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Prior knowledge can help observers in various
situations. Adults can simultaneously learn two location
priors and integrate these with sensory information to
locate hidden objects. Importantly, observers weight
prior and sensory (likelihood) information differently
depending on their respective reliabilities, in line with
principles of Bayesian inference. Yet, there is limited
evidence that observers actually perform Bayesian
inference, rather than a heuristic, such as forming a
look-up table. To distinguish these possibilities, we ask
whether previously learned priors will be immediately
integrated with a new, untrained likelihood. If observers
use Bayesian principles, they should immediately put
less weight on the new, less reliable, likelihood
(“Bayesian transfer”). In an initial experiment, observers
estimated the position of a hidden target, drawn from
one of two distinct distributions, using sensory and prior
information. The sensory cue consisted of dots drawn
from a Gaussian distribution centered on the true
location with either low, medium, or high variance; the
latter introduced after block three of five to test for
evidence of Bayesian transfer. Observers did not weight
the cue (relative to the prior) significantly less in the high
compared to medium variance condition, counter to
Bayesian predictions. However, when explicitly informed
of the different prior variabilities, observers placed less
weight on the new high variance likelihood (“Bayesian
transfer”), yet, substantially diverged from ideal. Much
of this divergence can be captured by a model that
weights sensory information, according only to internal
noise in using the cue. These results emphasize the
limits of Bayesian models in complex tasks.

Imagine that you are trying to give your cat a bath,
but as soon as it sees the bathtub, it gets scared and
runs away to the garden (Kording et al., 2007; Vilares
& Kording, 2011). So, you are walking around your

garden, trying to figure out where your cat has hidden,
and you hear a “meow” (auditory cue). This perceptual
cue is useful but not perfectly reliable and will not allow
you to pinpoint exactly the cat’s position. However,
from previous experience, you may have learned that
your cat often hides in the bushes, furthest from the
pond (priors). The uncertainty in the two pieces of
information that you have (the auditory cue and
the prior information) allow them to be expressed
as probability distributions over location and the
optimal strategy for estimating the cat’s location is to
integrate the sensory and prior information according
to the rules of Bayesian Decision Theory (BDT).
Recent studies show that people behave as if they
deal with uncertainty in this way, for example, when
estimating the position of a hidden target (Berniker,
Voss, & Kording, 2010; Körding & Wolpert, 2004;
Tassinari, Hudson, & Landy, 2006; Vilares, Howard,
Fernandes, Gottfried, & Kording, 2012), direction of
motion (Chalk, Seitz, & Series, 2010), speed (Stocker &
Simoncelli, 2006; Weiss, Simoncelli, & Adelson, 2002),
or the duration of a time interval (Acerbi, Wolpert, &
Vijayakumar, 2012; Ahrens & Sahani, 2011; Jazayeri &
Shadlen, 2010; Miyazaki, Nozaki, & Nakajima, 2012).
In all of these studies, human observers integrated
knowledge of the statistical structure of the experiment
(acquired from feedback in previous trials) with sensory
information, taking a weighted average according to
their relative reliabilities in order to maximize his or
her score on the task (Ma, 2012). However, other
studies report suboptimal behavior, finding that even
though observers take into account the uncertainty of
the current and prior information, the weights do not
match those of an ideal Bayesian observer (Bowers &
Davis, 2012; Jones & Love, 2011; Rahnev & Denison,
2018). The fact that human performance ranges from
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close-to-optimal to largely suboptimal suggests that
Bayesian models may describe behavior well in some
cases, but not in others. Understanding when BDT
can and cannot provide an accurate model of human
behavior is an important step toward understanding the
computations and approximations used by the brain to
support adaptive behavior.

One factor that may influence how close performance
is to BDT (“optimal”) predictions is task complexity.
For example, Bejjanki, Knill, and Aslin (2016) asked
observers to estimate the position of an unknown
target (a bucket at a fairground), whose true location
was randomly drawn from one of two Gaussian
distributions, with different means and variances
(priors). On each trial, eight dots were drawn from a
Gaussian distribution centered on the true location with
a low, medium, or high variance to form a dot cloud that
served as a noisy cue to target location (likelihoods).
To successfully estimate the position of the target,
subjects could use both the likelihood, obtained from
the displayed dots, and the prior, obtained from the
distribution of previous target positions that they
could learn from the trial-by-trial feedback. The study
found that subjects adjusted their responses according
to the reliability of sensory and prior information,
giving more weight to the centroid of the dot cloud
(likelihood) when the variance of the prior was high
and the variance of the likelihood was low; a signature
of probabilistic inference (Ma, 2012). More generally,
these results are also in agreement with previously
described work, which used a single prior change (e.g.
Berniker et al., 2010; Vilares et al., 2012). However,
unlike in the studies using only a single prior change,
the weight placed on the likelihood differed from that
of the ideal-Bayes observer whenever the likelihood
uncertainty was medium or high. The magnitude of
the difference varied with both likelihood and prior
uncertainty. As the likelihood became more uncertain,
the difference from optimal increased, participants
placing more weight on the likelihood than optimal.
In addition, the difference from optimal was greater in
the narrow prior condition. In a follow-up experiment,
participants experienced one prior distribution only,
with double the amount of trials used in the original
study, finding that subjects’ weights on the likelihoods
approach optimal with increasing task exposure,
suggesting more time is required to accurately learn the
variances of the prior distributions and that learning
is disrupted when trying to learn two distributions
simultaneously (Bejjanki et al., 2016).

Even in cases when likelihood-weighting might
match the prediction of an ideal-Bayes observer,
Maloney and Mamassian (2009) noted that such
“optimal” or “near-optimal” performance alone is not
enough to show that the brain is following Bayesian
principles. Maloney andMamassian (2009) showed that
a reinforcement-learning model that learns a mapping

from stimulus to response (learning a separate look-up
table for each prior and likelihood pairing in the types
of tasks discussed here) will also appear to optimally
weight prior and likelihood information without
learning the individual probability distributions.

Maloney and Mamassian (2009) suggested that the
two models may be distinguished by asking whether
subjects are able to immediately transfer probabilistic
information from one condition to another (hereafter
known as Bayesian transfer). These transfer criteria
are a strong test for use of Bayesian principles because
they make very different predictions for how the
observer will behave when presented with a new level
of sensory noise halfway through the task. If people
follow Bayesian principles, we would expect them to
immediately adapt to the new sensory uncertainty,
and integrate it with an already-learned prior, without
any need for feedback-driven learning. On the other
hand, the reinforcement-learner would require a
certain amount of exposure to the new likelihood
and prior pairing (with feedback) in order to form
a look-up table that could then lead to optimal
performance.

To our knowledge, only one study has tested Bayesian
transfer in the context of sensorimotor learning. Sato
and Kording (2014) tested the ability of participants
to generalize a newly learned prior to a previously
learned likelihood. In their task, Sato and Kording
(2014) first trained participants to complete the task
when only a single Gaussian prior was present (either
narrow or wide) that could be paired with either a
low or high uncertainty likelihood by giving feedback
on every trial. After 400 trials, the prior switched
to the other level of uncertainty (narrow to wide
or wide to narrow) and for the following 200 trials,
participants saw the new prior paired only with one of
the likelihoods (either low or high) and continued to
receive feedback. In the second part of the experiment,
subjects still saw the second prior variability, but
now with the first likelihood again, which they had
so far only seen paired with the first prior. They did
not provide any feedback in this part of the task to
examine how subjects transferred their knowledge of
the prior to the new likelihood. The weight placed on
the likelihood in the newly reintroduced likelihood
condition was immediately different to the weight
placed on the same likelihood before the change in the
prior. In other words, participants’ behavior in this
likelihood condition changed dependent upon prior
uncertainty without any explicit training with this prior
and likelihood pairing. This is evidence of Bayesian
transfer and, hence, that participants solved the task
using Bayesian principles — representing probabilities
— rather than a simpler strategy, such as a look-up
table learned by reinforcement.

Whether the same will hold in more complex
scenarios is unclear. Indeed, it has been repeatedly
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pointed out that exact Bayesian computations demand
considerable computational resources (e.g. working
memory and attention) such that the brain might not
be able to perform these computations in more complex
tasks and will instead resort to heuristics (Beck, Ma,
Pitkow, Latham, & Pouget, 2012; Gardner, 2019). We
have already seen that performance in more complex
tasks is far from optimal (e.g. Bejjanki et al., 2016),
suggesting that there are limits to humans’ ability to
learn and optimally integrate prior distributions with
sensory information when tasks become more complex.
Establishing the limits of BDT as a model of human
behavior will inform models of information processing
in the human brain.

Here, we ask whether people will show Bayesian
transfer in a complex situation with multiple priors
and likelihood variances, similar to Bejjanki et al.
(2016). We report three experiments in which a target
is sampled from one of two possible prior distributions
(with different means and different variances) and then
cued with one of three possible likelihood variances
(with the variance itself also displayed). Likelihood
and prior variances were identical to those used in
Bejjanki et al. (2016) in terms of visual angle, in order
to match the true (objective) reliabilities of the cue
and prior across the studies. The first two experiments
tested for Bayesian transfer by only introducing the
high likelihood variance in blocks four and five of
the task. The only difference was that, in the second
experiment, participants were explicitly told that the
prior variances differed, to test whether this would
promote closer-to-optimal performance. The last
experiment was used to check whether removing the
additional burden of transfer allows participants
to learn the complex environment correctly by
presenting all likelihood conditions from the start of
the experiment — a replication of Bejjanki et al. (2016).

To summarize, in the first experiment, we found
that observers did not show evidence for Bayesian
transfer. When a new high variance likelihood was
introduced in blocks four and five, they did not
weight it less than the familiar medium variance
likelihood. This is at odds with the idea that observers
perform full Bayesian inference, combining prior and
likelihood based on relative variances, and thus does
not provide evidence for Bayesian transfer. In the
second experiment, observers did show evidence for
transfer, weighting the newly-introduced high variance
likelihood significantly less than the medium variance
likelihood. However, in both experiments, the weights
placed on the medium and high variance likelihoods
were much higher than optimal. These weights remained
suboptimal in the final experiment where all likelihood
variances were present from the start of the task.
These results extend our knowledge of how potentially
Bayesian perceptual processes function in complex
environments.

Experiment 1: Testing transfer to a
new level of likelihood variance

In the first experiment, we tested whether Bayesian
transfer would occur in a complex environment with
two priors, similar to the one used by Bejjanki et al.
(2016). We trained participants on a spatial localization
task with two likelihood variances and two prior
distributions (with different means and variances).
In initial training, they were exposed to all four
combinations (trials interleaved), with feedback. If, like
participants in Bejjanki et al. (2016), they weighted the
likelihood and the prior differently across conditions
in line with their differing reliabilities, this would
show that they had learned and were using the priors.
However, such reliability weighting could either be done
via Bayesian inference — representing probabilities —
or via a simpler strategy akin to learning a look-up
table (Maloney & Mamassian, 2009). To distinguish
these possibilities, after the training trials, we tested for
“Bayesian transfer” by adding a new higher-variance
likelihood distribution to the task. If participants deal
with this newly introduced likelihood in a Bayesian
manner, they should immediately rely less on this new
likelihood information than they did on the likelihoods
in previously trained conditions. Alternatively, if their
initial learning is more rote in nature (i.e. more like
a look-up table), participants would begin to place
a different weight on the new likelihood only after
extensive training with feedback.

Methods

Overview
Subjects performed a sensorimotor decision making

task on a computer monitor where they estimated
the horizontal location of a hidden octopus. The
true location was sampled from one of two distinct
Gaussian distributions that differed in mean and
variance (narrow or wide priors). On each trial, the
relevant prior distribution was indicated by the color
of the likelihood information — eight dots that were
described to the participant as the “tentacles” of the
octopus. The horizontal locations of the eight dots
were sampled from a Gaussian distribution centered
on the true location that had low, medium, or high
variability (the likelihood). To estimate the octopus’
position, participants could use (although this was
never explicitly mentioned) both the likelihood and
prior information, with the subjects able to learn the
latter via trial-to-trial feedback. Participants completed
five blocks of trials. Crucially, in blocks one to three,
only the low and medium likelihood variances were
paired with the narrow or wide priors. The high
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likelihood condition was only introduced in blocks four
and five to test for evidence of Bayesian transfer.

Participants
Participants were recruited from the Durham

Psychology department participant pool, Durham
University newsletter, and by word-of-mouth. Twenty-
six participants were recruited in total (13 women, mean
age: 20.1 years, age range: 18-30 years). All participants
had normal or corrected-to-normal visual acuity, and
no history of neurological or developmental disorders.
Each participant received either course credits or a cash
payment of £10 for their time.

Ethics
Ethical approval was received from the Durham

University Psychology Department Ethics Board. All
participants gave written, informed consent prior to
taking part in the study.

Stimuli and apparatus
Stimuli were displayed on a 22-inch iiyama monitor

(1680 × 1050 pixels), viewed at a distance of 60
cm, using the Psychophysics Toolbox for MATLAB
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The
stimuli were set against a blue background (to represent
the sea).

The position of the octopus was sampled from one
of two Gaussian distributions (priors): the narrow
(standard deviation (SD) of σ pl = 1% of screen width)
or wide (SD of σ ph = 2.5% of screen width) priors.
The side of the screen associated with each prior was
counterbalanced across participants. One was always
35% of the way across the screen (from left to right),
and the other 70%. When the narrow prior was centered
on 35%, for example, the wide prior had a mean in the
opposite side of the screen (i.e. to the right, centered on
70%). When the octopus appeared on the left-hand side
(drawn from the prior centered on 35%) it was white,
and when it appeared on the right (drawn from the
prior centered on 70%) it was black.

At the beginning of each trial, a cloud of eight dots
(0.5% of screen width in diameter) appeared on the
screen. The horizontal position of each dot was drawn
from a Gaussian distribution centered on the true
octopus location with either low (σ ll = 0.6% screen
width), medium (σ lm = 3% screen width), or high (σ lh
= 6% screen width) SD (in the following referring to as
low, medium, and high variance likelihood conditions).
The horizontal positions of the dots were scaled so
that their SD was equal to the true SD (σ ll, σ lm, or σ lh)
on each trial while preserving the mean of the dots.
We performed this correction so that participants
would “see” the same variability across trials for each

likelihood condition. This ensures that an observer who
computes the reliability for the likelihood information
trial by trial would always calculate the same value
within likelihood trial types. The vertical positions of
the dots were spaced at equal intervals from the vertical
center of the screen, with half of the dots appearing
above, and the other half below the center. The vertical
distance between each dot was fixed and equal to 1%
screen width. Given that the vertical positions of the
dots were fixed, only the horizontal position of the
target was relevant. Participants estimated location only
along the horizontal axis by moving a vertical green
rectangle (measuring 1% of screen width in width and
3% of screen width in height) left or right, making this a
one-dimensional estimation task. Participants received
feedback in the form of a red dot (0.5% of screen width
in diameter) that represented the true target position.

The combination of two priors and three likelihoods
led to six trial types (all possible prior × likelihood
pairings). The task was split into five blocks of trials
with 300 trials per block. In the first three blocks of the
task, only four trial types were used (75 trials of each
paring), with the high likelihood condition not shown
in combination with either prior. The high likelihood
condition was introduced in blocks four and five (50
trials per paring), in order to test for Bayesian transfer.
Within each block, all trial types were interleaved. The
trials were broken into runs of 20 trials. Within each
run, the trials for each prior type were arranged such
that an ideal learner would have an exact estimate of
the mean and variance of the prior distributions if
evidence was accumulated over those 20 trials.

We also included prior-only trials where subjects were
told that a black/white octopus was hiding somewhere
on the screen and they were instructed to find it.
No sensory information was provided (no likelihood
information). These trials were interleaved with the
rest of the trials (one every nine trials for each prior),
and there were 83 trials in total, for each of the priors
(narrow and wide).

Procedure

Participants were instructed to estimate the position
of a “hidden” octopus, indicating their estimate by
adjusting the horizontal location of a “net” (green
rectangle). Each trial started with the presentation
of eight dots that remained on screen until the end
of the trial (the likelihood information, described
to the participants as the tentacles of the octopus)
(Figure 1A). The eight dots could have one of three
levels of uncertainty: low, medium, or high variance
likelihood trials (Figure 1B). When the level of
uncertainty was higher, the dots were more dispersed on
the screen and, therefore, were a less reliable indicator of
the true location of the octopus. Participants used the
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Figure 1. (A) Illustration of the task. Participants were asked to
estimate the position of a hidden target (the “octopus”,
represented as the red dot) by horizontally moving a net (green
vertical bar). At the beginning of each trial, participants were
given noisy information about the location of the hidden target
in the form of eight dots (the likelihood). Participants then
moved the net to the estimated location and clicked to confirm
their response, after which the actual target location was
displayed. If the target was inside, or overlapped with, the net,
a score was added to the participant’s score. (B) The three
likelihood variances. (C) Illustration of a Bayes-optimal
observer. A Bayesian observer would combine information
about the prior uncertainty (learnt from the distribution of
previous target locations) with the likelihood information on a
given trial to optimally estimate the target location.

mouse to move the net to their guessed position, using
a right click to confirm their choice (no time limit).
Following a response, the true position of the octopus
was shown as a red dot on the screen. Over the course
of the experiment, the feedback served as a second cue
to location because the true locations of the black and
white octopi were drawn from different distributions.
In other words, participants could learn a prior over
each octopus’ location. We provided performance
feedback on a trial-to-trial basis so that the priors
could be learned. Specifically, subjects could potentially
learn that the two sets of octopi (black/white) were
drawn from separate Gaussian distributions centered
at different locations on the screen and with differing
levels of uncertainty (narrow and wide variance prior
trials).

To keep participants engaged, we incorporated
an animation when the participant picked the right
location of a cartoon octopus moving into a bucket
centered at the bottom of the screen. In addition,
participants would get one point added to their score
if they “caught” the octopus. An octopus was caught
if the true octopus position overlapped with the net
placement by at least 50% of the red feedback dot’s size.

The cumulative score was displayed at the end of each
trial. Participants completed five blocks of 300 trials
each for a total of 1500 trials. The five experimental
blocks were performed in succession with a short
break between each one. The experiment duration was
approximately an hour and a half.

Data analysis

For each individual participant, we regressed
estimated octopus’ position against the centroid (mean)
of the cloud of dots (likelihood) on each trial. All
regression analyses were done using a least squares
procedure (the polyfit function in MATLAB). The
slope of the fitted regression line quantifies the extent
to which participants rely on the current sensory
evidence (likelihood), as opposed to prior information.
A slope of one suggests that participants only use
likelihood information and a slope of zero suggests
that participants rely only on their prior knowledge,
ignoring the likelihood. A slope between zero and one
suggests that both likelihood and prior information are
taken into account, and the steeper the slope, the more
participants rely on the likelihood and less on the prior
information. Accordingly, we will refer to the fitted
slope values as the weight placed on the likelihood.

We also computed the weight that would be
given to the likelihood in each condition by an ideal
Bayesian observer with perfect knowledge of the prior
and likelihood distributions (see Figure 1C for an
illustration). The optimal weight on the likelihood was
computed as:

woptimal =
1

σ 2
l /n

1
σ 2
l /n + 1

σ 2
p

where σ 2
l is the variance of the likelihood, n is the

number of dots that indicate the likelihood (in this case,
there were 8 dots), and σ 2

p is the variance of the prior.
To determine the proportion of the variance in

responses that is accounted for by change in the estimate
from the sensory cue, the coefficient of determination
(R2) was calculated by linearly regressing participants’
responses against each estimate participants could have
taken from the cue (i.e. arithmetic mean, robust average,
median, or mid-range). This was done for the combined
data of all subjects in each experiment, across all blocks
and trial types (prior and likelihood pairings). The
estimate with the highest R2 value was taken to be the
estimate participants had most likely used.

Statistical differences were analyzed using repeated-
measures ANOVA with a Greenhouse-Geisser
correction (Greenhouse & Geisser, 1959) of the degrees
of freedom in order to correct for violations of the
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Figure 2. Mean weight placed on the likelihood information, separated by block and prior width in Experiment 1. Lower values
represent a greater weight on the prior. Blue is low-variance likelihood (a tight array of dots), green is medium-variance likelihood
(dots somewhat spread out), red is the later-introduced high-variance likelihood (highly spread out dots). Dashed lines show
optimal-predicted values. Error bars are +/− 1 SEM. The far right is the average over blocks.

sphericity assumption if ε ≤ 0.75 and a Huynh-Feldt
correction otherwise.

We discarded a trial from analysis if the absolute
error for that trial was in the top 1% of all absolute
errors, computed separately for each prior and
likelihood pairing across all blocks and participants
(this rule excluded at most 13 trials per pairing for an
individual subject).

Results and discussion for experiment 1

We first checked whether subjects took the mean as
an estimate from the sensory cue, and not a heuristic,
such as the robust average. In tasks similar to ours
(Bejjanki et al., 2016; Chambers, Gaebler-spira, &
Kording, 2018; Vilares et al., 2012), authors assume that
observers use the mean of the dots as their best estimate
of true location from the likelihood information.
However, we did not explicitly tell our participants
how the eight dots that formed the likelihood were
generated, or that the best estimate they could take
from them was their mean position, leaving open the
possibility that observes may have taken a different
estimate from the cue than the mean (de Gardelle &
Summerfield, 2011; Van Den Berg & Ma, 2012). The
mean horizontal position was found to explain the

most amount of variance in participants’ responses (R2

= 0.996), relative to the robust average (R2 = 0.995),
median (R2 = 0.995), or the mid-range of the dots (R2

= 0.992). This suggests that the mean of the dots is the
estimate that participants take from the sensory cue.

We then examined whether the weight participants
placed on the likelihood, relative to the prior, varied
with respect to trial type (prior/likelihood pairing) for
all the trial types present from the beginning of the
experiment. Without this basic result — a replication of
the pattern found by Bejjanki et al. (2016) — we could
not expect them to transfer knowledge of the learned
prior distributions to the new high variance likelihood
in the later blocks. This was a qualified success: for
these trial types (blue and green bars in Figure 2),
participants showed the predicted pattern, but placed
more weight on the likelihood than is optimal (compare
bar heights to dashed lines in Figure 2), in line with
previous research (Bejjanki et al., 2016; Tassinari et al.,
2006). We conducted a 2 (narrow versus wide variance
prior) × 2 (low versus medium variance likelihood) ×
5 (block) repeated measures ANOVA with the weight
given to the likelihood (the displayed dots) as the
dependent variable. These results are shown in Table 1
and summarized here. There was a main effect of
prior variance, with less weight on the likelihood
when the prior was narrower (p < 0.001). There was
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F df, dferror p Effect size (η2
p)

Likelihood 104.40 1, 25 < 0.001 0.81
Prior 28.08 1, 25 < 0.001 0.53
Block 7.72 4, 100 < 0.001 0.24
Likelihood x prior 12.77 1, 25 0.001 0.34
Likelihood x block 3.32 4, 100 0.01 0.12
Prior x block 0.51 4, 100 0.21 0.06

Table 1. Results from a 2 (prior) × 2 (likelihood) × 5 (block)
repeated measures ANOVA for the likelihood variances present
from the beginning of the task (low and medium) in
Experiment 1.

also a main effect of likelihood variance (p < 0.001),
where participants relied less on the medium variance
likelihood. However, there was also a significant
interaction effect of likelihood and prior (p = 0.001).
When the prior was narrow, the decrease in reliance on
the likelihood was smaller as the likelihood variance
increased (t(25) = 3.57, p = 0.001).

We found a main effect of block (p < 0.001) and
an interaction between block and likelihood (p =
0.014), with the medium variance likelihood weighted
significantly differently across blocks (simple main effect
of block, F (4, 100) = 5.84, p < 0.001, η2

p = 0.189,
weights decrease with increasing exposure), but not the
low variance likelihood (no simple main effect of block,
F (4, 100) = 1.64, p = 0.169, η2

p = 0.063). This suggests
that participants adjusted, through practice, their
weights on the medium variance likelihood, getting
closer to optimal.

Examination of the prior-only trials shows successful
learning of the priors. On average, subjects’ responses
were not significantly different from the prior mean in
the wide prior condition (t(25) = − 0.77, p = 0.450).
They were significantly different in the narrow prior
condition (t(25) = − 2.78, p = 0.010), although the bias
was extremely small (95% confidence interval [CI]: 0.06,
0.41 percent of the screen width to the left). The median
SD of responses for all subjects was 1.4% (narrow prior)
and 2.5% (wide prior): almost identical to the true prior
SDs of 1.3% and 2.5%, respectively.

Participants qualitatively followed the predicted
optimal pattern of reweighting: like the dashed lines
(predictions) in Figure 2, actual likelihood weights
(bars) were higher for the wide prior (right) than the
narrow prior (left), and higher for the low variance
likelihood (blue) than the medium variance likelihood
(green). However, comparing bar heights with
dashed lines (predictions) shows that quantitatively,
their weights were far from optimal. Participants
systematically gave much more weight than is optimal
to the likelihood when its variance was medium (see
Figure 2, green bars versus lines — p < 0.001 in all
blocks for the medium likelihood when paired with

F df, dferror p Effect size (η2
p)

Likelihood 50.08 2, 50 < 0.001 0.67
Prior 15.52 1, 25 0.001 0.38
Block 1.21 1, 25 0.28 0.05
Likelihood x prior 2.39 1.62, 40.41 0.10 0.09
Likelihood x block 0.75 2, 50 0.48 0.03
Prior x block 4.35 1, 25 0.05 0.15

Table 2. Results from a 2 (prior) × 3 (likelihood) × 2 (block)
repeated measures ANOVA for all likelihood variances in
Experiment 1.

either prior). This over-reliance on the likelihood is in
line with previous studies (e.g. Bejjanki et al., 2016),
although stronger in the present study. Participants,
therefore, accounted for changes in the probabilities
involved in the task (e.g. weighted the likelihood less
when it was more variable), but did not perform exactly
as predicted by the optimal strategy.

Having found that participants’ performance was
in line with the predicted patterns, we could then
ask if they would generalize their knowledge to
the new high likelihood trials added in blocks four
and five (“Bayesian transfer”), as predicted for an
observer following Bayesian principles. This should
lead immediately to a lower weight for the new high
variance likelihood than the familiar medium variance
likelihood. By contrast, lack of a significant difference
in weights between the medium and high likelihood
trial types would suggest that the observer is employing
an alternative strategy, such as simply learning a
look-up table. To test this, we performed a 2 (prior) ×
3 (likelihood) × 2 (block) repeated measures ANOVA
(summarize only blocks four and five — those with all
likelihoods present). These results are shown in Table 2
and summarized here. As above, we found a main effect
of likelihood, participants placing less weight on the
likelihood as it became more uncertain (p < 0.001).
However, post hoc analyses showed that the weight
placed on the high likelihood was not significantly lower
than the weight placed on the medium likelihood (p =
0.103). Only the comparison of the weights placed on
the likelihood in low and high variance trial types was
significant (p < 0.001). Moreover, there was no main
effect of block (p = 0.28), nor an interaction between
block and likelihood (p = 0.48), suggesting that the
weight placed on the newly introduced likelihood
variance did not decrease with increasing exposure.

Finally, we compared mean weights in block five
against the optimal Bayesian values for each prior
and likelihood pairing. In the low variance likelihood
trials, we did not observe significant deviation from the
Bayesian prediction, irrespective of prior (low variance
likelihood, narrow prior: t(25) = .784, p = 0.440); low
variance likelihood, wide prior: t(25) = − 1.12, p =
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0.270). Subjects’ weights differed significantly from
optimal in all other conditions (p < 0.001 in all cases).

Overall, our results do not exactly match the
predictions of a Bayesian observer because we find
only weak evidence of Bayesian transfer. Specifically,
although we find a main effect of likelihood, the weight
on the high variance likelihood is not significantly
different to that placed on the medium variance
likelihood (although the change is in the predicted
direction). That said, our results are not simply more
consistent with a rote process, because the weight
placed on the high likelihood does not decrease with
increasing exposure (no interaction between likelihood
and block).

Our results point mostly away from a simple variance
weighted Bayesian model being a good model of human
behavior in this particular task. The correct pattern
of weights was present, but evidence of transfer was
weak. Participants were also significantly suboptimal,
overweighting the likelihood whenever its variance was
medium or high. Previous studies have also found that
observers give more weight to the sensory cue than is
optimal (e.g. Bejjanki et al., 2016); even so, the level of
suboptimality that we observe here is still drastically
higher, compared to previous reports. However,
Sato and Kording (2014) found better, near-optimal
performance in those participants who were told that
the sensory information can have one of two levels of
variance, and that the variance will sometimes change,
compared to those who were not provided with this
information. We, therefore, reasoned that if observers
are given additional information about the structure
and statistics of the task (e.g. that the variances of the
prior distributions are different), the weight they give
to the sensory cue may move closer to optimal. If we
find weights closer to optimal, we may be better able
to detect whether transfer had taken place because
the effect size of a change in the likelihood would be
bigger. In fact, we wonder whether the size of this
effect could be an important factor behind the lack
of significant differences observed in Experiment 1
(i.e. that the effect size of the change from medium to
high likelihood was too small for our statistical analysis
to reliably detect). In view of this, we set out to test
whether additional instructions will lead to weighting
of likelihood and prior information that is closer to
optimal.

Experiment 2: Additional
instructions about prior variance

Experiment 2 was identical to Experiment 1 except
for a change in instructions. In this experiment,
subjects were explicitly (albeit indirectly) informed of

the different variances of the prior. We hypothesized
that giving participants additional information about
the model structure of the task will move weights
closer to optimal and make any transfer effects more
pronounced.

Methods

Twelve participants (8 women, mean age: 20.3 years,
age range: 19-22 years) participated in Experiment 2. All
participants had normal or corrected-to-normal visual
acuity, no history of neurological or developmental
disorders, and had not taken part in Experiment 1.
Each participant received either course credits or cash
compensation for their time.

The experimental set had the same layout as the main
experiment, with the following difference: in addition
to the previously described instructions, subjects in
this version of the task were told that “it is important
to remember that one of the octopuses tends to stay
in a particular area, whereas the other one moves
quite a bit!” (i.e. they were indirectly informed that the
variances of the priors were different) (see Appendix A
in the Supplementary Material for full instructions).

Results and discussion for experiment 2

Similarly to what we saw in Experiment 1, the mean
and robust average of the dots explained the same
amount of the variance in participants’ responses (R2

= 0.991 for both), followed by the median (R2 = 0.990)
and the mid-range (R2 = 0.989). We, thus, proceed with
the mean as the estimate from the likelihood.

Figure 3 shows that the pattern of results was
qualitatively similar to those of Experiment 1
(see Figure 2). A 2 (prior) × 2 (likelihood) × 5 (block)
repeated measures ANOVA (analyzing only the low
and medium likelihood trials) revealed that subjects
placed less weight on the likelihood as its uncertainty
increased (main effect of likelihood, p < 0.001) and as
the prior uncertainty decreased (main effect of prior, p
= 0.002). However, unlike in Experiment 1, there was
no significant interaction of these factors (p = 0.123)
(see Table 3).

We found a main effect of block (p=0.02)
and an interaction between block and likelihood
(p=0.01), with participants weighting the likelihood
significantly less with increasing task exposure
(regardless of prior) when its variance was medium
(F (2.21, 25.34) = 3.81, p = 0.03, η2

p = 0.257, with a
Greenhouse-Geisser correction), but not when it was
low (F (4, 44) = 0.70, p = 0.60, η2

p = 0.060).
As before, we analyzed subjects’ responses in

the prior-only trials, finding a good quantitative
agreement with the true prior mean (narrow prior:
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Figure 3. Mean weight placed on the likelihood information in each block of Experiment 2. Blue is the low-variance likelihood, green is
the medium-variance likelihood, red is the high-variance likelihood. Dashed lines show optimal values. Error bars are +/− 1 SEM. The
far right is the average over blocks.

F df, dferror p Effect size (η2
p)

Likelihood 46.14 1, 11 < 0.001 0.81
Prior 17.28 1, 11 0.002 0.61
Block 3.15 4, 44 0.02 0.22
Likelihood x prior 2.80 1, 11 0.12 0.20
Likelihood x block 3.73 4, 44 0.01 0.25
Prior x block 1.32 2.07, 22.77 0.29 0.11

Table 3. Results from a 2 (prior) × 2 (likelihood) × 5 (block)
repeated measures ANOVA for the likelihood variances present
from the beginning (low and medium) in Experiment 2.

t(11) = − 0.002, p = 0.999; wide prior: t(11) = 0.35,
p = 0.734). The median SD of responses was also
remarkably similar to the true prior SDs (narrow prior:
1.6% vs. 1.3% in screen units; wide prior: 2.5% for
both).

Again, subjects’ overall performance was suboptimal
(as can be seen by comparing the height of the bars
against the dashed lines — the optimal predictions —
in Figure 3). Subjects’ placed more weight on both the
medium and high variance likelihoods than is optimal
(p < 0.001 in both cases, for both priors). However, it
is worth noting that the weights placed on the medium
and high likelihoods are closer to optimal than they

F df, dferror p Effect size (η2
p)

Likelihood 37.98 2, 22 < 0.001 0.78
Prior 18.36 1, 11 0.001 0.63
Block .23 1, 11 0.64 0.02
Likelihood x prior 1.80 2, 22 0.19 0.14
Likelihood x block 2.09 2, 22 0.15 0.16
Prior x block .17 1, 11 0.69 0.02

Table 4. Results from a 2 (prior) × 3 (likelihood) × 2 (block)
repeated measures ANOVA for all likelihood variances in
Experiment 2.

were in Experiment 1 (compare bar heights in Figures 2
and 3).

Finally, we tested for transfer to the newly-introduced
high likelihood in blocks four and five. We conducted a
2 (prior) × 3 (likelihood) × 2 (block) repeated measures
ANOVA (analyzing only blocks four and five with all
likelihoods present). These results are shown in Table 4
and summarized here. There was a main effect of
likelihood, with less weight placed on the likelihood
as it became more uncertain (p < 0.001). Unlike in
Experiment 1, post hoc analysis showed that the weight
placed on the high likelihood was significantly lower
than the weight placed on the medium likelihood (p
= 0.034). The weights placed on the likelihood in the
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low variance trial type were significantly lower than
those in the medium and high variance trial types (p <
0.001 for both). Moreover, there was no main effect of
block (p = 0.64), or an interaction effect of block and
likelihood (p = 0.15), meaning that the weight placed
on the newly added likelihood information did not vary
with increasing exposure.

Again, we find a significant difference between
subjects’ weights (in block 5) and optimal predictions
when the likelihood variance was medium or high
(p < 0.001 in both cases), but not when it was low,
irrespective of prior variance (low likelihood, narrow
prior: t(11) = .120, p = 0.907); low likelihood, wide
prior: t(11) = − 1.29, p = 0.163).

In line with our prediction of transfer, here, we show
that the observers put lower weight on the high variance
likelihood than the medium variance likelihood they
have experienced before. This is strengthened by the fact
that participants’ weights did not change significantly
with increasing exposure across blocks four and five.

To check more directly for differences due to
experimental instructions, we compared subjects’
performance in the last two blocks across the
two experiments. We ran a 2 (instructions) ×
2 (prior) × 3 (likelihood) × 2 (block) mixed
ANOVA. We found a main effect of instructions
(F (1, 36) = 6.78, p = 0.013, η2

p = 0.159) with subjects
weighting the likelihood significantly less with
explicit instructions (Experiment 2) (i.e. closer
to the optimal weightings). We also found an
interaction between instructions and likelihood
(F (1, 36) = 4.79, p = 0.011, η2

p = 0.118), indicating
that the main effect of instructions is due to a
significant decrease in the weight placed on the high,
relative to the medium likelihood in the explicit
instructions (Experiment 2) task, but not the original
task (Experiment 1).

These results show that adding extra instructions to
the task that make the participant aware of a change
in uncertainty between the two priors has an effect.
The weights placed on the likelihood moved closer
to optimal, and the transfer criterion was met, which
suggests that, perhaps, observers are more likely to
adopt a Bayes-optimal strategy when more explicit
expectations about the correct model structure of
the task are set. However, even with the additional
instructions, the weight given to the sensory cue was
still systematically higher than the “optimal” weight.
Arguably, expecting people to perform optimally is
rather unrealistic, as it presumes that the observer
perfectly knows the environmental statistics. However,
Bejjanki et al. (2016) found performance much closer
to optimal than what we have seen in either of our
previous experiments. The major difference between
their experiment and ours’ is the fact that Bejjanki et al.
(2016) presented all likelihood variances from the start
of the task. Therefore, unlike Experiments 1 and 2,

which were designed in order to provide some evidence
of transfer, Experiment 3 sought to test whether
subjects’ weights would move closer to optimal if we
present all likelihood variances from the beginning, in
a more direct replication of Bejjanki et al. (2016). The
likelihood and prior variance parameters were identical
to those used in Bejjanki et al. (2016), and we used a
similar number of trials per prior and likelihood pairing
(250 vs. 200 trials in Bejjanki et al. (2016)).

Experiment 3: All likelihoods from
the beginning

Experiment 3 was identical to Experiment 1 (lacking
the extra instructions of Experiment 2) except that all
likelihood variances were included from the beginning
of the task. The participants experienced all six trial
types in every block.

Methods

Twelve participants (10 women, mean age: 22.6 years,
age range: 19-30 years) took part in Experiment 3. All
participants had normal or corrected-to-normal visual
acuity, no history of neurological or developmental
disorders, and had not taken part in Experiment 1 and
2. Each participant received either course credits or
cash compensation for their time.

The stimuli and task were identical to those described
for Experiment 1, except that all likelihood conditions
(low, medium, and high) were now present from the
beginning (50 trials of each likelihood/ prior pairing
interleaved in the same block).

Results and discussion of experiment 3

Again, the mean position of the dots explained the
most amount of variance in participants’ responses (R2

= 0.990). The amount of variance explained decreased
for the robust average (R2 = 0.989), median (R2 =
0.988), and the mid-range of the dots (R2 = 0.985). We,
thus, proceed with the mean as the estimate from the
likelihood.

Figure 4 shows a similar pattern of results to
Experiments 1 and 2. Again, a 2 (prior) × 3 (likelihood)
× 5 (block) repeated measures ANOVA shows that
the likelihood information was weighted less as it
became more unreliable (main effect of likelihood,
p < 0.001). Specifically, subjects placed significantly
more weight on the low likelihood than on the
medium (p = 0.001) or high likelihood (p < 0.001),
and more weight on the medium likelihood than the
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Figure 4. Mean weight placed on the likelihood information in each block of Experiment 3. Blue is the low-variance likelihood, green is
the medium-variance likelihood, red is the high-variance likelihood. Dashed lines show optimal values. Error bars are +/− 1 SEM. The
far right is the average over blocks.

F df, dferror p Effect size (η2
p)

Likelihood 29.90 2, 22 < 0.001 0.73
Prior 2.74 1, 11 0.13 0.20
Block .28 4, 44 0.89 0.03
Likelihood x prior 2.67 2, 22 0.09 0.19
Likelihood x block .52 8, 88 0.84 0.05
Prior x block .87 4, 44 0.49 0.07

Table 5. Results from a 2 (prior) × 3 (likelihood) × 5 (block)
repeated measures ANOVA for all likelihood variances in
Experiment 3.

high likelihood (p = 0.005). No other main effects or
interactions were significant (see Table 5 for a summary
of results).

For the prior-only trials, subjects’ responses were, on
average, statistically indistinguishable from the mean of
the wide prior distribution (t(11) = − 1.14, p = 0.278),
but were significantly different from the mean of the
narrow prior (t(11) = − 3.91, p = 0.002) (although we
note that the bias was small (95% CI: 0.24, 0.87 percent
of the screen width to the left). The median SD of
responses was 2.2% for the narrow prior condition and
2.6% for the wide prior condition; the SD of responses
was, therefore, only close to the true variance of the
wide prior (which was 2.5%). Together, these findings

suggest that subjects had not learned either the mean,
or the variance of the narrow prior condition. This
may explain the lack of difference in performance
between the narrow and wide prior conditions in this
task.

A comparison of subjects’ weights on the likelihoods
in block five against Bayesian predictions showed
a significant difference for all likelihood and prior
pairings (p < 0.001), with the exception of the wide
prior/ low likelihood condition (t(11) = − .362, p =
0.724).

To sum up, although the correct pattern of
weights was present, subjects were still substantially
sub-optimal, even after experiencing all likelihood
variances from the start of the task.

Accounting for suboptimality

Even when we replicate Bejjanki et al. (2016) very
closely with all likelihoods from the beginning, our
participants are strikingly suboptimal. However, we
note that in our initial calculations of optimal behavior,
we assumed that observers’ weight sensory and prior
information according only to the variance of the
dot distribution (i.e. external noise). However, many
of the studies in the cue combination field that have
found near-optimal performance used cues that only
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Figure 5. Mean weight placed on the likelihood information in each block of Experiment 1. Blue is the low-variance likelihood, green is
the medium-variance likelihood, red is the high-variance likelihood. Dashed lines show optimal values. Dotted lines show predicted
weights when only weighting by internal noise. Error bars are +/− 1 SEM.

have internal noise, not external (Alais & Burr, 2006;
Körding & Wolpert, 2006). It is, therefore, possible that
our participants are suboptimal because they fail to take
account of external noise, only weighting the sensory
and prior information by the internal variability (i.e.
error intrinsic to them) of the sensory cue. Keeping this
is mind, we considered the predicted weights of a model
that only takes into account the internal variability σli
in using the sensory cue.

We performed a separate control experiment to see
how good participants were at finding the centroids
of dot clouds in the absence of prior information (see
Appendix B in the Supplementary Material for more
details). From this control data, we could calculate
observers’ internal noise as their responses were not
subject to bias from the prior. For each participant,
their internal variability σli was calculated by taking the
SD of their errors from the centroid of the dots (error
= dot centroid - response). The predicted weight on the
sensory cue was then calculated as w = σ 2

p/(σ 2
li + σ 2

p ).
This equation was the same as the full Bayesian
model, the only difference being that the external SD
of the likelihood (as defined by the experimenters)

was substituted for the internal SD of the likelihood
(measured in the control experiment). The variance of
the prior was still included in the model.

We compared subjects’ weights (block 5,
Experiment 1) with those predicted when only
weighting by internal noise and found that they were
significantly different for all likelihood and prior
pairings (p < 0.01). Indeed, Figure 5 shows that the
internal noise model still predicts less weight on the
sensory cue than we see in our data (compare bars
and dotted lines). This could reflect participants
downweighing the prior because it is, in fact, subject
to additional internal noise, stemming from a need to
remember and recall the correct prior from memory.
Even so, empirical weights were closer to the internal
noise predictions, compared to those predicted by the
optimal strategy (with experimentally controlled cue
variance, dashed lines).

In addition, we examined the predictions for an
observer model that weights sensory information,
according to overall variability in the sensory cue. When
calculating the optimal predicted weights initially, we
assumed that the optimal observer knew how reliable



Journal of Vision (2020) 20(6):17, 1–19 Kiryakova, Aston, Beierholm, & Nardini 13

Figure 6. Mean weight placed on the likelihood information in each block of Experiment 1. Blue is the low-variance likelihood, green is
the medium-variance likelihood, red is the high-variance likelihood. Dashed lines show optimal values. Dotted lines show predicted
weights when overall variability in using the likelihood is taken into account. Error bars are +/− 1 SEM.

the dots (i.e. the likelihood) were, and could average
them perfectly. Because participants will not be perfect
at averaging dots, they will be more variable in using the
sensory cue than the optimal observer. Therefore, the
truly optimal thing to do is for participants to weight
the sensory cue, according to their overall variability,
by taking into account both the variance of the dot
distribution and the internal variability in estimating
the average of the dots. Because the sensory cue is now
less reliable (due to the added internal variability), we
would expect participants to put less weight on it, and
more weight on the prior.

We calculated the overall variability in using the
sensory cue as:

σ 2
lo = σ 2

l /n + σ 2
li

where σ 2
l /n is the external noise in the sensory cue, and

σ 2
li is the individual internal variability.
As is expected, Figure 6 shows that the predicted

weights in this case were lower than the optimal weights
(compare dotted and dashed lines) as participants are
worse than the optimal observer in averaging the dots.
They placed less weight on the sensory cue and more

weight on the prior than the optimal observer. We also
compared these predicted weights to subjects’ weights
in the final block (5) in Experiment 1, and found that
they were still significantly different from the empirical
data when the variance of the likelihood was medium
or high (irrespective of prior variance) and when the
likelihood variance was low and the prior variance was
narrow (all p < 0.001). No significant difference was
observed when the likelihood variance was low, and the
prior variance was wide (p = 0.79). This means that
accounting for the added internal variability fails to
explain our results as observers are placing more weight
on the sensory cue than is optimal, not less.

We compared the mean squared error (MSE) for each
of the three models we tested: (1) the original optimal
model (using the experimentally imposed likelihood
variance); (2) the model with only the internal noise;
and (3) the model with the overall variability (including
both the experimentally imposed likelihood variance
and the internal noise). The internal noise model
had the lowest MSE, which confirms that this model
provides a better explanation for subjects’ behavior
than other models (see Figure 7).

In summary, our data are best described by a
model based on subjects’ internally generated noise,
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Figure 7. Average mean squared error (MSE) for the external
noise, internal noise and overall noise models. MSE calculations
were based only on participants, for whom control data was
available (N = 12; 6 had participated in Experiment 2 and 6 had
participated in Experiment 3).

as opposed to either a model with the experimentally
imposed likelihood variance, or a model that accounts
for both the experimentally imposed likelihood variance
and the internal noise.

Discussion

We set out to test more strictly than before for
Bayes-like combination of prior knowledge with
sensory information in the context of a sensorimotor
decision making task (Beierholm, Quartz, & Shams,
2009; Bejjanki et al., 2016; Berniker et al., 2010;
Tassinari et al., 2006; Vilares et al., 2012) by adding
transfer criteria to the task (Maloney & Mamassian,
2009).

In Experiment 1, we did this by investigating whether
observers are able to learn the variances of two prior
distributions, and instantly integrate this knowledge
with a new level of sensory uncertainty added mid-way
through a task. We found that observers placed more
weight on the sensory cue (likelihood) when its variance
was low and the variance of the prior was high; behavior
that is in broad agreement with the Bayesian prediction.
However, we found only partial evidence of transfer.
The weight placed on the high variance likelihood was
not significantly lower than that placed on the medium
variance likelihood, which is at odds with the prediction
of transfer. Importantly, even though qualitatively,
our participants behaved like Bayesian observers, their
performance fell markedly short of optimal.

In two further experiments we asked: (1) how
behavior would be affected by additional instructions,

which can clarify whether this suboptimality stems
from using the incorrect model structure of the task;
and (2) whether experiencing the high likelihood
variance condition from the start of the experiment
would lead to closer-to-optimal weighting of the prior
and likelihood information. In the first of these two
further experiments, Experiment 2, we found that
subjects’ performance moved closer to optimal when
they were (indirectly) instructed that the prior variances
were different — possibly why we were able to detect
significant evidence of transfer in the task. However,
they were still significantly suboptimal in multiple
experimental conditions. Participants remained
significantly suboptimal in the final experiment
(Experiment 3), when the need for transfer was removed
(all trials types were present from the start of the task)
and the experiment became a more direct replication of
Bejjanki et al., (2016).

Suboptimal weighting of prior and likelihood
information

We show that observers take uncertainty into
account, giving more weight to the sensory cue as its
variance decreases, a result that is consistent across all
three experiments. Equally, for a Bayes-like observer,
we expect to find that the weight on the sensory cue is
higher as the prior variance increases, but we found
a main effect of prior in Experiments 1 and 2 only,
and not in Experiment 3. Moreover, although our
manipulation to the instructions in Experiment 2
moved the weights placed on the likelihood closer to
optimal, they were still significantly different to the
optimal predictions.

To examine to what extent additional sensory
variability in estimating the centers of dot-clouds
could have affected predictions and performance,
we ran a separate, control experiment (see Appendix
B in the Supplementary Material). This shows that
observers are less efficient in their use of the likelihood
information than an ideal observer: the variability of
their responses is significantly larger than the true
variability of the sensory cue in both the low and
medium variance likelihood conditions. However, this
fails to account for suboptimal performance: ideal
weights for the likelihood that are computed using the
measured likelihood variabilities in the control task are
still significantly lower than those in the empirical data.

Suboptimal weighting of the prior and likelihood
information may also be caused by incomplete or
incorrect learning of the prior information. However,
the prior-only trials suggest that the observers learn
the means of the priors and distinguish between
their variances at least in Experiments 1 and 2, if
not Experiment 3 (under the assumption that SDs
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of subjects’ responses are related to the learned
prior variances). Suboptimal weighting of the prior
could also be due to the use of an incorrect Bayesian
generative model (causal structure) by subjects (e.g. if
they believe that the prior will change over trials then
they should apply a smaller weight to the prior; could
be conceptualized as a meta-prior or hyperprior in
Bayesian terms, Gelman, Carlin, Stern, & Rubin, 2013).
The fact that we found an effect of instructions implies
that the causal structure assumed by subjects can indeed
greatly influence behavior (Shams & Beierholm, 2010).

Other research groups have performed similar
experiments but using only a single prior distribution
(Acerbi, Vijayakumar, & Wolpert, 2014; Berniker et
al., 2010; Chambers et al., 2018; Tassinari et al., 2006;
Vilares et al., 2012). These studies also find deviations
from the optimal predictions; however, the deviations
can be accounted for by adding extra sources of
inefficiency to the model that are due to motor errors,
centroid calculation errors, and aim point (in reaching
tasks) calculation errors (Tassinari et al., 2006).
Moreover, when trials are blocked by prior conditions, it
has been shown that learning after a switch in the prior
variance is slower when the prior variance decreases
than when it increases, suggesting participants may
perform optimally after further exposure to the task
(Berniker et al., 2010).

We considered elements of the experimental design
that could have resulted in suboptimal behavior in a task
similar to others in the literature where performance
was closer to optimal (e.g. Bejjanki et al., 2016). First,
describing the dots as the tentacles of an octopus
may have caused participants to assume that another
method of gaining an estimate from the dot color, other
than taking the mean horizontal position, was more
appropriate in this task (de Gardelle & Summerfield,
2011; Van Den Berg & Ma, 2012). However, our
analysis shows that participant responses are not better
predicted by the median, mid-range, or robust average,
than they are by the mean. Second, our correction of
the dot positions so that their SD on each trial was
equal to the true likelihood SD may have influenced
participant’s inferred reliability for the likelihood.
However, an observer who computes the reliability for
the likelihood trial by trial, by taking the dot cloud SD,
would infer that the likelihood was less reliable ( 1

σ 2
l
) as a

cue to true location than the centroid of the dots would
be for an observer who could perfectly calculate the
mean of the dots ( 1

σ 2
l/n
). This would lead to an observer

placing less weight on the likelihood than the ideal
observer. Participants in our experiment place more
weight on the likelihood than the ideal observer, so this
is not the source of suboptimality in our experiment.

Finally, whereas the true likelihood and prior
reliabilities used in our task were matched to those in
Bejjanki et al. (2016), observers may have perceived the

cue (dots) as more reliable than it actually was, which,
in turn, would result in more weight placed on the cue
than in previous studies (Bejjanki et al., 2016; Vilares &
Kording, 2011).

It is possible that subjects did not experience enough
trials of each prior and likelihood uncertainty to reach
optimal performance, and, indeed, we find evidence of
decreasing weights on the likelihood with increasing
task exposure in both Experiments 1 and 2 (main effect
of block, although not the rise from block 4 to 5 in
Experiment 2). Crucially, however, our participants
experienced more trials per prior than in Bejjanki et al.
(2016) (750 compared to 600) where weights were closer
to optimal, ruling out the possibility that observers
did not experience enough trials to learn the complex
features of the distributions.

The result that our participants’ performance was so
different, in terms of level of suboptimality, compared
to Bejjanki et al. (2016) might be explained by a
difference in instructions. Specifically, their instructions
have a social element that ours do not (i.e. in their task,
participants were instructed to interpret the likelihood
dots as “locations that other people have previously
guessed the bucket is located at”; versus tentacles of
the octopus in ours). This means that in Bejjanki et al.
(2016), participants would have to take into account
how accurate they think other people’s guesses are. If
we assume that people give lower weight to information
that is allegedly based on other people’s guesses, this
might explain why observers in Bejjanki et al. (2016)
generally weighted the likelihood less than in our
experiments (Martino, Bobadilla-suarez, Nouguchi,
Sharot, & Love, 2017). Another aspect about the
instructions that is worth mentioning here is that,
perhaps, our participants are more likely to assume that
the body of an octopus is in the center of its tentacles,
compared to previous guesses of other participants
(Bejjanki et al., 2016) or splashes from a coin (Tassinari
et al., 2006; Vilares et al., 2012). However, had this
been the case, we would have expected participants’
responses to be better predicted by another estimate,
such as the robust average, than the mean of the
dots, and we found no evidence of this in the
data.

Another explanation is that observers were being
“optimally lazy”; that is, they deviated from optimal
performance in a way that had minimal effects on their
expected reward (Acerbi, Vijayakumar, & Wolpert,
2017). In this case, we would expect the obtained
reward to match well with the predictions of the
optimal Bayesian model; instead, the predicted reward
resulting from optimally combing sensory and prior
information was higher than that obtained by our
observers, particularly when the variance of the prior
was narrow (see Appendix C in the Supplementary
Material). Therefore, we have no reason to believe that
the suboptimal behavior we observed in our task was
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due to our participants being “optimally lazy” (Acerbi
et al., 2017).

Nevertheless, we could show that the suboptimal
behavior in our task can be best explained by assuming
that participants were weighting sensory information
(relative to prior information) only according to the
internal variability in using the cue, ignoring external
noise. It is, thus, interesting to consider it as one
potential explanation, on the computational level, for
the deviations from optimal consistently reported in
similar studies on combination of sensory and prior
information (Bejjanki et al., 2016; Berniker et al., 2010;
Sato & Kording, 2014; Tassinari et al., 2006; Vilares
et al., 2012). However, we note that attending to internal
noise may be easily mistaken for underweighting the
total noise; future work could investigate the extent to
which suboptimal behavior is specifically linked to the
use of internal variability, and not simply a general
underestimation of the total noise in the stimuli.

Note that the observer model, based on the internally
generated noise, can still be considered “subjectively”
optimal (fully Bayesian), in the sense that observers take
into account and act according to their internal noise
variability (Acerbi et al., 2014). This strategy looks
sensible but is arguably not Bayes-optimal as an ideal
observer has to take into account external sources of
noise in addition to his or her own sensory uncertainty
(Kersten, Mamassian, & Yuille, 2004; Knill & Richards,
1996).

Evidence for bayesian transfer

We found only partial evidence for transfer in
Experiment 1, as there was no significant change
in the weight placed on the likelihood between the
medium and high likelihood conditions. In fact,
subjects seemed to treat the high variance likelihood
the same as the medium variance likelihood (that they
had experience with), suggesting that observers did
not adopt a statistically optimal Bayesian strategy.
Nonetheless, performance did not improve with more
trials, suggesting that subjects were not implementing
a look-up table decision rule, either (Maloney &
Mamassian, 2009). However, we note that in our data,
observers placed much more weight on the medium and
high likelihoods than is optimal. This means that the
effect size of a change in likelihood is much less than
was expected; thus, the observed lack of significant
differences might simply be due to lack of statistical
power in our analysis to detect such small effect sizes.

Why do we see more convincing evidence of transfer
in the instructions task? Bayes-like computations
demand considerable computational resources (e.g.
working memory load and attentional focus); it
is, therefore, reasonable to expect that if a task is
sufficiently complex, and there is a lot to learn,

subjects will start behaving suboptimally. The impact
of additional instructions in Experiment 2 may be to
free up cognitive resources by providing subjects with
(indirect) information about the variances of the two
prior distributions at the start of the task (Ma, 2012;
Ma & Huang, 2009).

Our findings do not allow us to clearly distinguish
between the reinforcement-learning and Bayesian
interpretations. We found that when we introduced a
new level of (known) uncertainty to the likelihood,
observers immediately changed how they used this new
information in a way that is largely consistent with
optimal predictions; this effect was significant in the
second experiment, but not in the first. Thus, we note
that this effect is not particularly robust as it depends
on the experimental procedure used to measure it.
Indeed, our findings demonstrate that whether this
effect is observed in the first place is greatly affected by
small changes in experimental layout (e.g. instructions
and number of trials). The fact that we observe no
learning during Experiment 3 (no main effect of
block), coupled with the observation that the weight
on the likelihood in the fourth block of Experiment 3
were remarkably similar to those in the fourth block
of Experiments 1 and 2 makes a weak suggestion of
a Bayesian interpretation. However, a stronger test
of transfer would be if participants had received no
feedback for the new level of uncertainty. We provided
trial-by-trial feedback (true target position) to ensure
that participants were able to learn and recall the correct
prior distributions. Therefore, we cannot rule out the
possibility that our participants used the feedback to
directly learn a mapping between the high variance
likelihood and each prior, instead of the distribution of
locations.

Sato and Kording (2014) showed that subjects behave
in a Bayes-optimal fashion in a sensorimotor estimation
task, where they transferred their knowledge from the
“learning phase” to the prior in the testing phase in
the absence of trial-to-trial feedback, suggesting that
people did not learn a simple likelihood-prior mapping.
This means that the features of our experiments set an
approximate upper bound on learning; in other words,
we can generally expect subjects’ performance to be less
accurate when performance feedback is not provided.

Nevertheless, in order to meaningfully test whether
observers can transfer probabilistic information across
different conditions, an experiment where trial-by-trial
feedback is limited, or excluded altogether, is needed.
Hudson, Maloney, and Landy (2008) argued that pro-
viding only blocked performance feedback, for example,
would prevent participants from using a “hill-climbing”
strategy in the high variance likelihood condition (i.e.
updating their estimates, based on the feedback from
trial to trial). Alternatively, Acerbi, Vijayakumar, and
Wolpert (2014) found that partial feedback (where
participants are told whether they “hit” or “missed” the



Journal of Vision (2020) 20(6):17, 1–19 Kiryakova, Aston, Beierholm, & Nardini 17

target, but the actual target position is not displayed) is
sufficient to maintain participant engagement; however,
no meaningful information can be extracted from the
feedback, preventing participants from using it to better
their performance. Future work could investigate how
the removal of full performance feedback would affect
behavior in more complex scenarios.

What are observers if not Bayesian?

Some studies suggest that BDT is generally a good
descriptive model of people’s perceptual and motor
performance, but quantitative comparison shows
divergence from Bayes-optimal behavior (Bejjanki et al.,
2016; Zhou, Acerbi, & Ma, 2018), not unlike what we
report in this study. These deviations from optimality
may have arisen because rather than performing the
complex computations that a typical Bayesian observer
would do, observers draw on simpler non-Bayesian,
perhaps even non-probabilistic, heuristics (Gigerenzer
& Gaissmaier, 2011; Zhou et al., 2018). Laquitaine
and Gardner (2018) developed a model that switched
between the prior and sensory information, instead of
combining the two, which was found to explain the data
better than standard Bayesian models. The authors
concluded that people can approximate an optimal
Bayesian observer by using a switching heuristic that
forgoes multiplying prior and sensory likelihood. In
another study, Norton, Acerbi, Ma, and Landy (2018)
compared subjects’ behavior to the “optimal” strategy,
as well as several other heuristic models. The model
fit showed that participants consistently computed
the probability of a stimulus as belonging to one of
two categories as a weighted average of the previous
category types, giving more weight to those seen more
recently; subjects’ responses also showed a bias toward
seeing each prior category equally often (i.e. with equal
probability). We note that a Reinforcement-Learning
(RL) model was also tested, where participants could
simply update the decision criterion after making
an error with no assumptions about probability; no
participant was best fit by the RL model. This suggests
that observers are, in fact, probabilistic (i.e. take into
account probabilities), although not necessarily in the
optimal way; instead, they seem to resort to heuristic
strategies. However, future work should explore which,
if any, of these models can capture the behavior on this
type of complex localization task.

Keywords: bayesian transfer, sensorimotor estimation,
decision making, bayesian models
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