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a b s t r a c t

COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects
several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their
higher level of effort to develop novel methods to prevent and control this pandemic scenario. The
main objective of this paper is to propose a medical decision support system using the implementation
of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture.
To the best of the authors’ knowledge, there is no similar study that proposes an automated method
for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results
of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two
main experiments. First, the binary classification results using images from COVID-19 patients and
normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia
and normal patients are discussed. The results show average accuracy values for binary and multi-
class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet
presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively.
On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54%
is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is
presented for binary classification. In conclusion, the proposed architecture can provide an automated
medical diagnostics system to support healthcare specialists for enhanced decision making during this
pandemic scenario.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Currently, COVID-19 has led to critical consequences on the
conomic and social structures of developed and developing
ountries [1,2]. The first case of infection by coronavirus has
een reported in December 2019 at Wuhan, China [3]. However,
he current pandemic situation still to be resolved [4,5]. This
irus critically affects several countries such as the USA [6],
razil [7], India [8] and Italy [9]. Therefore, several research units
re working to develop policies, vaccines and novel methods to
ontrol this pandemic scenario [10].
On the one hand, numerous researchers from the medicine

omain are developing drugs to stop the virus prefoliation [11,
2]. First, it is necessary to develop new methods to help infected
eople [13–15]. Second, it is also crucial to plan sanitary policies
o prevent infected patients from disseminating the virus [16,17].
n the other hand, computer science researchers have a critical
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role in the development of new methods to support virus diag-
nostics [18,19]. Several innovations have been developed using
a set of numerous technologies, such as the development of
mobile applications to monitor and track the interaction between
people [20,21].

Artificial intelligence (AI) is also crucial in this field and to de-
velop solutions to support diagnosis [22]. AI methods have been
used to create automated systems for COVID-19 diagnosis [23–
25]. These methods will never replace human care. However,
they can be a relevant solution to combat the virus. AI is widely
used in the medicine domain [26]. Despite the ethical concern
regarding the application of AI with patients’ data in the current
pandemic scenario, these methods should be used to support
medical staff [27–29]. The stress factors that affect medical pro-
fessionals during this pandemic scenario concerning the increase
of patients in the hospitals are significantly affect their work and
performance [30]. Consequently, it is necessary to create novel
methods that can support their work.

Nowadays, researchers are using CNN (Convolutional Neural
Network), a class of deep learning neural networks for several
applications [31–33]. CNNs have an input layer, an output layer,
and hidden layers [34]. The hidden layers usually consist of con-
volutional layers, ReLU layers, pooling layers, and fully connected
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layers [35,36]. CNN’s represents a huge breakthrough in auto-
matic image classification systems as there is no need for pre-
processing the images, that was needed in traditional machine
learning algorithms [37–39].

The main objective of this research is to propose a med-
ical decision support system using CNNs. To the best of the
authors’ knowledge, there is no similar study that proposes an
automated method to the detected COVID in CT X-ray images
using EfficientNet [40,41]. Therefore, the main contribution of
this paper is to present an automated medical diagnosis system
implemented using EfficientNet. Numerous studies and applica-
tions have been reported in the literature. The authors believe
that in the critical pandemic scenario is crucial to share all the
methods and materials to allow the readers to reproduce the
results. The authors share the python scripts developed in the
Google Colab platform. In this way, the software is accessible to
all the readers who can execute the scripts for future research
activities. This architecture can be used for transfer learning, and
it is more efficient than most of its predecessors such as VGG (e.g.
VGG16 or VGG19), GoogLeNet (e.g. InceptionV3), and Residual
Network (e.g. ResNet50) [42]. The EfficientNet model consists of
8 models from B0 to B7, with each subsequent model number
referring to variants with more parameters and higher accuracy.
EfficientNet architecture uses transfer learning to save time and
computational power. Consequently, it provides higher accuracy
values than the competitor known models. This is due to the use
of a clever scaling at depth, width, and resolution. The authors
have used the B4 model, as it contains 19 m parameters, that
is feasible for our experimental setup, as B5, B6 and B7 include
30M, 43M and 66M params, respectively [41]. Furthermore, the
authors have used separated datasets to validate the proposed
CNN models using images that are not included during the testing
and training phase. The proposed model has been evaluated using
stratified cross-validation 10-fold stratified. This paper presents
two main experiments including different datasets for testing and
validation to ensure the non-occurrence of overfitting. First, the
binary classification results using images from COVID-19 patients
and normal patients are shown. Second, the multi-class results
using images from COVID-19, pneumonia and normal patients
are discussed. The source code is provided in this document as
supplementary files.

The remainder of this paper is structured as follows. Section 2
introduces the related work. The materials and methods used in
this research are described in Section 3. Section 4 presents the re-
sults of the proposed CNN model. The discussion and comparison
of the proposed method with the related work available in state
of the art are presented in Section 5. Finally, the conclusions are
presented in Section 6.

2. Related work

Numerous researchers are working at their best effort using
AI technologies to develop novel systems to support COVID-19
diagnosis. These studies aim to create new automated systems
for COVID-19 diagnosis. These methods should be used to sup-
port medical staff in the current pandemic scenario. Further-
more, machine learning technologies can be used to decrease the
stress factors that affect medical professionals during this pan-
demic scenario concerning the increase of workflow in healthcare
facilities.

Ozturk et al. [43] propose an automated detection system
for COVID-19 cases using deep neural networks and chest X-ray
images. The proposed method is based on the DarkNet model
for real-time detection and implements 17 convolutional layers.
This study aims to support the decision making of radiologists
to validate their screening process. The heatmaps produced by
this automated system have been evaluated by radiologists. The
dataset used includes 1125 images. In total, 125 samples are
used for COVID-19 class, 500 for pneumonia class and for 500
normal class. The authors have used 5-fold cross-validation to
validate the performance of the proposed method. The average
accuracy of 98.08% and 87.02% is reported for binary and multi-
class classification. The limitation on the number of samples used
for COVID-19 class is reported by the authors.

A deep learning model to improve the accuracy of binary
classification of COVID-19 is proposed in [44]. The proposed CNN
was implemented based on the VGG-19 classifier. The dataset
used includes a total of 364 X-ray scans. The model performance
has been validated using random sampling. The ratio used for
train, validation and testing was 80:20:20. The number of samples
for normal class and COVID-19 was 233 and 115 during training,
56 and 32 during validation, and 75 and 34 during testing. The
results show an accuracy of 96.3%. The limited number of samples
for COVID-19 cases is stated by the authors.

Apostolopoulos et al. [45] propose a transfer learning ap-
proach using VGG-19 and MobileNet v2 for automated detec-
tion of patients with pneumonia and COVID-19. Two different
datasets have been included in this study. One dataset of a total
of 1427 samples that include 504, 700 and 224 images of normal,
pneumonia and COVID-19, respectively, have been used. On the
other hand, a different dataset of 224 samples for COVID-19,
714 samples of pneumonia patients and 504 of normal patients
is also included. The 10-fold cross-validation has been used to
evaluate the proposed models. The VGG-19 and MobileNet v2 re-
ported 98.75% and 97.40% of accuracy for binary classification and
93.48% and 92.85% for multi-class concerning the first dataset.
Furthermore, the MobileNet v2 has been applied in the second
dataset presenting an accuracy of 96.78% for binary classification
and 94.72% for multiclass. The authors state that a more in-
depth analysis using more patient data concerning COVID-19
individuals is required.

The authors of [46] proposed a fast screen system for COVID-
19 detection based on deep learning neural networks. The pre-
sented method is based on the nCOVnet and uses chest X-rays
images. The dataset included in this study has a total of 337
samples. In total, 192 of the samples are from COVID-19 positive
patients and 142 images of normal patients. The model’s per-
formance has been evaluated using random sampling using 70%
for training and 30% for testing. The proposed system for binary
classification provides an accuracy of 88.10%. The authors of this
study state the limitations on the number of samples included in
the used dataset.

A novel artificial neural network system for COVID-19 de-
tection is proposed in [47]. The proposed method is based on
Convolutional CapsNet and uses chest X-ray images. The system
includes binary and multi-class classification features. The dataset
used includes a total of 3150 samples, 1050 images each class
(normal, pneumonia and COVID-19). The 10-fold cross-validation
is used to evaluate the performance of the proposed system. The
results show an accuracy of 97.24% and 84.22% for binary and
multi-class classification. The limitations reported by the authors
focus on the hardware resources needed to process a massive
number of images and the processing time.

Nour et al. [48] propose a novel medical diagnosis model of
COVID-19 to support clinical applications. The system is based
on deep features and Bayesian optimization. The CNN model is
applied for automated extraction of features that are often pro-
cessed by different machine learning methods such as kNN, SVM
and Decision Tree. The used dataset contains 2033 of samples,
135 for COVID-19, 939 for normal class and 941 for pneumonia.
The authors have used data augmentation to increase the number
of samples concerning COVID-19 class. The performance of the
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Table 1
Related work on COVID-19 detection systems.
Reference Model Data used Number of images Classification Evaluation method

[43] DarkNet model Chest X-ray 1125 — total; 125 — COVID-19; 500
— Pneumonia; 500 — Normal

Binary and Multi-class 5-fold cross-validation

[44] VGG-19 Chest X-ray 545 — total; 181 — COVID-19; 364 - Normal Binary Random sampling 80:20:20
for train, validation and
testing.

[45] VGG-19 and
MobileNet v2

Chest X-ray Dataset 1: 1427 — total; 504 — Normal; 700
— Pneumonia; 224 — COVID-19 Dataset 2:
1442 — total; 504 — Normal; 714
— Pneumonia; 224 — COVID-19

Binary and Multi-class 10-fold cross-validation

[46] nCOVnet Chest X-ray 337 — total; 192 — COVID-19; 142- Normal Binary Random sampling 70% for
training and 30% for testing

[47] CapsNet Chest X-ray 3150 — total; 1050 — Normal; 1050 —
Pneumonia; 1050 — COVID-19

Binary and Multi-class 10-fold cross-validation

[48] Proposed CNN Chest X-ray 2033 — total; 135 — COVID-19, ; 939
— Normal;
941 — Pneumonia.

Binary and
Multi-class

Random sampling
70% for training and 30%
for testing

[49] ResNet 18 Chest X-ray 746 — total 349 — COVID-19 397 — Normal. Binary Random sampling. 70% for
training and 30% for testing.

[50] Proposed Semi-
supervised
model

Chest X-ray Dataset 1: 2482 — total; 1230 — Normal;
1252 — COVID-19 Dataset 2: 20 — COVID-19

Binary Random sampling 70% for
training and 30% for testing
proposed system has been evaluated using 70% and 30% of the
dataset for training and testing, respectively. The proposed CNN
presents an accuracy of 97.14%.

In [49], the authors have used augmentation for increasing the
ize of training dataset by using stationary wavelets and com-
ared different transfer learning CNN architectures. The dataset
sed includes 349 samples for COVID-19 and 397 samples for nor-
al class. The authors also applied data augmentation techniques

o increase the number of samples for both classes. In this study,
0% of the samples are used for training, and 30% have been
onsidered for validation. The proposed method provides 99.4%
ccuracy during testing for a binary classifier using the ResNet
8 model.
Konar et al. [50] propose a semi-supervised shallow neural

etwork model for automated diagnostic of COVID-19. This study
ncluded two datasets. One of them consists of a total of 2482
amples, from these 1252 samples are from COVID-19 positive
atients, and 1230 are from not infected patients. The second
ataset includes 20 samples of COVID-19 positive patients. The
roposed model has tested using random sampling with a ratio
f 70% for training and 30% for testing. Moreover, the model has
lso been evaluated using 5 and 10-fold validation. The proposed
ethod presents an accuracy of 93.1%.
In summary, several methods have been proposed in the lit-

rature for the automated diagnostic of COVID-19. These stud-
es use different number of images and datasets from multiple
ources. Moreover, different approaches have been used to eval-
ate the performance of the models such as cross-validation and
andom sampling. Most of the studies state the limitation asso-
iated with the number of samples to conduct the experiments.
able 1 summarizes the related work on COVID-19 detection
ystems.

. Methods and materials

This section presents the methods and materials used in this
tudy. Section 3.1 details the datasets of X-ray images used to test
nd train the proposed method. The proposed CNN is presented
n Section 3.2. Finally, the validation method and experimental
etup are presented in Section 3.3.

.1. X-ray Image DataSet

The samples used to train and test the proposed method
ave been collected from public datasets. It is critical to ensure
the equal number of samples that cover the analyzed classes to
properly validate the performance of the model. Consequently,
the authors have used the same number of images to train and
test. Table 2 presents the reference and number of images used by
the authors. In total, 404 samples have been used corresponding
to Normal, Pneumonia and COVID-19. These samples have been
used in the stratified 10-fold cross-validation.

Furthermore, the authors have tested the model using a sep-
arate dataset for validation. The number of samples used to
validate the proposed model was 96 for normal class and 100 for
pneumonia and COVID-19 class. These datasets were not used in
the training phase of the model, and this experiment has been
conducted to test the non-occurrence of overfitting.

On the one hand, pneumonia and normal images have been
retrieved from the dataset available in [51]. This dataset is public
and contains validated chest X-ray images of the pneumonia
patients and normal patients. It is freely available on the Kaggle
website. This dataset only contains the folders named as Pneu-
monia and Normal, and there is no other information available.
The authors have downloaded these folders directly from the
Kaggle website to be included in the proposed work. On the other
hand, the COVID-19 Image DataSet has been used to retrieve the
COVID-19 positive samples and is available in [52]. It is a public
dataset of validated chest X-ray images of COVID-19 positive
patients. It is available on GitHub database repository. The images
are collected from public sources as well as through indirect
collection from hospitals and physicians. This project is approved
by the University of Montreal’s Ethics Committee (CERSES-20-
058-D). The Research community is adding images continuously
in this dataset. The main purpose of developing this dataset is
to improve prognostic predictions to triage and manage patient
care. The authors used only two attributes, the findings column
to identify COVID-19 images and the name of the image.

3.2. Proposed CNN

The authors have used the EfficientNetB4 model for the trans-
fer learning process and added a global_average_pooling2d layer
to minimize overfitting by reducing the total number of param-
eters. In addition to this, a sequence of 3 inner dense layers
with RELU activation functions and dropout layers have been
added. In total, a 30% dropout rate has chosen randomly to avoid
overfitting. Finally, one output dense layer contains two output
units in case of binary classification, and 3 output units for multi-
class classification, with softmax activation function that has been
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Table 2
Dataset information.
Class Reference Number of images for training/ testing Number of images for validation

NORMAL [51] 404 96
PNEUMONIA 404 100
COVID-19 [52] 404 100
c
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Table 3
Layer types and parameters used in the proposed model.
Layer (type) Output shape Param #

EfficientNetB4 (Model) 7 ×7× 1792 17,673,816
global_average_pooling2d 1792 0
dense (Dense) 128 229,504
dropout (Dropout) 128 0
dense_1 (Dense) 64 8256
dropout_1 (Dropout) 64 0
dense_2 (Dense) 32 2080
dropout_2 (Dropout) 32 0
dense_3 (Dense) 2/3 99
otal Parameters: 17,913,755
rainable Parameters: 17,788,555
on-trainable Parameters: 125,200

added to create the proposed automated detection system. The
details of the layers and their order in the proposed model, output
shape of each layer, the number of parameters (weights) in each
layer, and the total number of parameters (weights) are presented
in Table 3. The total number of parameters is 17,913,755.

All the software and libraries used in the proposed work are
pen source. To reproduce the results, the readers should use
oogle Colab Notebook using the GPU run time type. This soft-
are can be used without costs since it is provided by Google for
esearch activities using a Tesla K80 GPU of 12 GB. The Efficient-
et Models are pre-trained, scaled CNN models that can be used
or transfer learning in image classification problems. The model
s developed by Google AI in May 2019 and is available from
ithub repositories. The ImageDataAugmentor is a custom image
ata generator for Keras which supports augmentation modules.
t is also developed by Google AI and is available from Github
epositories. Finally, the Albumentations library is also developed
y Google AI and can be installed from Github Repositories. In
ummary, the software used can be used without license concerns
s it is free and open source.
The authors have used three different main libraries in the

roposed method. These libraries include the EfficientNet mod-
le, the Albumentation module and the ImageDataAugmentor
odule.
On the one hand, the EfficientNet Models are based on simple

nd highly effective compound scaling methods. This method
nables to scale up a baseline ConvNet to any target resource
onstraints while maintaining model efficiency, used for transfer
earning datasets. In general, EfficientNet models achieve both
igher accuracy and better efficiency over existing CNNs such as
lexNet, ImageNet, GoogleNet, and MobileNetV2 [41]. Efficient-
et could serve as a new foundation for future computer vision
asks. There is no similar study that uses EfficientNet for transfer
earning concerning COVID-19 classification to the best of authors
nowledge until this date. EfficientNet includes models from B0
o B7, and each one has different parameters from 5.3M to 66M.
he authors used EfficentNetB4 that contains 19M parameters, as
t is suitable according to our resources and purpose.

On the other hand, the Albumentation library is widely used in
ndustry, deep learning research, machine learning competitions,
nd open source projects. This module efficiently implements a
ariety of image transform operations that are optimized for per-
ormance. This library provides an image augmentation interface

or different computer vision tasks, including object classification, e
segmentation, and detection. The authors have used the Compose
method of the Albumentaion library. This library reduces over-
fitting, improve the performance of classifiers and the decrease
execution time [53]. After the implementation of this library for
augmentation purposes in each fold, the model accuracy of the
model has increased, and the processing time decreased.

Finally, the ImageDataAugmentor is a custom image data gen-
erator for Keras supporting the use of modern augmentation
modules (e.g. imgaug and albumentations) [54]. This library is
used to configure the Image data generator according to the al-
bumentations settings to decrease execution time. Data generator
is created by using the constructor of ImageDataAugmentor class
with two arguments. One is rescale whose value is set as 1/255 to
transform every pixel value from range [0, 255] to [0, 1]. Another
is the augment value that is configured as the output of the
ompose function of the Albumentation library. Data generator
as used further to process the image datasets. Fig. 1 presents
he block diagram of the proposed work.

.3. Validation and experimental setup

The model has been validated in two different phases. On the
ne hand, the 10-fold cross-validation method has been using
he same dataset for training and testing. On the other hand,
separate dataset which contains samples that have not been
sed during the training phase has been applied to validate
he performance of the model. The confusion matrix has been
xtracted. Consequently, the precision, recall and F1-score have
een computed concerning the separated classes. Finally, the av-
rage values for each fold have been calculated. The experimental
etup used to conduct this study is detailed in Algorithm 1.

. Results

The experiments were carried out on Google Colab notebook
sing GPU run time type. The training of the proposed CNN model
as realized using stratified 10-fold cross-validation method. In
otal, 11 epochs were used in each fold. Moreover, 69 steps for
ulti-class and 46 steps for binary classification are used in each
poch. The mini-batch size used was 16.
The training of the model was completed in a total of 7590

terations for multi-class and 5060 iterations for binary class.
he time elapsed for the training of the model was 111.83 min
or multi-class CNN and 79.16 min for binary class. The initial
earning rate was 0.0001. The authors employed a ReduceLROn-
lateau method since it reduces the learning rate when it stops
mproving. This callback monitors the improvement, and if no
mprovement is verified for a ‘patience’ number of epochs, the
earning rate is reduced. The authors have defined patience=3
nd the min_lr=0.000001 in the proposed method. The ADAM
ptimization method was used as a solver. The training and
alidation graphs with the loss, confusion matrix, and area under
he curve of receiver operating characteristics for each fold of
he proposed CNN can be verified from the supplementary files.
fter training of all the 10-fold CNN models, the best model is
dentified and used for the validation testing, by using different
atasets. The performance reported in the validation experiment
s promising. The scripts and detailed information concerning the

xperiments can be consulted in the supplementary files.
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Fig. 1. Block Diagram of the proposed work.
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Table 4
Results of binary classification for COVID-19 class.
Fold Precision Recall F1 score

1 100% 100% 100%
2 97.61% 100% 98.79%
3 100% 97.56% 98.76%
4 100% 100% 100%
5 100% 100% 100%
6 100% 100% 100%
7 100% 100% 100%
8 97.56% 100% 98.76%
9 100% 100% 100%
10 100% 100% 100%
Average 99.51% 99.75% 99.63%

Table 5
Results of binary classification for normal class.
Fold Precision Recall F1 score

1 100% 100% 100%
2 97.61% 100% 98.79%
3 97.56% 100% 98.76%
4 100% 100% 100%
5 100% 100% 100%
6 100% 100% 100%
7 100% 100% 100%
8 100% 97.56% 98.76%
9 100% 100% 100%
10 100% 100% 100%
Average 99.51% 99.75% 99.63%

It is crucial to provide all the details about the methods and
aterials used to allow the readers to reproduce the results.
herefore, the python scripts developed in a Google Colab plat-
orm are included as supplementary files. The supplementary file
presents the results for binary classification, and the supple-
entary file B contains the results for multi-class classification.

.1. Experimental results of binary classification

In this section, the results for the binary classification are
resented. In total, 728 images have been used for training, and
0 images have been used for testing. The results are presented
or each fold, and the average value is also reported. The accuracy,
recision, recall and f1-score results are presented for each class
nd for both classes.
Table 4 presents the results for the binary classification con-

idering the COVID-19 class. The lower performance values of the
odel concerning the COVID-19 class samples are reported for

he 2, 3 and 8-fold. The lower precision values of 97.61% and
7.56% occurred in the 2-fold and 8-fold, respectively. Moreover,
he minimum recall value is 97.56% in 3-fold. The F1-score is
8.79% at 2-fold and 98.79% at 3-fold and 8-fold. The average
recision, recall, and F1-score are 99.51%, 99.75% and 99.63%,
espectively.

The performance result for binary classification concerning
he normal class is presented in Table 5. The lowest recall value
s 97.56% reported for the 3-fold. Furthermore, the precision is
7.61% and 97.56% for 2-fold and 3-fold, respectively. Finally, the
1-score is 98.79% at 2-fold and 98.76% for 3-fold and 8-fold.
Table 6 presents the accuracy, precision, recall and F1-score

esults for binary classification for both classes. The average accu-
acy reported is 99.62%. Moreover, 99.64%, 99.63% and 99.62% are
eported concerning precision, recall, and F1-score, respectively.

.2. Experimental validation results of classification

An external dataset which contains samples that have not
een used during the training phase has been applied to validate
Table 6
Results of binary classification between classes.
Fold Accuracy Precision Recall F-1 Score

1 100% 100% 100% 100%
2 98.76% 98.88% 98.75% 98.76%
3 98.76% 98.78% 98.78% 98.76%
4 100% 100% 100% 100%
5 100% 100% 100% 100%
6 100% 100% 100% 100%
7 100% 100% 100% 100%
8 98.76% 98.78% 98.78% 98.76%
9 100% 100% 100% 100%
10 100% 100% 100% 100%
Average 99.62% 99.64% 99.63% 99.62%

Fig. 2. Confusion matrix of the validation testing for the binary classifier.

he performance of the model and ensure that the model is not
verfitted. This external dataset contains 96 samples for normal
lass and 100 samples for COVID-19 class. To the best of the
uthor’s knowledge, there is no similar study that has used this
ethod to validate the proposed CNN model. The trained model
f 10-fold has been used for validation. The confusion matrix for
he cross-validation test is presented in Fig. 2.

The precision value is 100% for COVID-19 class and 98.96%
or normal class. Moreover, the reported recall value is 99% for
OVID-19 class and 100% for normal class. Finally, the F1-score
s 99.49% for COVID-19 class and 99.48% for normal class. The
verage accuracy is 99.49%. Therefore, this experiment ensures
he efficiency of the proposed method. The receiver operating
haracteristic for binary-class data is presented in Fig. 3.

.3. Experimental results of multi-class classification

The classification results for multi-class are presented in this
ection. In total, 1092 samples have been used for training, and
22 images have been used for testing. Three different classes
re analyzed, such as COVID-19, normal and pneumonia. Table 7
resents the classification results concerning the COVID-19 class.
n the one hand, the lower precision value of 97.56% has been
eported for 8, 9 and 10-fold. On the other hand, the lower F1-
core of 98.76% is reported for 8, 9 and 10-fold. The average
recision recall and F1-score values are 99,26% 100% and 99,62%,
espectively.

The results for normal class are presented in Table 8. The
aximum precision value is 100% reported at the 6-fold, and

he minimum precision value is 92.50% in 10-fold. Moreover,
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able 7
esults of multi-class classification for COVID-19 class.
Fold Precision Recall F1 Score

1 100% 100% 100%
2 100% 100% 100%
3 100% 100% 100%
4 100% 100% 100%
5 100% 100% 100%
6 100% 100% 100%
7 100% 100% 100%
8 97.56% 100% 98.76%
9 97.56% 100% 98.76%
10 97.56% 100% 98.76%
Average 99.26% 100% 99.62%

Table 8
Results of multi-class classification for normal class.
Fold Precision Recall F1 Score

1 92.68% 95.00% 93.82%
2 95.00% 95.00% 95.00%
3 97.50% 97.50% 97.50%
4 95.00% 95.00% 95.00%
5 97.50% 97.50% 97.50%
6 100% 97.56% 98.76%
7 95.34% 100% 97.61%
8 97.61% 100% 98.79%
9 97.50% 95.12% 96.29%
10 92.50% 92.50% 92.50%
Average 96.06% 96.51% 96.27%

the lower recall result is 92.50% at 10-fold. Finally, the F1-score
ranges from 92.50% at 10-fold to 98.79% at 8-fold. The average
results of 96.06%, 96.51% and 96.27% are presented for precision,
recall and F1-score, respectively.

The results for pneumonia class are presented in Table 9. These
esults show that precision ranges from 95% at the 1-fold to 100%
t 6,7, and 8-fold. The lowest value for recall is 87.80% at 10-fold.
inally, the better F1-score value is reported at 6-fold, and the
ower value is 92.30% presented in 10-fold. The average values
eported for precision, recall and f1-score concerning pneumonia
amples are 97.47%, 93.58% and 95.45%, respectively.
The average score values between classes such as COVID-19,

ormal and pneumonia are presented in Table 10. The average
ccuracy, precision, recall and F1-score are 96.70%, 97.59%, 96,69%
nd 97.11%, respectively. On the one hand, the highest average
recision is reported at 6-fold, and the lowest value is 95.78%
resented at 10-fold. On the other hand, the lower result con-
erning recall is 93.43% presented at 10-fold, and the higher value
s reported at 99.18% at 6-fold. Furthermore, the average F1-score
anges from 94.52% at 10-fold to 99.58% at fold-6-fold. The results
Table 9
Results of multi-class classification for pneumonia class.
Fold Precision Recall F1 Score

1 95.00% 92.68% 93.82%
2 95.12% 95.12% 95.12%
3 97.5% 95.12% 96.29%
4 95.12% 95.12% 95.12%
5 97.43% 95.00% 96.20%
6 100% 100% 100%
7 100% 92.50% 96.10%
8 100% 92.50% 96.10%
9 97.29% 90.00% 93.50%
10 97.29% 87.80% 92.30%
Average 97.47% 93.58% 95.45%

Table 10
Results of multi-class classification between all classes.
Fold Accuracy Precision Recall F-1 Score

1 95.90% 95.89% 95.89% 95.88%
2 96.72% 96.70% 96.70% 96.70%
3 97.54% 98.33% 97.54% 97.93%
4 96.72% 96.70% 96.70% 96.70%
5 97.52% 98.31% 97.50% 97.90%
6 99.17% 100% 99.18% 99.58%
7 97.52% 98.44% 97.50% 97.90%
8 97.52% 98.39% 97.50% 97.88%
9 95.04% 97.45% 95.04% 96.18%
10 93.38% 95.78% 93.43% 94.52%
Average 96.70% 97.59% 96.69% 97.11%

Fig. 4. Confusion matrix of the validation testing for the multi-class classifier.

presented in Table 9 ensure the performance of the proposed
method for automated medical diagnosis.

4.4. Experimental validation results of multi-class classification

Similarly to the experiment presented in Section 4.2, an exter-
nal dataset has been applied to validate the performance of the
model. This external dataset contains 96 samples for normal class,
100 samples for COVID-19 class and 100 samples for pneumonia
class. The trained model of 10-fold has been used for validation.
The extracted confusion matrix for the cross-validation test for
multi-class classification is presented in Fig. 4.

The average reported accuracy is 96.62%. The results for pre-
cision, recall and F1-score for COVID-19 class is 98.00%. More-
over, 98.92%, 95.83% and 97.35% are reported for precision, recall
and F1-score, respectively, concerning samples for normal class.
Finally, the precision, recall and F1-score for pneumonia class
reported are 96.00%. The receiver operating characteristic for
multi-class data is presented in Fig. 5.
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Fig. 5. ROC curve of the validation testing for the multi-class classifier.

In summary, the results of the proposed CNN model for auto-
ated medical diagnostics support are promising. The reported
verage accuracy values for binary and multi-class are 99.62%
nd 96.70%, respectively. On the one hand, the proposed CNN
odel using EfficientNet architecture presents an average recall
alue of 99.63% and 96.69% concerning binary and multi-class,
espectively. On the other hand, the average precision of 99.64%
s reported by binary classification, and 97.54% is presented in
ulti-class. Finally, the average F1-score value for multi-class is
7.11%, and 99.62% is presented for binary classification.

. Discussion

The proposed model is compared with the related work. In-
eed, it is crucial to mention this comparison is limited concern-
ng the differences in the samples used and the parameters of
he machine learning methods. Furthermore, since most of the
tudies do not provide the software, it is not possible to compare
he methods applied by the studies available in the literature
sing the samples included in our research or vice-versa.
The number of new methods proposed in the literature by

omputer science researchers increases every day. Currently, the
ocus on these systems to support health professionals is a trend-
ng topic. Different architectures such as DarkCovidNET, VGG19,
obileNet v2, CapsNet and nCOVnet have been proposed for
utomated medical diagnosis of COVID-19. This section aims to
ompare the proposed model results with similar studies avail-
ble in state of the art. Table 11 presents the results presented
or binary classification studies available in the literature.

The proposed method outperforms all the works concerning
inary classification. Nevertheless, the authors of [45] proposed
n architecture with a relevant accuracy of 98.75%. Moreover,
he method proposed in [43] also presents a significant accuracy
f 98.08%. Consequently, the implementation of the EfficientNet
rchitecture presents promising results for automated medical
iagnosis of COVID-19 concerning binary classification. Different
ethods for multi-class classification of COVID-19 patients are
resented in Table 12.
The accuracy levels proposed by the methods in Table 11

ange from 84.22% [47] to 97.14% [48]. When compared with
he system proposed by the authors of [48] our method provides
ess accuracy but higher recall and F1-score. The authors of [48]
resent a recall of 94.61% and an F1-score of 95.75%. The pro-
osed method provides 96.69% and 97.11% concerning recall and
1-score, respectively.
The authors have used stratified 10-fold cross-validation to

valuate the proposed models. On the one hand, Table 3 contains
the precision, recall, and F1 score of each fold for the binary
classification considering the COVID-19 class. From the analysis of
Table 3 the authors identified the best model, and consequently
choose the model trained in the 10-fold for validation using
samples that have not been including in the training process.
On the other hand, Table 6 presents the precision, recall, and F1
score of each fold for the multi-class classification considering
the COVID-19 class. Based on the results of Table 6 the authors
selected the model trained in the 6-fold for validation using
samples that have not been included in the training process. The
output of validation testing is detailed in Sections 4.2 and 4.4 for
binary and multi-class, respectively. Fig. 2 presents the confusion
matrix and Fig. 3 shows the AUC-ROC curve concerning binary
classification. The results presented an accuracy of 99.49% on the
validation process is similar to the presented testing accuracy of
99.62%, which proves the model is not overfitted. Fig. 4 shows
the confusion matrix, and Fig. 5 presents the AUC-ROC curve. The
achieved accuracy during the validation process of multi-class is
96.62%, that is similar to the 96.70% accuracy reported during
testing and proves that the proposed model is not overfitted.

To the best of the authors’ knowledge, there is no automated
system for COVID-19 diagnosis in the literature that includes
the combination of the following features. On the one hand,
the proposed model uses EfficientNet for transfer learning. On
the other hand, the proposed methods are evaluated using 10-
fold stratified cross-validation method. This method is used for
selecting the images for testing and training. It reduces bias
and ensures that all the images are used 9 times for training
and 1 time for testing. On the other hand, the proposed model
includes validation using an external dataset of images. In total,
296 images that have been not used during the training of the
model are used for cross-validation. The validation results state
similar accuracy as expected, which proves the model is not
overfitted. This is detailed in Sections 4.2 and 4.4. Furthermore,
the Albumentation library is used pre-processing images during
each fold. This library is not used to increase the size of the
datasets as presented in the related work. Instead, Albumentation
is implemented to increase transfer learning performance, reduce
overfitting, and improve execution time. Finally, the source code
of all the experiments is available as supplementary files to allow
the readers to reproduce the experiments. The proposed models
have been developed and testing using Google Colab. Therefore,
the software can be executed on the Google’s cloud servers.

The proposed study includes ADAM optimization method.
ADAM benefits of AdaGrad and RMSProp methods. Most of the
similar studies also used ADAM optimizer. Furthermore, Adam
is currently recommended as the default algorithm as it usually
presents better results than RMSProp. Nevertheless, it is often
also worth trying SGDNesterov Momentum as an alternative.
The authors aim to integrate ADAM optimizer with SOM (Self-
Organization Map) and PCA (Principal Component Analysis) to
improve performance as proposed by the authors of [55].

In the proposed work the authors have used 10-fold stratified
cross-validation and an Albumentation library for performing
augmentations to pre-processing images in each fold, and not for
increasing the size of training datasets as proposed the authors
of [48,49]. The authors are able to use all the images at least
once for training and testing both and also increasing the learning
of the model. Augmentation is used for two purposes such as
increasing the training set size, and another is the k-fold cross
validation for pre-processing images in each fold to improve the
performance of the model as proposed in [53].

In summary, the authors state the promising results of the
EfficientNet architecture for automated diagnosis of COVID-19
for binary and multi-class classification. Moreover, the authors

recommend the use of Albumentation and ImageDataAugmentor
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Table 11
Comparison of the state-of-art models for binary classification.
Ref. Architecture Accuracy Recall Specificity Precision F1-Score

[43] DarkCovidNet 98.08% 95.13% 95.3% 98.03% 96.51%
[44] VGG19 96.33% 97.05% 96.0% 91.6% 94.24%
[45] VGG19 98.75% 92.85% 98.75% – –
[45] MobileNet v2 97.40% 99.10% 97.09% – –
[46] nCOVnet 88.10% 82.00% 97.06% 97.62% 89.13%
[47] CapsNet 97.24% 97.42% 97.04% 97.08% 97.24%
[49] RestNet 18 99.4% 100% 98.6% 99.00% 99.5%
[50] Semi-supervised model 93.1% 83.5% – 89.0% 82.6%
Proposed EfficientNet 99.62% 99.63% - 99.64% 99.62%
Table 12
Comparison of the state-of-art models for multi-class classification.
Ref. Architecture Accuracy Recall Specificity Precision F1-Score

[43] DarkCovidNet 87.02% 85.35% 92.18% 89.96% 87.37%
[45] VGG19 93.48% 92.85% 98.75% – –
[45] MobileNet v2 92.85% 99.10% 97.09% – –
[47] CapsNet 84.22% 84.22% 91.79% 84.61% 84.21%
[48] Proposed CNN 97.14% 94.61% 98.29% – 95.75%
Proposed EfficientNet 96.70% 96.69% - 97.59% 97.11%
modules. The presented work contributes to the actual body of
knowledge since it provides an effective solution for automated
diagnosis of COVID-19. Systems such as the proposed will never
aim to replace the medical professionals. Instead, these methods
will support them and also reduce their exposure during the
current pandemic scenario.

6. Conclusion

This paper has presented an automated system to support
he diagnosis of COVID-19 patients. The proposed method imple-
ents EfficientNet architecture and has been tested using 10-fold
ross-validation. Furthermore, an external dataset has been used
or validation. On the one hand, the average accuracy, recall, pre-
ision and F1-score for binary classification is of 99.62%, 99.63%,
9.64% and 99.62%, respectively. On the one hand, the proposed
odel presents an average accuracy of 96.70% for multi-class. The
verage recall, precision and F1-score reported by our method is
6.69%, 97.59% and 97.11%. To the best of the authors’ knowledge,
here is no similar study that proposes an automated method
o the detected COVID-19 using EfficientNet. The authors state
elevant limitations transversal to all the methods available in
he literature. First, although the critical number of individuals
hat have been affected by COVID-19, the datasets available are
ot yet robust. Nevertheless, the empirical knowledge regarding
NN applications state that the performance will increase with
he proliferation of the number of samples available and used for
raining. Moreover, it is critical to study in detail the evaluation of
his type of methods considering the evolution of the disease in
he patient. The proposed methods can be effective to detect the
isease in the advanced stage, but it is essential to focus on the
nitial stage where the methods can have lower performance. The
oding scripts are provided as supplementary files. It is crucial
o share all the methods and materials to allow the readers to
eproduce the results. Moreover, in this way, it is possible to
upport future research activates. The readers can consult, update
nd implement different parameters to improve the results.
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