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TNIP1 protein is increasingly being recognized as a key repressor of inflammatory signaling and a potential factor in multiple
autoimmune diseases. In addition to earlier foundational reports of TNIP1 SNPs in human autoimmune diseases and TNIP1
protein-protein interaction with receptor regulating proteins, more recent studies have identified new potential interaction
partners and signaling pathways likely modulated by TNIP1. Subdomains within the TNIP1 protein as well as how they
interact with ubiquitin have not only been mapped but inflammatory cell- and tissue-specific consequences subsequent to their
defective function are being recognized and related to human disease states such as lupus, scleroderma, and psoriasis. In this
review, we emphasize receptor signaling complexes and regulation of cytoplasmic signaling steps downstream of TLR given
their association with some of the same autoimmune diseases where TNIP1 has been implicated. TNIP1 dysfunction or
deficiency may predispose healthy cells to the inflammatory response to otherwise innocuous TLR ligand exposure. The
recognition of the anti-inflammatory roles of TNIP1 and improved integrated understanding of its physical and functional
association with other signaling pathway proteins may position TNIP1 as a candidate target for the design and/or testing of
next-generation anti-inflammatory therapeutics.

1. Introduction

Autoimmune diseases are chronic, relapsing disorders char-
acterized by immune dysregulation featuring loss of toler-
ance, generation of autoreactive T and B cells, circulating
autoantibodies, and chronic inflammation. For those pathol-
ogies with genetic variant or expression level differences in
the anti-inflammatory protein TNIP1 (TNFα-induced pro-
tein 3- (TNFAIP3-) interacting protein 1), this can be associ-
ated with increased immune cell activation and infiltration
leading to tissue-specific defects including but not limited
to loss of serum protein to the urine (lupus nephritis), failure
of the epidermal barrier (psoriasis), or diminished lung func-
tion (systemic sclerosis). These cases occur in the larger
cohort of autoimmune diseases. When considered together,
these include about 30 diseases with an estimated prevalence
of ~9% which in turn is modulated by gender, age, and

ethnicity [1, 2]. Compounding these numbers, the incidence
of autoimmune disease in westernized countries appears to
be increasing [3, 4]. Costing over 100 billion dollars in
healthcare expenses and as a leading cause of morbidity espe-
cially in women under sixty-five [5], autoimmune diseases
are devastating to patients. While major histocompatibility
complex (MHC) genes [6] are central to many of these dis-
eases, environmental factors including diet, UV irradiation,
drug exposure, and infectious agents [3, 7] as well as numer-
ous non-MHC susceptibility loci [8] are being recognized as
players in the complex etiology of autoimmune diseases.
Treatment for autoimmune disease has revolved around
managing immune-mediated hyperactivity by dampening
inflammatory responses and immune cell proliferation.
However, this approach leaves patients vulnerable to oppor-
tunistic infections which can be life-threatening [9]. Thus,
there is a continuous need to discover and define potential
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inflammatory signal suppressors, some of which are present
in those disease-associated non-MHC loci, whose deficiency
or dysfunction could contribute to autoimmune disease.
There is significant building evidence that TNIP1 (also known
as ABIN-1, Naf1, and VAN) [10–12] fits this description.
As a suppressor of inflammatory signaling downstream of
Toll-like receptors (TLRs), TNIP1 could play a pivotal role
in specific autoimmune diseases. TNIP1 genetic association
with certain autoimmune diseases and its negative regulation
of inflammatory signaling will be explored in this review.
Mechanistic understanding of signaling regulators such as
TNIP1 could lead to them becoming therapeutic targets.

2. TNIP1 (TNFAIP3-Interacting Protein 1)

2.1. Genome-Wide Association and Expression-Regulating
Studies: Implications in Inflammatory Disease. Over the last
decade, TNIP1 has been reported among the highest scoring
non-MHC genes across multiple genome-wide association
studies (GWAS), spanning multiple populations and dis-
eases including psoriatic arthritis [13–16], systemic sclerosis
[17, 18], systemic lupus erythematosus [19–24], and psoria-
sis [25–27]. TNIP1 sequence variations (single nucleotide
polymorphisms (SNPs)) in these populations implicate it
in what are nevertheless diseases with likely multiple genetic
and environmental factors. However, even with the identifi-
cation of the heritability of autoimmune disease through
twin and familial studies [28, 29], no single gene has been
established as the culprit. In common with other disease-
associated SNPs [30], those identified for TNIP1 are more
likely intergenic and intronic [16, 18, 23, 26]. In general,
such nucleotide changes may lessen transcription factor
binding at a gene promoter, mRNA processing efficiency,
and/or mRNA half-life, leading to decreased protein [31].
Additionally, two microRNAs, miR-517a/c, targeting TNIP1
message, significantly decrease TNIP1 protein levels when
transfected in HEK293 cells [32]. In contrast, an apparently
phenotypically silent SNP in the TNIP1 mRNA 3’UTR can
reduce the negative effect of miR-517a/c. Together, these
studies suggest multiple processing and turnover events that
contribute to TNIP1 message abundance where those leading
to decreased steady-state levels would allow for greater activa-
tion of NF-B and hyperresponsiveness to TLR stimuli. While
such laboratory investigations functionally link TNIP1 pro-
tein levels to the regulation of inflammatory pathway signal-
ing, more study is required to determine what expression
steps (mRNA processing, mRNA and protein half-life) are
normally or pathologically contributing to these levels.

Parallel to genetic studies, expression microarray experi-
ments have implicated TNIP1 in disease pathogenesis
although seemingly paradoxically as its increased transcrip-
tion was reported for the inflammatory diseases of rheuma-
toid arthritis and psoriasis [26, 33]. Increased TNIP1
transcription also occurs in B cells following the occupation
of cell surface CD40 [34]. These results are actually consis-
tent with positive regulation of TNIP1 expression by NF-κB
and its corresponding binding sites in the human TNIP1
gene promoter [35, 36] and the activation of B cell NF-κB
post CD40 occupation [37]. However, such mRNA increases

are not universally predictive of disease state protein levels as
Chen et al. showed decreased TNIP1 protein in psoriatic
plaques [38] consistent with loss of its repressive effect and
promotion of inflammatory skin disease. In complementary
studies, we showed overexpression [39] of TNIP1 protein
in HaCaT keratinocytes that led to decreased expression
of multiple inflammation-associated genes including inter-
leukin (IL)-6 while TNIP1 reduction [40] promoted expres-
sion of numerous cytokine and chemokine genes. Together,
these studies demonstrate TNIP1 as an important inflam-
matory signal response and regulator gene in diverse cell
types. It also corroborates the spontaneous systemic auto-
immunity observed with TNIP1 deficiency or loss-of-
function mutations characterized in part by increased NF-κB
activation [41, 42].

2.2. Cellular Location and Role in Cell Activation. TNIP1 is
found ubiquitously throughout the body in both the nuclear
and cytoplasmic compartments of cells [43] where it has been
implicated as a mediator of multiple pathways. For example,
it functions in the nucleus where it can act as a corepressor of
ligand-bound retinoic acid receptors (RARs) [44] and perox-
isome proliferator acid receptors (PPARs) [45]. TNIP1 is
found in the cytoplasm as well where it is able to interact with
HIV-encoded proteins nef [11] and matrix [12], modulate
signaling downstream of epidermal growth factor receptor
(EGFR) via interactions with ERK2 [46], and interact with
the ubiquitin-editing protein TNFAIP3 (alias A20 with roles
in inflammation and autoimmunity that have been reviewed
elsewhere [47]). The interaction between A20 and TNIP1,
mediated by the ABIN-homology domain 1 (AHD1) domain
of TNIP1 [48], promotes negative regulation of MAPK acti-
vation as well as NF-κB-mediated gene transcription down-
stream of TNFR and TLRs [10, 42]. TNIP1 function as a
negative modulator downstream of select cell membrane
receptors and its loss or dysfunction could lead to initiation
and perpetuation of an autoimmune phenotype.

2.3. Identification of Ubiquitin-Sensing Domain: Importance
in Mediating Inflammation. TNIP1 does not possess
enzymatic activity and is thought to influence intracellular
signaling through association with its binding partner
ubiquitin-editing enzyme A20 (alias TNFAIP3) [49, 50].
The TNIP1-A20 complex then utilizes the ubiquitin-binding
domain of ABIN and NEMO (UBAN, alias AHD2) within
TNIP1 for the recognition of linear (Met1) and K62-linked
polyubiquitin chains [48]. The homologous UBAN domains
also occur in TNIP2, TNIP3, and optineurin with a presumed
similar role in the control of cytoplasmic signaling. Expected
UBAN functionality stems from earlier reports that polyu-
biquitin binding by NEMO was a key to NF-κB-mediated
transcription downstream of TNFα [51–53]. Current under-
standing of polyubiquitin in signaling downstream of TLRs
(among other receptors) describes two roles of polyubiquitin.
Firstly, polyubiquitin acts as an activator of kinases by induc-
ing conformational changes in those enzymes when bound
(e.g., TAB2/TAB3 binding K63-ubiquitin then activating
TAK1 within the TAB2/3/TAK1 complex). Secondly, polyu-
biquitin may act as a scaffold for colocalization of different
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complexes associated with TLR activation (e.g., TAB2/
TAB3/TAK1 complex activation of the NEMO/IKKα/β
complex through K63/Met1 hybrid polyubiquitin chains)
[54] (Figure 1(a)). These interactions promote eventual
phosphorylation of targets including MAPKs and the inhib-
itor of NF-kappa Bα (IκBα) [55]. Initial studies described
TNIP1 as capable of increasing the rate of A20-mediated
removal of polyubiquitin; with decreased expression of
TNIP1 via siRNA knockdown, the rate of A20-mediated
de-ubiquitination of NEMO was decreased [56]. However,
more recently it has been shown that knock-in mice with
A20 mutants featuring no de-ubiquitinase activity presented

phenotypically normal and showed normal responsiveness to
both TLR (LPS) and TNFR (TNF) ligands [57]. TNIP1 has
also been shown to function in signal repression even in the
absence of A20 [41, 58]. In the latter study, floxed alleles of
A20 and TNIP1 (ABIN-1) in a villin-ER/Cre +mouse system
were used to examine intestinal epithelial cell responses to
tamoxifen-induced TNIP1 and/or A20 deletion. With the
loss of A20 alone, TNIP1 seems to function independently
and provide some compensatory response limiting the exten-
sive mortality observed with the dual A20/TNIP1 knockout.
As those investigators concluded, there appears to be a
“synergistic, though asymmetric, relationship” between A20
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Figure 1: Toll-like receptor signaling—regulation by TNIP1. (a) With TLR dimerization and recruitment of adaptor proteins at the
membrane level, ubiquitination of target proteins promotes activation of kinase activity and complex formation. Diverse consequences
occur depending on the TLR activated. In the case of TLR3-TRAF3-TRIF, TBK1 becomes ubiquitinated and, in combination with IKKε,
promotes phosphorylation of transcription factors (IRF3) upstream of interferon secretion. TLR3 activation may also promote RIP1
ubiquitination, which allows for RIP1 to interact with TAK1/TAB2/3 or NEMO, resulting in gene transcription events regulating
inflammation and apoptosis. IRAK1 becomes ubiquitinated followed by TAK1 activation with TAB2/3 binding K-63 linked ubiquitin
which forms a hybrid complex with linear (Met1-linked) ubiquitin on NEMO allowing for TAK1 to phosphorylate IKKβ. This eventually
results in the release of NF-κB subunits from IκBα. TNIP1 regulation of these events is believed to occur by (b) removal of K63-linked
ubiquitin chains via TNIP1/A20 binding and A20 de-ubiquitinase activity and/or (c) inhibition of complex formation by competition for
polyubiquitin binding.
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and TNIP1 (ABIN-1) [58]. This points to TNIP1 promoting
repression of signaling not only due to increased A20
ubiquitin-editing activity but also due to a potential mech-
anism where TNIP1 disrupts scaffold formation dependent
on polyubiquitination and complex formation through
binding and prevention of protein-protein interactions
(Figures 1(b) and 1(c)).

Aside from NEMO, other targets of polyubiquitin down-
stream of TLR activation have been described as negatively
regulated by TNIP1 including TANK-binding kinase 1
(TBK1) [59], receptor-interacting serine/threonine kinase 1
(RIP1 or RIPK1) [41], and interleukin-1 receptor-associated
kinase 1 (IRAK1) [42]. Association of TNIP1 with IRAK1
was abolished with a loss of function mutation in its UBAN
domain despite the presence of TLR4 agonist LPS. Loss of
UBAN function promoted increased IRF3-mediated tran-
scription downstream of K63 ubiquitin target TBK1 in the
presence of TLR3 agonist. RIP1, another TNIP1 interaction
partner, participates in signaling downstream of both TLR
and TNF receptors, mediating inflammatory responses [60]
and cell-death signals [61]. Loss of TNIP1 UBAN functional-
ity (QQ477EE mutation) prevents this interaction and asso-
ciated regulation of programmed cell death (PCD) [41].
More recently, RIP1 regulation by TNIP1 has been deter-
mined to be dependent on both Met1 ubiquitination and
K63 ubiquitination, ultimately promoting de-ubiquitination
of RIP1 by a more stable A20 [62]. The importance and
widespread effects of TNIP1 repression on inflammatory
pathways are clearly based on diverse targets of TNIP1-
mediated regulation described above. Beyond inflammatory
signaling pathways, polyubiquitination affects structure,
function, and stability of almost innumerable proteins
and thus the related biological consequences of those
proteins [63]. We suggest that future studies of TNIP1
interacting with these ubiquitinated proteins are likely to
reveal the new and wide-reaching significance of the
TNIP1 protein.

3. Toll-like Receptors (TLR)

3.1. Structure and Role in Cell Activation. Following exposure
to microbes, cellular mechanisms are activated to recognize
these foreign pathogens and eliminate them. These mecha-
nisms rely on both innate and adaptive immunity through
recognition by antigen-specific and nonspecific receptors.
During innate immunity, foreign pathogens are recognized
by pattern-recognition receptors (PRRs) which include
Toll-like receptors, a family of type 1 transmembrane recep-
tors capable of forming hetero- or homodimers on the cell
membrane (TLR1, 2, 4, 5, and 6) and intracellularly (TLR3,
7, 8, and 9) within endosomes, lysosomes, or the endoplasmic
reticulum [64]. TLRs are commonly expressed on sentinel
inflammatory cells such as macrophages and dendritic cells
as well as on nonimmune cells such as fibroblasts and epithe-
lial cells [65]. As a component of the innate immune system,
TLRs allow for a rapid response to environmental triggers in
defense against microbial infections [66]. These receptors
are capable of recognizing environmental cues, known as
pathogen-associated molecular patterns (PAMPs), associated

with foreignpathogens (bacteria, fungi, parasites, andviruses).
TLRs are also capable of recognizing host-derived endoge-
nous ligands referred to as damage-associated molecular
patterns (DAMPs) which include free fatty acids, oxidized
lipids as well as heat-shock proteins (HSP60 and HSP70)
and extracellular membrane (ECM) components released
during cell injury and apoptosis [64, 67]. PAMPs recognized
by TLRs can be separated into two types based on whether
they are sensed externally (e.g., bacterial lipids and lipo-
polysaccharide (LPS) and flagellin) or within intracellular
compartments (e.g., nucleic acids including viral dsRNA,
ssRNA, and CpG-DNA).

3.2. Key Components and Divergent Pathways. Common to
TLR is an extracellular domain featuring leucine-rich repeats
(LRRs), which allow for diversity in recognizing agonists, and
a cytoplasmic Toll/IL-1 receptor (TIR) domain involved in
adaptor protein recruitment associated with receptor activa-
tion/dimerization [68]. With binding of PAMP or DAMP by
the LRR domain, downstream consequences include secre-
tion of chemokines, proinflammatory cytokines, and/or
type I/II interferons. This is mediated by a number of
recruited TIR domain-containing proteins (Figure 1(a))
including myeloid differentiation primary-response protein
88 (MyD88), TIR-domain-containing adaptor protein induc-
ing β interferon (TRIF), TIR-domain-containing adaptor
molecule (TIRAP), or TIR-domain-containing adaptormole-
cule (TRAM). Excluding TLR3, all other TLR initiate signal-
ing by recruiting MyD88 (with TLR1, 2, 4, and 6 recruiting
intermediate adaptor protein TIRAP along with MyD88)
[69]. TLR3 acts through recruitment of TRIF, with TLR3
requiring secondary adaptor protein TRAM. Although
shared signaling events such as phosphorylation and ubiqui-
tination occur, there is a divergence in the use of receptor
adaptor protein MyD88.

3.2.1. MyD88-Dependent Signaling Pathway. Loss of MyD88
expression has been associated with decreased ability to
mount an immunological response to certain types of
infections in mice and humans [70–72]. MyD88 acts as a
key bridge between the death domain (DD) containing
IL-1R-associated kinase (IRAK) 4 and the TIR domain of
TLRs. IRAK-4, a serine/threonine kinase, drives signaling
by promoting the activation of two other IRAK proteins,
IRAK-1 and IRAK-2, forming what is called the Myddosome
[73]. Due to its importance in signaling, efforts have been
ongoing to target IRAK-4 therapeutically [74]. With activa-
tion of IRAK-1 and IRAK-2, the IRAK proteins dissociate
and form a complex TNFR-associated factor 6 (TRAF6)
which acts as an E3 ligase in concert with E2 ubiquitin-
conjugating enzyme complex UBC13 and UEV1A, pro-
moting auto-K63-linked ubiquitination and activation of
mitogen-activated protein kinase kinase kinase 7 (TAK1).
TAK1 plays a central role in the activation of both canon-
ical pathways resulting in NF-κB-mediated transcription and
noncanonical pathways leading to AP-1-mediated transcrip-
tion via ERK/JNK/P38 [69]. TAK1 activation is believed to
occur following TAK1 complex formation with TAK1-
binding protein 1 (TAB1), TAB2, and TAB3. This complex
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formation (Figure 1(a)) is dependent on TAB2/3 interaction
with K63-linked polyubiquitin [75]. Activation of TAK1 pro-
motes further activation of the IκB kinase (IKKβ) and MAP
kinase kinase 6. IKKβ is associated with IKKα and NEMO
(known as IKKγ) and leads to phosphorylation, K48-linked
ubiquitination of NF-κB inhibitor alpha (IκBα), and protea-
somal degradation freeing NF-κB subunits to translocate into
the nucleus. NEMO association with linear polyubiquitin via
the linear ubiquitin chain assembly complex (LUBAC) is a
key to the eventual IκBα degradation via the IKK complex
(IKKα, IKKβ, NEMO) [76]. Compartmentalized TLR7
and 9 are distinct from other MyD88-dependent TLRs in
that they can promote interferon secretion (mainly IFNα),
making them powerful tools against invading microbe-
associated nucleic acids. This occurs through IRF7 activation
by IRAK-1 phosphorylation in a MyD88, IRAK-1, TRAF3,
IKKα, and IRK7 complex [77].

3.2.2. Non-MyD88-Dependent Signaling Pathway. TLR3
signaling was reported as one of the two TLRs sensitive to
TRIF-deficiency in mice [78]. MyD88 deficiency in bone
marrow-derived macrophages (BMDM) promoted increased
TLR3-mediated cytokine secretion [79]. Through TRIF,
TLR3 is capable of inducing TRAF6-mediated gene expres-
sion, as in MyD88-dependent signaling, by promoting
K63-linked ubiquitination of RIP1 (Figure 1(a)), with pel-
lino1 being a key in the activation of RIP1 [80]. RIP1 can then
promote activation of the TAK1 complex and subsequent
events leading to IκBα degradation. TRAF3, an E3 ligase like
TRAF6, promotes TRAF6-independent [81] IRF3 phosphor-
ylation by ubiquitination of TANK-binding kinase 1 (TBK1)
and formation of IKKε/TBK1 complex. Activated IRF3 forms
a dimer and enters the nucleus where it promotes type I
IFNs secretion.

4. TNIP1 in Inflammation and Disease

With all the unknown factors remaining in regard to the
initiation of autoimmune or hyperinflammatory conditions,
it is clear that there are multiple simultaneous factors con-
tributing to these diseases. One such factor is a genetic com-
ponent such as DNA sequence variants found in association
with specific disease states. As presented below, TNIP1 is an
oft-cited gene in GWAS studies with SNPs in certain popula-
tions suffering from systemic lupus erythematosus, psoriasis,
and systemic sclerosis [13–16]. For recent consideration of
possible genetic association of TNIP1 with other autoim-
mune diseases such as Sjögren syndrome and psoriatic
arthritis, the reader is directed to [82, 83].

4.1. Systemic Lupus Erythematosus. In SLE, the loss of
immune tolerance and with it, triggering of autoreactive
T and B cells appears as a key to the development and progres-
sion of the disease state which is compounded by genetic pre-
dispositions and exposure to environmental risk factors.
Plasmacytoid dendritic cells (pDCs) are antigen presenting
cells (APC) capable of sensing ssRNA and unmethylated
CpGDNAsequences through endosomal TLR7 and 9, respec-
tively [84]. When activated by these ligands, pDCs produce

high levels of type I interferons (IFNα/β) (Figure 2). IFNα
has been implicated in many clinical manifestations of SLE
[85] and, interestingly, when used therapeutically, IFNα has
been shown to induce a SLE-like phenotype [86]. pDC activa-
tion by host DAMPs is avoided as these cells can distinguish
between microbial and self-nucleic acids [87]. However, such
tolerance is believed to be compromised with generation and
accumulation of increased protein and nucleic acid associated
DAMPs from apoptosis-associated proteases and nucleases.
Circulating pDCs internalize these new DAMPS with com-
plexes formed with IgG leading to potent activation of endo-
somal TLR7 and 9 [88, 89] and increased IFNα production
[90–92]. TLR7 null mice were partially protected from similar
effects due to decreased pDC responsiveness and in-turn
reduced IFNα and IL-6 expression [93]. Conversely, increased
expression of TLR7 in transgenic mice overexpressing TLR7
spontaneously developed fatal and acute immune dysregula-
tion and autoimmunity [94]. With these observations in
human SLE patients and mice experiments, the importance
of TLR activation in the progression of the SLE phenotype
becomes clear.

The GWAS correlation of TNIP1 sequence variants to
several autoimmune diseases [17–19, 22, 26], for example,
and evidence of NF-κB signaling possibly under TNIP1 con-
trol post-TLR signaling [10, 19, 26, 50, 95] provided rationale
for investigating SLE-like characteristics in knockout or
mutant knock-in mouse models, respectively, with missing
or dysfunctional TNIP1 protein. Such mouse experimental
systems set the stage to study TNIP1 functional differences
underlying likely contribution to phenotypes of the whole
animal activated immune systems.

To address the high proportion of late embryonic
Tnip1 −/− lethality seen earlier [41], Zhou and colleagues
crossed 129S2 ES-cell-derived Tnip1 +/− mice to a C57BL/6
background [96]. Although the influence of mouse genetic
strain remains unresolved, there is an increase in phenotypi-
cally normal live-born pups; however, by four months of
age, these mice develop a wasting syndrome along with
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Figure 2: IL-23/Th17 axis of psoriasis. Proposed paracrine signaling
with TNIP1 regulation in psoriasis where nonimmune cells are
keratinocytes [111]. We would suggest that variations of this could
be relevant for SLE and SSc, where the nonimmune cells are a
podocyte or fibroblast, respectively. For instance, following TLR7
or 9 activation of APCs in SLE, paracrine signaling would include
type I interferons.
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leukocyte infiltration of kidneys, liver, and lungs. Echoing a
SLE phenotype, there are increased levels of autoreactive anti-
bodies against dsDNA and development of significant glo-
merulonephritis which are not rescued by a TNFR null
background. In contrast to the expected NF-κB-mediated
transcriptional increases, CpG occupation of TLR9 in
Tnip1 −/− bone marrow-derived macrophages [96], strik-
ingly activates C/EBPβ-regulated promoters including that
of proinflammatory SLE severity-correlating S100A8 [97].
Strikingly, knock-in mice engineered with a Tnip1 mutant
[D485N] [42] defective in binding both K63-linked and
linear polyubiquitin chains (see UBAN section above), and
therefore with predicted increased TNFα sensitivity, are born
at the same size and frequency of Tnip1 +/+ mice. These
Tnip1 [D485N] mice show age-associated autoimmunity
marked by enlarged spleens and circulating levels of antinu-
clear and anti-DNA antibodies, the latter consistent with
the development of severe glomerulonephritis [42]. For
cultured cells, Tnip1 [D485N] MEF do not display TNFα-
enhanced activation of MAPKs but do show exaggerated
responses via activation of JNK, p38, and NF-κB in B cells
and BMDC exposed to several TLR ligands including LPS
(TLR4), lipoteichoic acid (TLR2/6), and R848 (TLR7). Along
these lines, when challenged with TNFα, human immor-
talized kidney podocyte cells recombinantly expressing
the human ubiquitin-binding deficient homologue mutant
[D472N] but not human wildtype TNIP1 [98] have increased
expression of numerous chemokine genes echoing increased
NF-κB-regulated inflammatory signaling in SLE and glomer-
ulonephritis patient kidney samples. Further complementary
studies of both receptors’ cytoplasmic activation steps should
help determine the full range of TNIP1 protein suppressive
capabilities. For instance, in Tnip1 [D485N] mice, a lupus
nephritis-like presentation is prevented when crossed to
backgrounds with catalytically inactive signaling proteins
downstream of TLRs such as IRAK-1 or IRAK-4 [99].

The range and sometimes divergence of TNIP1 effects on
postreceptor signaling interpreted from overexpression stud-
ies, whole animal null or knock-in, and cell-specific deletion
[100–103] may be reflecting its as yet uncharacterized quan-
titative and/or qualitative characteristics. These may arise
from mouse strain influences, varying expression levels of
TNIP1 protein and/or its varying interacting partners in
different cells [11, 43, 104, 105] and cell- or organ-specific
sensitivity to various cytokine and PAMP/DAMP receptor
agonists. Further study in these complementary systems will
help to advance our understanding of a role for TNIP1 in SLE
pathology. Reconciling such differences will be central to
considering any possible therapeutic targeting of TNIP1’s
repression of the multiple signaling pathways downstream
of distinct membrane receptors.

4.2. Psoriasis. Psoriasis is a chronic skin disorder affecting
about 2% of people in the United States, most commonly
manifested as plaque psoriasis (psoriasis vulgaris) and
accounting for about 90% of all cases. Psoriasis is an
immune-mediated disorder that manifests in the skin or
joints, which is influenced by both environmental and
genetic components [106]and characterized by aberrations

in the skin epithelium specifically hyperproliferation in the
epidermis and hyperactive keratinocytes with increased
mitotic rates. This increased replication of keratinocytes
results in poormaturation leading to incomplete cornification
observed clinically as poor barrier function and histologically
as retained nuclei in the stratum corneum (parakeratosis) and
thickening of the epidermis (acanthosis) with elongated rete
ridges. Immune infiltration is a hallmark of psoriasis featuring
increased dendritic cells (DCs) and macrophages in the der-
mis and neutrophils in the epidermis. T cells are found in
increased numbers in both with higher numbers of Th1,
Th17, and Th22-polarized T cells [107]. Family-based linkage
studies have established the strongest genetic links to psoriasis
with the class 1 region of theMHC cluster near the HLA-Cw6
allele. These studies are consistent with GWAS studies which
have identified the same HLA region as well as other genes
including IL-23R, IL-12β (p40), and TNIP1 [26, 108, 109].

Differential TNIP1 expression in psoriatic patients versus
healthy controls has been described previously [26] with
observed increases in mRNA expression coupled with a
2-fold decrease in protein expression in the patients [38].
To establish models of TNIP1 loss in psoriasis, various cell
culture models and in vivo approaches have been taken.
Chen et al. used TNIP1 shRNA injection to promote local
TNIP1 deficiency in a region of the skin followed by topical
exposure to the TLR7 agonist imiquimod (IMQ), which is a
compound used frequently to promote psoriasis-like pheno-
type in mice [110]. In these mice, tissue with reduced TNIP1
had a significantly higher overall psoriasis disease score, as
compared to wild-type IMQ treated. This included increased
raised, scaly, erythematous plaques marked by epidermal
thickening, hyperkeratosis, and parakeratosis. These charac-
teristics closely mimic the presentation of psoriasis in human
patients. Using a TNIP1 null line challenged with IMQ,
Ippagunta et al. demonstrated that skin inflammation has
more characteristic of psoriasis than atopic eczema via com-
parison with microarray analysis of corresponding human
disease samples [111]. These mouse models suggest that
human disease may be a combination of genetic predisposi-
tion (TNIP1 SNPs) coupled with environmental assault
(TLR ligands).

Psoriasis is believed to be a disease of both epithelial cell
dysfunction coupled with immune cell over-activation. This
mechanism centers around T Helper (Th) 17 cells which
secrete IL-17α and IL-22, potent inducers of keratinocyte
activation and proliferation [112]. Interestingly, cultured
cells experimentally exposed to IL-17a showed increased
rates of TNIP1 protein degradation [113]. IL-23 secreted by
activated DCs promotes the expansion of already differenti-
ated Th17 cells (from naive CD4+ T cells in the presence of
TGFβ, IL-1β, and IL-6) [114, 115]. Increased keratinocyte
activation promotes increased chemokine, cytokine, and
antimicrobial peptide secretion resulting in increased DC
activation leading to increased IL-23 which promotes Th17
proliferation leading to subsequent keratinocyte activation
and completing the cycle (Figure 2) [112, 116]. Most of the
mechanistic understanding of psoriasis is in the propagation
and worsening of the disease state. Still lacking is an under-
standing of what promotes initiation of the disease. One
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proposed mechanism for initiation begins with external stim-
uli such as microbial infections or physical trauma leading to
RNA/DNA-LL-37 (antimicrobial peptide) complex forma-
tion and internalization by circulating pDCs, where it acts
as an agonist for endosomal TLRs 7 and 9, resulting in IFNα
secretion. IFNα expression promotes DC activation which
would allow for antigen presentation, T cell differentiation,
etc. [106]. Under normal conditions, this would lead to an
appropriate immune response and activation. Under condi-
tions with genetic polymorphisms in PSORS1, IL-23R, A20,
TNIP1, and/or other genes implicated in association studies,
this response may become exaggerated. Our group and
others have shown that TNIP1 reduction alone does not pro-
mote a chronic hyperinflammatory state [38, 40]. However,
when coupled with an external stimulus, there is a clear exag-
gerated response [38, 40]. Thus, keratinocytes deficient for
TNIP1 may contribute to hyperactivation of local immune
responses when exposed to TLR environment- or skin
cell-derived agonists.

For studies of cell signaling in a psoriasis-relevant model,
Callahan et al. used CD11c-Cre LoxP system to engineer a
TNIP1 DC-specific knockout [103]. When exposed to TLR
ligands, these mice developed splenomegaly and lymphade-
nopathy with an accumulation of myeloid cells suggesting a
systemic activation of the immune system, as previously
observed in the whole mouse TNIP1 knockout [41, 96].
Topical exposure to IMQ, a TLR7 ligand, instigated a higher
overall psoriasis phenotype score (higher levels of epidermal
hyperplasia, hypogranulosis, hyperparakeratosis, and epider-
mal neutrophil infiltration) compared to control animals.
BMDC from these mice when treated with TLR ligands
(IMQ, LPS) showed increased secretion of immune cytokines
including IL-23, an interleukin considered critical in psoria-
sis development due to its ability to induce Th17 cell prolifer-
ation. Ippagunta et al., confirmed this finding using BMDC
from TNIP1 knockout mice. They also demonstrated the
importance of TNIP-mediated regulation of TLRs in T cell
and nonimmune cell (keratinocytes, fibroblasts) mediated
immunity [111].Using keratinocyte-specificTNIP1knockout
mice, these investigators demonstrated that keratinocyte-
initiated immune signaling, through the IMQ-induced
expression of numerous cytokines, antimicrobial peptides,
and chemokines, can induce psoriasis-like disease. Thus, for
several immune and nonimmune cell types, these studies
demonstrate the importance of TNIP1 control over internal
signaling pathways and also external paracrine interactions
among them (Figure 2).

4.3. Systemic Sclerosis (Scleroderma). The etiology, clinical
pathology, and cell biology of systemic sclerosis (SSc) lead
to multicell signaling interactions coming together to trigger
micro-vascular damage, inflammatory signal production,
and cardiac, pulmonary, and dermal fibrotic responses
[117]. Prevalence of SSc cases (~14 per 100,000 persons)
can vary significantly as there appear to be significant dis-
ease subtype, gender, age, race, and ethnic group qualifiers
[118, 119]. While thickening, hardening, and tightening of
the skin are classic and common in most presentations, it
is a decline in internal organ function, such as the lungs

and gastrointestinal tract from local vasculopathy and excess
extracellular matrix deposition that most significantly pro-
motes disease morbidity and mortality [120–122].

Familial and epidemiologic studies provide clear genetic
associations between SSc and HLA [117, 123–125] and
non-HLA loci which are often in-common for other autoim-
mune pathologies [126]. Three separate reports have added
TNIP1 to these non-HLA loci [17, 18, 127]. Like many
pathology-associated SNPs, TNIP1 sequence variations asso-
ciated with SSc to date are in noncoding sequences (intronic
and potential genetic expression-regulatory regions). Inter-
estingly, three other proteins with proven physical interac-
tion with and/or signaling regulatory control by TNIP1 are
implicated in SSc by GWAS reports suggesting their mutual
contribution to relevant pathways. A PPARγ SNP [128, 129]
is associated with SSc, and we previously established TNIP1
as a nuclear corepressor of PPARα and γ activity [45]. At least
three SNPs of the TNIP1 cytoplasmic binding partner
TNFAIP3 (A20) carry an increase for susceptibility to SSc
[117, 130–132]. Additionally, the SNP resulting in an amino
acid substitution (Pro631His) in TLR2 is associated with
increased progression of SSc-associated pulmonary arterial
hypertension [133, 134]. Thus, even when not a genetic vari-
ant itself, signal control/initiation node (s) (TNFAIP3, TLR,
and PPAR) impacted by TNIP1 may be contributory to SSc.

In addition to genetic sequence variants for the TNIP1
pathway-associated proteins TLR and TNFAIP3, several
functional and expression levels studies have linked their
normal counterparts to SSc. In part because of the relative
clinical accessibility of cutaneous biopsies compared to inter-
nal organ sampling, these studies may be biased to dermal
fibroblast characteristics. Nevertheless, several studies have
found expression of TLR9 [135] and TLR4 as well as endog-
enous ligands for the latter [136–138] increased in SSc lesion
specimens. Fibroblasts cultured from SSc skin biopsy
explants displayed a degree of TLR3 expression induction
by interferon greater than control cells. Additionally, SSc
lesion-derived dermal fibroblasts, under otherwise standard
culture, demonstrated a sensitivity to the TLR3 synthetic
ligand poly (I:C) greater than control fibroblasts [139]. The
full spectrum of TLR in multiple cell types and their demon-
strated or possible involvement in SSc has been comprehen-
sively reviewed by Fullard, Bhattacharyya, and colleagues
[136, 140]. Thus, deficiency or dysfunction in TNIP1-
adjacent proteins such as its functional partner TNFAIP3
(A20) or excess upstream signaling initiated by sensors of
innate immune system activity such as TLR may overwhelm
the signaling-dampening abilities of TNIP1 [134, 141].

Intriguingly, following up on TNIP1 SSc SNPs [18],
Allanore and colleagues reported that compared to skin
samples derived from age- and sex-matched healthy controls,
the TNIP1 protein was decreased in SSc lesional skin. Sepa-
rate expression array studies [142] support reduced TNIP1
in lesional skin compared to patient uninvolved skin. Cul-
tured SSc patient dermal fibroblasts [18] have reduced
TNIP1 mRNA and protein. These SSc fibroblasts produced
elevated levels of collagen in response to cytokine challenge
(TNF). Strikingly, this could be abrogated by extracellular
TNIP1 protein. This effect would have had to be through
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an unknown mechanism versus characterized intracellular
signaling repression by TNIP1. There is no known or pre-
dicted cell-penetrating peptide-like region for cellular reentry
of TNIP1. Other reports and our publications established
cytoplasmic and nuclear compartmentalization for TNIP1
from endogenous and transfected cDNA expression studies
[12, 43]. Nevertheless, the studies establishing the TNIP1-
SSc genetic association and/or the reduced TNIP1 expression
levels in SSc samples [17, 18, 127, 142] are consistent with
and supportive of TNIP1 as a key suppressor of pathways
driving a fibrotic signaling whether intrinsic to the fibroblast
or in a paracrine fashion where TNIP1 deficiency or defective
function in associated epithelial cell (e.g., skin keratinocytes)
could make these otherwise protective cells a source of
fibroblast-activating cytokines.

5. TNIP1 in Autoimmunity: Summary

Based on the studies of TNIP1 deficiency across a broad spec-
trum of cell types, including immune cells (DCs, B cells, and
T cells) and nonimmune cells (keratinocytes and fibroblasts),
it is clear that the loss of TNIP1 expression through knockout
or knock-in functional mutations leads to a predisposition
for development of autoimmunity. GWAS studies predict
this predisposition in human populations through multiple
recognized SNPs in TNIP1 genes in patients with autoim-
mune diseases. Not only does TNIP1 loss or deficiency pro-
motes a hyperinflammatory state, this phenotype closely
mimics autoimmune diseases present in human populations.
Because of this, manipulation of TNIP1 expression or func-
tion can be a useful tool in modeling autoimmunity in mice
for the development of drugs and therapies. One fundamen-
tal question remaining in autoimmune disease pathogenesis
is the cause and initiation of the disease. Through the TNIP1
autoimmune models, it is clear that the potential for TLR
stimulation via microbial invasion, cell damage due to
wounding, etc. is the first step in pathogenesis. More specifi-
cally, this step is described by an exaggerated stimulation of
TLRs due to the loss of negative regulation by TNIP1 down-
stream of receptor activation. With its key regulatory control
over multiple signal initiators or pathways, further research
on TNIP1 could advance it from association with several
autoimmune diseases to a mechanistic contributor to the
pathology, and possibly, ultimately, a therapeutic target.

6. Conclusions and Future Directions

(i) The vast majority of autoimmune diseases does not
stem from single gene defects and are likely influ-
enced by multiple genes [143] and environmental
factors [144] that can promote body-wide and/or
tissue-specific autoinflammatory reactions. From
human genetic studies, animal models, and in vitro
experiments, it would appear that loss, reduction,
or dysfunction TNIP1 has the potential to be one
of these defects.

(ii) With significant negative side-effects of current
autoimmune disease therapies, there is a pressing

need to develop safer treatments through research
into mechanisms underlying these disorders. As
highlighted in this review, TNIP1 protein function,
as a repressor of signaling downstream from TLR
implicated in several autoimmune diseases, could
be a pharmacologic target of new therapies.

(iii) While likely relevant to hyperactive inflammatory
signaling in several autoimmune diseases, the
experimental loss or reduction of TNIP1 presents
as its own phenotype and does not fully recapitu-
late any one specific pathology. Nevertheless, the
predisposition towards hyperinflammatory reactions
of multiple cell types with defective TNIP1 function
is likely to provide advantageous insights to further
study of tissue-specific and whole animal autoim-
mune disease models as well as testing of new anti-
inflammatory therapies.
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