
ous tissue (CMPR). Such a correlation is also seen for normal tissue. As a matter of fact, for
normal tissue, the sum OEF + Y is only slightly larger than 1, being rather independent of per-
fusion. Since metabolic rate of oxygen consumptionMRO2 is essentially an input in either case
and oxygen concentration cin of feeding vessels is nearly constant, Fig 12D and 12F show a
hyperbolic dependence of OEF =MRO2/cin/rBF on perfusion rBF.

Fig 13 relates vascular geometric properties of normal and tumorous (case CMPR) tissue
that are not easily amenable to clinical measurements. As expected, vascular surface density SD
increases with increasing volume density rBV, both for normal (Fig 13A) and tumorous (Fig
13B) tissue. Since vascular volume density is higher in tumorous tissue compared to normal tis-
sue (s. Fig 10A), the same applies to vascular surface density (s. Fig 13C). In contrast, vascular
surface to volume ratios SD/rBV decrease with increasing rBV in either case, probably due to
the presence of larger vessels at higher fractional blood volumes (Fig 13D and 13E), yet vascular
surface to volume ratios of tumors may fall above or below normal (Fig 13F), depending on
whether or not the increase in tumor surface density over that of normal tissue outweighs the
corresponding increase in tumor volume density over normal.

Limitations
Although we explained salient features of the clinically observed correlations of hemoglobin
concentration and tissue blood oxygen saturation between tumorous and corresponding nor-
mal breast tissue (inter-network correlations) as well as the dependence of tissue blood oxygen-
ation on hemoglobin concentration for normal breast tissue and tumors (intra-network
correlations) our model has important limitations.

Our computational method presently based on a uniform grid has limited accuracy due to
poor convergence with lattice spacing h. Optimal convergence of the solution of elliptic partial
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differential equations with Dirac source terms can be achieved by adaptive meshes, concentrat-
ing discretization points near the source contributions [97]. In future, adaptive meshes should
be used to improve the accuracy of our method.

The small size of the spherical tumors embedded in the simulation domain make a compari-
son of simulated data with clinical results uncertain, notably for perfusion. Also, the vascular
structure of cm sized tumors might be different from the mm-sized tumors that were simu-
lated. Apart from its vasculature, we implicitly assumed the growing spherical tumor to be
homogeneous. However, in real tumors, viable, oxygen consuming, tumor cells are concen-
trated near blood vessels, whereas necrotic regions which hardly, if at all, consume O2 occur in
regions void of vessels. This heterogeneity affects tissue PO2 distributions and therefore likely
also tissue blood oxygen saturation Y.

The reduction of tumor vessels radii during the growth process by the same, randomly
selected factor is the simplest way to account for compression by solid stress. In effect, this
method decreases the radii of vessels where r is larger than the maximal radius r(max) reached
by circumferential dilatation. Furthermore, reducing r(max) leads to skewed balance between
microvessel densityMVD and regional blood volume rBV which we currently consider as ade-
quate. However, rather than a reduction of vessel radii, local pinch-offs of vessels are more
likely to occur [12], restricting or obstructing RBC flow and thus delivery of oxygen, yet not
changing significantly vascular volume density. Furthermore, only stationary solutions of per-
fusion were sought, although it is well known that blood flow in capillaries may be chaotic.

If possible anatomical information should be used to generate realistic geometries of feeding
arteries (arterioles) and draining veins (venules), rather than arbitrarily creating geometric pat-
terns of root nodes as in this paper. Following [98] a possible remedy to this problem might be
to exclude root node geometries that result in unrealistic values of biophysical variables, e.g.
unreasonably low or high perfusion rates. Furthermore, probability distributions associated
with the clinical data may allow to select the most probable root node geometries.

Conclusions
We have taken a first step to elucidate the relationship between vascular morphology, vascular
oxygen concentration and oxygen delivery to tumor and host tissue, thus trying to solve an ill-
posed inverse problem, namely to deduce morphological information on vascular networks
from clinical coarse grained data. To this end, we related data on tissue hemoglobin concentra-
tions and tissue blood oxygen saturations of breast cancers and surrounding host tissue to syn-
thetic, algorithmically generated tumor blood vessel networks and networks of surrounding
normal tissue, by simulating intravascular and extravascular distributions of partial oxygen
pressure. Our simulations suggest that elevated fractional volume of blood vessels in breast
tumors is likely the result of vascular dilatation, in spite of a drastic reduction of the number of
vessels by regression and collapse. Considerable data scatter in simulated quantities, e.g. tumor
tissue hemoglobin concentration and tissue blood oxygenation are related to vascular variance
of initial blood vessel networks and qualitatively explain the scatter of clinical data of the
patient cohort. Furthermore, breast tumors with tissue blood oxygenation above normal are
likely associated with high tumor blood flow caused by high-caliber blood vessels penetrating
into the tumor. Tissue blood oxygen saturation Y in tumors that is below normal could only be
achieved by a reduction of the radii of high-caliber blood vessels, emulating compression of
blood vessels caused by intra-tumoral solid stress. Factors contributing to low saturations Y are
the reduction in blood flow, increasing the fractional oxygen extraction, and secondly, the asso-
ciated reduction in vascular volume by which the blood oxygen saturation is weighted. Our
simulations provide a possible explanation for tissue blood oxygenation in tumors below
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normal at baseline reported to be indicative of poorer prognosis for neoadjuvant chemother-
apy. We expect our model to find applications to data analysis of PET, MRI, biomedical optics
and hybrid techniques such as photoacoustics, probing tissue vascularization and oxygenation.

Supporting Information
S1 Appendix. Model details and validation. Details on the derivation of the transvascular
oxygen mass transfer coefficient γ are given, simulation results are compared with literature
references, estimating the accuracy of our method, and finally the blood pressure at inlets and
outlets p(BC)(r) is defined.
(PDF)

S2 Appendix. Explicit Formulas for Relevant Biophysical Quantities. The simulation of
tumor growth and oxygen PO2 distributions in blood and tissue yields vascular flow rates qv,
hematocrit Hv, oxygen partial pressure P at discrete points on vessel axes, and tissue partial
oxygen pressure Pt. In this section explicit formulas of other derived biophysical quantities are
provided.
(PDF)

S3 Appendix. Regional Blood Volume of Confined Perfect Binary Trees. In this section we
derive an approximative relation between the number of root nodes and the regional blood vol-
ume, provided that the total number of vessels is held constant. Here we assume that all vascu-
lar trees are perfect binary trees.
(PDF)

S4 Appendix. Further details on comparison between simulated and literature biophysical
data. In support of our model we further discuss simulated data listed in Tables 3 and 4 in
some detail, comparing our results with clinical data, data obtained from animal models and
theoretical data available in the literature.
(PDF)

S1 Fig. Tissue PO2 distributions at constant vascular blood oxygenation.We compare the
results of our oxygen model (cf. Fig 5C, case CMPR, root node geometry RC9) with predictions
of a simplified model using a constant intravascular oxygen concentration.
(PDF)

S2 Fig. Data for doubled parameter value of maximal O2 consumption rateM0. Correla-
tions of volume (Y) and length (S) weighted blood oxygen saturations at increased metabolic
rate of tissue oxygen consumption are compared with case BASE.
(PDF)
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