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ABSTRACT

Motivation: Time-to-event regression models are a critical tool for

associating survival time outcomes with molecular data. Despite

mounting evidence that genetic subgroups of the same clinical dis-

ease exist, little attention has been given to exploring how this hetero-

geneity affects time-to-event model building and how to

accommodate it. Methods able to diagnose and model heterogeneity

should be valuable additions to the biomarker discovery toolset.

Results: We propose a mixture of survival functions that classifies

subjects with similar relationships to a time-to-event response. This

model incorporates multivariate regression and model selection and

can be fit with an expectation maximization algorithm, we call Cox-

assisted clustering. We illustrate a likely manifestation of genetic het-

erogeneity and demonstrate how it may affect survival models with

little warning. An application to gene expression in ovarian cancer DNA

repair pathways illustrates how the model may be used to learn new

genetic subsets for risk stratification. We explore the implications of

this model for censored observations and the effect on genomic pre-

dictors and diagnostic analysis.

Availability and implementation: R implementation of CAC using

standard packages is available at https://gist.github.com/programeng/

8620b85146b14b6edf8f Data used in the analysis are publicly

available.
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1 INTRODUCTION

In cancer genomic studies, unobserved heterogeneity obfuscates

the effort to build accurate descriptive models of risk stratifica-

tion. In ovarian cancer, for example, Vaughan et al. (2011) argue

that the set of patients with the same clinical disease have distinct

molecular diseases. With respect to inference, this implies that

the same regression models may not be valid for every patient

and further that it is unclear which patients should be considered

together (Köbel et al., 2008). Therefore, a major statistical task is

to organize patients into previously unknown classes while sim-

ultaneously fitting their time-to-event models.

The examples throughout the article are taken from our on-

going analysis of data from The Cancer Genome Atlas (TCGA),

which has the goal of cataloging all of the genomic alterations in

cancer. For each patient, there is a tremendous amount and var-

iety of data: 12 000 genes in expression arrays, 1 million single-

nucleotide polymorphism genotypes, exome and whole-genome

sequences, methylation of thousands of CpG islands and the

expression of microRNA. From this plurality of data, we antici-

pate that exploratory methods will serve to extract and charac-

terize genetic subgroups relevant to survival time clinical

outcomes.
For summarizing the impact of a genetic signature, one often

stratifies patients to demonstrate separation between class-

defined survival curve estimates. Unfortunately, as Na et al.

(2009) review, current methods either awkwardly dichotomize a

continuous score at a post hoc threshold or rely on hierarchical

clustering to define subgroups with no necessary relation to sur-

vival. In that sense, it is desirable to have a method that identifies

genetic subgroups supervised by their survival times.

The standard methods for dealing with non-homogenous

time-to-event data do not apply when our goal is to discover

unknown subgroups. Continuous frailty models (Aalen, 1988)

treat all individuals separately and therefore do not produce sub-

groups. O’Quigley and Stare (2002) emphasize the use of random

effects and stratified regression models when subgroups are

known. Classification and regression tree methods have been

adapted for survival responses (Lostritto et al., 2012; Segal,

1988). However, these methods partition the predictor space to

form a single piecewise functional estimate, and our interest is in

the subgroups that exist in similar regions.
Some treatment of heterogeneity relevant to survival time

where a subgroup of patients does not expire appears in the

cure rate model literature (Farewell, 1982). Our situation is dis-

tinct in three ways: a subgroup may have variable time-to-event

outcomes (cured patients have infinite survival times), the vari-

ables of interest to each mixture component may be distinct and

the set of patients in each subgroup is not known.
In this article, we propose a discrete mixture regression model

that synergizes with potential heterogeneity in time-to-event

data. Concretely, we assume that observations belong to un-

labeled classes with class-specific proportional hazards (PH) re-

gression models relating their genetic covariates to survival time

outcomes (Section 3). This conditional semi-parametric model

leads to a surprising variety of model effects, which we illustrate*To whom correspondence should be addressed.
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in Section 2. In Section 4, we describe an algorithm and the

considerations for fitting the model. Simulations highlight the

use of censored data (Section 5) and a data analysis demonstrates

a single-pathway hypothesis-driven model (Section 6). Our dis-

cussion (Section 7) again emphasizes the exploratory role that

this analysis may address.

2 ILLUSTRATIONS

2.1 Genetic heterogeneity

There is evidence that distinct molecular subgroups lead to the

same clinical presentation of ovarian cancer (Cooke et al., 2010;

Köbel et al., 2008; Konstantinopoulos et al., 2008; Vaughan

et al., 2011). This form of genetic heterogeneity may arise be-

cause the commonalities leading to cancer may aggregate within

pathways and not on the level of genes (Jones et al., 2008). In the

following case study, we highlight the ability of the mixture to

produce unusual associations between covariates and survival

and how it may augment our understanding of subgroup

discovery.
Suppose that X � Nð0, 1Þ represents a single typical normal-

ized gene expression measurement and that patients do have

survival times arising from two distinct hazard models,

h1ðtjxÞ ¼ h0ðtÞ expð�2xÞ and h2ðtjxÞ ¼ h0ðtÞ expðþ2xÞ. These

hazards represent an extreme version of heterogeneity in

expression; in one class, the gene has a protective effect and in

the other it is equally deleterious.
Assuming the baseline hazard is exponential ðh0ðtÞ ¼ 1Þ, we

generate 1000 complete survival times, Y, under each of these

hazards and plot them on the log scale with their randomly gen-

erated expression in Figure 1A. Without knowledge of the true

classes, fitting a standard Cox regression to these data finds no

significant relationship betweenY andX (�̂ ¼ �0:0314, P ¼ 0:1).
This effect is strong enough that the relationship is easily identified

if the true classes are known (�̂1 ¼ 1:93, P50:001 and

�̂2 ¼ �2:12, P50:001).
A standard diagnostic technique to estimate non-linear rela-

tionships between Y and X is to use a smoothing estimate on

the added variable plot (Fig. 1B). In this case, it fails to identify

any important effects. Estimating a time-varying effect is another

diagnostic for assessing PH (Grambsch and Therneau, 1994).

Again it does not discern any non-proportional effect

(P ¼ 0:116) or time-varying effect (Fig. 1C). So, by the standard

analyses, this important gene would not be identified for further

study.
With respect to gene expression analyses, this is a case where

differential expression (DE) models that look for mean difference

will fail: there is no true underlying survival difference between

classes that may be attributed to X (Fig. 1D). This means that

models that try to estimate a rule 1fX4cg that can classify patients

are not applicable. So, the mixture reflects a different way to

A B

C D

Fig. 1. Heterogeneity example. (A) Log simulated survival times by covariate; underlying heterogeneity is represented by dark and light classes. The

marginal Cox model estimated relationship with covariate X is indicated by the dashed line. (B) An added variable plot, the estimated functional

relationship between survival time and X (dashed) fails to detect unknown subgroups. (C) A check for non-PH finds no significant deviation. (D) Even

though the generating models are different, the oracle-based survival estimates show no significant difference
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model risk in gene expression. The question remains about

whether this kind of example exists in real data. We present a

gene that does just this in the following illustration.

2.2 Cytoreduction and epiregulin

We draw known class labels from a measured surgical covariate,

which is presently used as a biomarker. Cytoreduction, the

amount of tumor remaining after surgery, is a measure of success

of surgical debulking, which is a component of primary therapy

in ovarian cancer. Patients who are suboptimally cytoreduced

have a clinically significant amount of residual tumor that will

seed future recurrent disease and progression (Bhoola and

Hoskins, 2006).

Using the TCGA study to be introduced in Section 6, we sep-

arate the patients into optimal and suboptimal categories and

provide a kernel smoothing estimate of their hazards (Fig. 2).

The estimated hazards are clearly non-proportional [P¼ 0.007,

Grambsch and Therneau (1994)], reflecting the early protective

effect of optimal cytoreduction and its transient nature.
Fitting separatemodels in each subgroup,we searched for genes

whose relationship with survival inverts over classes finding epir-

egulin (interactionP¼ 0.004), which has been recently highlighted

as a progression marker (Amsterdam et al., 2011). In optimally

cytoreduced patients, increased expression is detrimental to sur-

vival (�̂ ¼ 0:156,P ¼ 0:014); in suboptimal patients, increased

expression is protective (�̂ ¼ �0:452,P ¼ 0:012). In Figure 2,

we have plotted the estimated survival for high and low epiregulin

expression for optimal and suboptimal patients. Noting that epir-

egulin has been shown to inhibit epithelial tumor cells and stimu-

late cancer-associated fibroblasts (Toyoda et al., 1995), the

surgical outcomes may indicate a more epithelial or more fibrous

tumor; a fair biological explanation is that epiregulin expression

leads to the inhibition of tumor burden (a better prognostic out-

come), or the stimulation of fibroblasts that leads to cancer

progression.

Thus, these effects do exist and imply surprisingly deep biolo-

gical connections. Following a genomic survey, this type of effect

is an ideal target for functional studies. Given that we want to

identify genetic subgroups with different prognoses, we should

favor a model that admits unknown and possibly dramatically

different survival experiences. The mixture model should let us

estimate labels and should be able to resolve non-PH.

3 METHODS

Let ðYi, �i,xiÞ, i ¼ 1, . . . , n be an independent right-censored sample

with regression covariates xi ¼ ðxi1,xi2, . . . ,xipÞ
0, where �i ¼ 1 indicates

that the complete time has been observed. We will denote the collections

of survival times, censoring indicators and covariate vectors as

Y ¼ ðY1, . . . ,YnÞ, � ¼ ð�1, . . . , �nÞ and x ¼ ðx1, . . . , xnÞ, respectively.

To account for heterogeneity, we propose that each patient arises from

one of K latent classes with probability �k, k ¼ 1, . . . ,K,
P

k �k ¼ 1.

We assume Cox’s PH model (Cox, 1972) within each class k, so that

the covariate vector x enters the model log-linearly via a class-specific

hazard: log hkðtjxÞ ¼ log h0kðtÞ þ x0�k. For a general introduction to the

Cox regression, see Hosmer et al. (2011). In particular, recall that a right-

censored observation following a PH model has the density

fkðy, �jxÞ ¼ h0kðyÞ expðx
0�kÞ½ �

�
exp �H0kðyÞ expðx

0�kÞ½ �, ð1Þ

where h0kðtÞ and H0kðtÞ are the baseline hazard and baseline cumulative

hazard for the kth class. The mixture density may be written as

fðY,�jxÞ ¼
Yn
i¼1

XK
k¼1

�kfkðYi, �ijxiÞ: ð2Þ

If we also observe the latent class U ¼ ðU1,U2, . . . ,UnÞ, where

Ui �Multinomialð�Þ, Ui 2 f1, 2, . . . ,Kg and uik ¼ 1fUi¼kg, we may

write the density of the complete data as

fðY,�jx,UÞ ¼
Yn
i¼1

YK
k¼1

�kfkðYi, �ijxiÞ½ �
uik : ð3Þ

To estimate the regression coefficients and baseline hazard parameters,

we propose maximizing this likelihood via the expectation maximization

(EM) procedure (Dempster et al., 1977) described in Section 4.

The discrete mixture leads to the model’s interpretation as organizing

observations into clusters that are not known a priori. This type of clus-

tering should not be confused with clustered survival data, which typically

refers to the case where class labels identifying multiple observations from

the same source (e.g. treatment centers or year of diagnosis) are known.

Instead, observations are gathered according to their best-fitting regres-

sion model.

Additionally, our mixture relaxes the PH assumption; we only need to

assume that hazards are proportional within their given clusters. The

practical interpretation of this property is highlighted in the example

given in Section 2.2. Continuous frailty (Aalen, 1988) and random effects

Fig. 2. Smoothed hazard rate estimates stratified on optimal and suboptimal cytoreduction classes show a non-proportional relationship. We identify

gene epiregulin whose relationship to survival inverts across these underlying classes
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models (O’Quigley and Stare, 2002) are other common methods for

accommodating heterogeneity, but they still rely on the PH framework.

In addition to presenting a novel approach for handling heterogeneity

and subgroup discovery for time-to-event data, our approach offers a

new contribution to the finite mixture model literature (McLachlan and

Peel, 2000; Frühwirth-Schnatter, 2006). The problem of finite mixtures

has been explored in mixed effects models (Qin and Self, 2006), general-

ized linear models (Wedel and DeSarbo, 1995) and discrete-time survival

models (Muthén and Masyn, 2005); our approach extends the idea to PH

regression.

4 ALGORITHM: COX-ASSISTED CLUSTERING

We refer to the following algorithm for maximizing the mixture

likelihood as Cox-assisted clustering (CAC). For convenience, we

write the parameters to be estimated as � ¼ ð�1,�2, . . . ,�KÞ, the
mixing proportions, h ¼ h01ðtÞ, . . . , h0KðtÞ

� �
, the set of baseline

hazard functions and � ¼ ð�1, . . . ,�KÞ, the coefficient vectors.

We further abbreviate the hazards at their evaluation points:

h0ki ¼ h0kðYiÞ and H0ki ¼ H0kðYiÞ.
The complete data likelihood with mixing parameters � and

class-specific parameters h and � may be separated into a mixing

distribution part and a component distribution part:

logLð�, h, �;Y,�,UjxÞ ¼ logL1ð�;UÞ þ logL2ðh,�;Y,�jU, xÞ:

The first is simply

logL1ð�;UÞ ¼
XK
k¼1

Xn
i¼1

uik

 !
log�k, ð4Þ

and the likelihood associated with the component distributions is

logL2ðh,�;Y,�jU, xÞ ¼

XK
k¼1

Xn
i¼1

�iuik log h0ki þ �iuikx
0
i�k � uikH0ki exp x0i�k

� �
:
ð5Þ

To compute the maximum likelihood estimate, we follow an

EM approach that estimates and optimizes the observed data log

likelihood by plugging ûik ¼ EðuikjYi, �i, xÞ into the complete

data likelihood. Supposing that the current values of the param-

eters at the mth iteration are �ðmÞk , hðmÞ0ki , H
ðmÞ
0ki and �

ðmÞ
k , the algo-

rithm proceeds as follows.
In the E-step, conditional mean is

ûik ¼
�ðmÞk h

ðmÞ
0ki exp x0i�

ðmÞ
k

� �h i�i
exp �H

ðmÞ
0ki expðx

0
i�
ðmÞ
k Þ

h i
P
k0
�ðmÞk0 hðmÞ0k0i exp x0i�

ðmÞ
k0

� �h i�i
exp �HðmÞ0k0i expðx

0
i�
ðmÞ
k0 Þ

h i ð6Þ

after the application of Bayes rule. We note that, unlike the

standard Cox regression setting, computing the baseline hazard

is necessary to compute the conditional means. It can be shown

that if we assume a common baseline hazard across clusters, the

E-step update depends only on the current estimates of � and �.
In the M-step, the update for mixing proportions �k is

straightforward:

�ðmþ1Þk ¼

Pn
i¼1

ûik

n
: ð7Þ

To update h, we make a profile likelihood argument that leads

to a partial likelihood (Johansen, 1983). Suppose we hold �k
constant. Maximizing over h0k, we obtain profile estimates of

the hazards as a function of the �ðmþ1Þk that are similar to

Breslow (1974):

hðmþ1Þ0k ðYiÞ ¼
ûikP

j:Yj�Yi

ûjk expðx
0
j�
ðmþ1Þ
k Þ

ð8Þ

Hðmþ1Þ0k ðYiÞ ¼
X

l:Yl�Yi

ûlkP
j:Yj�Yl

ûjk expðx
0
j�
ðmþ1Þ
k Þ

: ð9Þ

The profiled M-step objective is a partial likelihood weighted

by the ûik:

logL2 hð�Þ,�;Y, �, Ûjx
� �

¼

XK
k¼1

Xn
i¼1

�i ûikxi0�k � log
X

j:Yj�Yi

exp ûjkxj0�k
� 	8<

:
9=
;:

ð10Þ

Each component indexed by k may be maximized separately

to obtain the �ðmþ1Þk update using standard statistical software.

The M-step is operationally equivalent to fitting K-weighted Cox

models. Finally, one iterates between the E and M step until the

increment in log-likelihood is small.

4.1 Starting conditions and number of classes

As an iterative procedure, the EM algorithm requires initial

values �ð0Þ,�ð0Þ. For analyses that begin with strong biological

hypotheses, the corresponding parameters may be set directly.

An alternative is to choose starting parameters by assigning ob-

servations to specific classes and estimating the initial �ð0Þ and
�ð0Þ. This is equivalent to setting an initial value for every ûik and

running the algorithm forward. This assignment may be random;

one may set a randomly selected ûik to 0.8, say, and divide the

remaining weight among the other classes. In practice, we use

multiple random starts and pick the best by the fitted log-

likelihood.

As in other clustering problems (Fraley and Raftery, 1998), we

select the number of classes using the Bayesian information cri-

terion (BIC). Let LðKÞ ¼ LðhK,�K,�K;Y, �,UjxÞ, where we have
added the K subscript to emphasize the dependence. The BIC

criterion is expressed as

BICðKÞ ¼ �2 logLðKÞ þ pK logðnÞ, ð11Þ

where p is the dimension of X and n is the number of observed

patients. The value of K minimizing BIC(K) is a penalized com-

promise between fit and complexity. Also, while Volinsky and

Raftery (2000) propose weighting by the number of observed

events, logð
P

i �iÞ, because logðnÞ is always larger, the standard

BIC is a more conservative criterion.
As a measure of model sensitivity to additional clusters, we

consider an adaption of the DFBETA statistic (Hamilton, 1992).

Given a model fit for K classes, each patient i can be assigned a
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Xn
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� �
� �j ~uðK�1Þi

� �


 



�j ~uðK�1Þi

� �


 


 ð12Þ

This statistic will be large when the coefficients change dra-

matically between cluster numbers. Conversely, if the (Kþ 1)th

cluster simply subdivides an existing cluster, the statistic will be
small.

5 SIMULATION STUDIES

Although there are several properties of the model and algorithm
to highlight, we focus on its treatment of censored data and a

demonstration of its estimation ability. Let true class indicator

Ui 2 f1, 2g be evenly split among 2 n observations with a single

covariate ðX1, . . . ,X2nÞ � N ð�12n, I2nÞ independent normal with
mean � � 0 and variance 1. As is common in gene expression

studies, we will work with scaled and centered X, so � reflects the

sensitivity of the analysis to this standardization.
The relationship between survival and X is controlled by

� � 0, where the first class has �1 ¼ � and the second class has

�2 ¼ ��. The survival time for the ith patient is then
Ti ¼

�i
expðXi�ðUi Þ

Þ
where �i � Exponentialð1Þ. The censoring time is

generated from Ci � Uniformð0, �Þ, where � depends on the

choice of � and � and a target censoring rate. Finally, the
observed survival time is Yi ¼ minðTi,CiÞ.

We set n¼ 200 patients in each class and set � ¼ 3 so that
�1 ¼ þ3 and �2 ¼ �3. We target 40% censoring by setting

� ¼ expð0:99Þ for � ¼ 0 and � ¼ expð12:83Þ for � ¼ 5. For

this simulation, we run our algorithm at the true number of

clusters K¼ 2.
We study the same scenarios over 1000 simulations. In

Table 1, we report the estimated �k (choosing �̂1 � �̂2 for iden-

tifiability) alongside the oracle estimator that knows the true
classes. Intuitively, if the data are perfectly classified, the oracle

estimate will have properties consistent with the well-studied Cox

model estimate. Thus, the accuracy, the proportion of patients

assigned to their true class, is an ideal measure of loss of per-

formance due to uncertainty. Considering the standard Cox

model in this heterogeneity setting, the median parameter esti-

mate for the � ¼ 0 case is 1.8e-05 (range �0.26–0.28) implying

that heterogeneity has masked all detectable association with the

covariate of interest.
The results imply that the clustering algorithm works well des-

pite heavy censoring and mean mis-specification. We note a bias

toward larger absolute parameter estimates (�CAC, 14�oracle, 1)
that we believe comes from the algorithm greedily reinforcing

what it has already learned. A censoring bias in the � ¼ 5 scen-

ario appears as �CAC, 2 is smaller than it should be; this group is

more likely to be censored so it has a lower effective sample size.

Variation in per cluster censoring rates is a novel data consider-

ation, and we recommend tracking the number of events in each

cluster (see for example Section 6). When the cluster sizes are

generated by
P

i Ui � Binomial ð2n, 1=2Þ, the estimates are simi-

lar and the standard errors increase reflecting the variation in Ui

(Supplementary Material).
To consider the ability of CAC to identify heterogeneity, we

tested the above � ¼ 0 scenario with the DFBETA statistic

noting that DFBETA(K¼ 2) is greater than DFBETA(K¼ 3)

in all cases; the median DFBETA(K¼ 2) was 60 (IQR: 92),

implying the model was much more sensitive to two clusters

than one, whereas the median DFBETA(K¼ 3) was 0.91

(IQR: 0.21), implying that two clusters are sufficient.

Conversely, if we generate data where all patients come from

the same class, DFBETA(K¼ 2) is larger than

DFBETA(K¼ 3) in 61.2% of cases with medians 0.83 and

0.81, respectively. This implies that, along with appropriate con-

text and judgment, the DFBETA statistic is a useful tool for

diagnosing heterogeneity.

6 DNA REPAIR EXPRESSION SUBGROUPS IN
OVARIAN CANCER

Because of its frequency among gynecological cancers, its high

lethality and poor options for treatment (Vaughan et al., 2011),

serous ovarian cancer was a pilot target for molecular character-

ization in TCGA (The Cancer Genome Atlas Research Network,

2011). The study collected banked surgical samples from n¼ 503

patients with highly annotated clinical follow-up whose cancers

had been surgically debulked and who had been treated with

platinum-based chemotherapy (Bhoola and Hoskins, 2006).

Platinum resistance is an important concept in the treatment

of ovarian cancer because these cancers respond poorly to any

type of chemotherapy (Bookman, 2005). Although resistance is

not an ideal predictive marker because it is defined through treat-

ment, the development of an independently queried molecular

model is precisely the promise of a large repository study like

TCGA.
One unaddressed complication is the expectation of genetic

heterogeneity: patients with similar survival outcomes may

have dissimilar molecular profiles. If this heterogeneity appears

to take the form of subgroups and mixtures (as in the illustra-

tions), we anticipate that our model and algorithm will be able to

address it.

Table 1. Simulation study results demonstrate accurate model fitting with

CAC

Parameter Scenario

� ¼ 0 � ¼ 5

�Cox (SD) 0.00 (0.09) 0.00 (0.08)

�CAC, 1 (SD) 3.45 (0.53) 3.24 (0.58)

�CAC, 2 (SD) �3.46 (0.52) �2.14 (0.55)

�oracle, 1 (SD) 3.05 (0.34) 3.03 (0.28)

�oracle, 2 (SD) �3.03 (0.33) �3.12 (0.57)

Accuracy (range) 0.87 (0.78–0.94) 0.91 (0.63–1.00)

Censoring (range) 0.39 (0.31–0.47) 0.39 (0.36–0.44)

Note: SDs are standard deviations over 1000 simulations. Accuracy is the propor-

tion of observations assigned to their correct class. �Cox refers to K¼ 1 component

Cox model estimates and were of order 1.0e-05.
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Therefore, we demonstrate the use of our model to explore
possibly heterogenous data by modeling a potential mechanism
of platinum resistance in TCGA patients. Because recent reviews

of resistance highlight the homologous repair pathway for repair-
ing DNA damage (Martin et al., 2008; Cooke and Brenton,
2011), we focus on modeling the function of this set of genes.

The homologous repair pathway is defined by Kyoto
Encyclopedia of Genes and Genomes annotation (hsa:03440)
(Kanehisa et al., 2010) and corresponds to 27 unique gene

symbols.
We fit our model for K ¼ 2, . . . , 10 using 100 random starts

for each K and selecting the best fit by log likelihood. By BIC, we

select K¼ 5 clusters (Supplementary Material). Survival times
are truncated at 60 months of observation to reduce the influence
of 76 patients who are observed beyond the time of interest. In

total, 186 of 503 (37%) patients are censored before 60 months.
Table 2 describes the quality of the cluster fits by the relative

weight of each cluster (
P

i ûik), the number of patients assigned

(n) and the mean posterior probability for patients in their as-
signed clusters. The number of events in each cluster and the
restricted mean (up to 60 months) are listed.
We observe that, although they have the largest number of

patients assigned, clusters 4 and 5 have the smallest mean pos-
terior probabilities, implying that their members are less similar

internally. The clustering appears to be driven by the poor prog-
nosis patients in clusters 1, 2 and 3. Noting the presence of cross-
ing survival functions, the five class log-rank test is significant

(P¼ 1.26e-09).
With respect to low posterior probabilities, we observe that the

algorithm makes intuitively reasonable use of the censored ob-
servations. We plot the maximum posterior probability for each

patient by their survival time in Figure 3A. Because censored
patients do not have definitive events, the algorithm is less cer-
tain about which cluster to assign them. Patients with the least

follow-up time have maximum posterior probability close to 0.2
(i.e. 1 of 5), and as they are observed, longer the certainty of their
maximum assigned cluster rises. To wit, the hardest to classify

patients are the least observed.
Within each cluster, we check model diagnostics and look for

influential points. Noting that there was moderate evidence

(P ¼ 0:059) for non-PH (Grambsch and Therneau, 1994) when
considering all the patients as a single group, after fitting our
model, the within-cluster tests are all strongly insignificant. All

influence statistics for all genes in each cluster are smaller than 1
standard deviation, implying no leverage points.
Because the mixture allows different clusters to have different

baseline hazard functions, in Figure 3B, we used a kernel
smoothing algorithm to visualize their estimates (Müller and
Wang, 1994). We emphasize the non-proportionality of the haz-

ards for clusters 3 and 5: patients in cluster 3 have a sudden
acceleration in their hazard after 30 months, which may be con-
sistent with the loss of effect in platinum chemotherapy.

In Figure 3C, we have plotted the estimated coefficients for
clusters 3 and 5. Keeping in mind that the linear predictor in the
Cox model scales hazard relative to the cluster-specific baseline

hazard, we highlight three genes. RPA4’s coefficients
ð�3,�5Þ ¼ ðþ7:13, � 5:90Þ imply that it has a strong deleterious
effect in cluster 3 (exacerbating the jump in hazard), while it has

a strong protective effect in cluster 5. Contrast this change with

RPA3 ð�0:96, þ 6:24Þ, which only increases risk in cluster 5, and

TOP3A ð�7:54, � 0:54Þ, which is protective in cluster 3 only. At

this point in the analysis, these genes are good candidates for

follow-up studies: we have identified their effect specific to a

subgroup of patients.
Further, the clustering model may still recover a sense of DE

for survival data. Because we have learned risk classes, we may

consider DE across clusters. We focus on DE across clusters 3

and 5, SHFM1 (Bonferroni adjusted t-test, P¼ 0.011), RPA3

(P¼ 0.011) and RAD51L3 (P¼ 0.020), all have significant

shifts in expression. Notably, RPA4 and TOP3A do not show

significant DE, implying that they fit into the class of variables

that only differ in regression model effects.
Representative of prognostic signature development, Kang

et al. (2012) conducted a study of selected DNA repair pathways

and produced a risk signature in this dataset. To compare with

their model (using 151 genes across eight pathways) and a typical

Cox model approach (using the 27 gene homologous repair path-

way), we stratified patients based on survival to 3.7 years [as in

Kang et al. (2012)] and produced receiver operating characteris-

tic plots for all of the signatures (Fig. 4A). While the standard

Cox model underperforms at area under the curve (AUC) 0.61

(comparable with a clinically derived model reported by Kang

and colleagues), the K¼ 5 CAC model has AUC 0.73 compar-

able with Kang’s model (AUC 0.70).
The key advantage of the CAC approach is the ability to de-

scribe risk sets. By itself, the Cox model describes continuous risk

and must be dichotomized post hoc for survival curve plots of

high- and low-risk subsets. In Figure 4B, we have illustrated the

typical continuous risk score plot that describes sensitivity of

high- and low-risk sets to the cutpoint. The CACmodel naturally

separates patients into risk classes (clusters 3 and 5 are high-

lighted, Fig. 4C) and these can be further described by processing

their continuous risk scores.
Based on our analysis, we conjecture that we are able to iden-

tify a subgroup of patients (cluster 3) who experience a signifi-

cant increase in hazard around month 30. We are able to identify

genes whose expression leads to increased risk specific to a sub-

group or whose relationship inverts across clusters. There is a

tremendous amount of untapped information remaining in the

fitted model. For example, every pairwise comparison between

clusters should be informative as well as their holistic

Table 2. Fitted cluster diagnostics for K¼ 5, homologous repair model

Cluster 4 5 2 1 3

Survival time 34.16 26.54 15.21 12.69 5.90

Standard error 3.04 3.40 3.11 3.07 1.83

N 213.00 112.00 67.00 58.00 53.00

Events 50.00 46.00 50.00 45.00 50.00

Alive at 60 months 35.00 19.00 11.00 8.00 3.00

Weight 103.22 69.07 57.55 51.47 51.05

Mean û 0.48 0.62 0.86 0.89 0.96

Note: Clusters are ordered by mean months of survival following surgery estimated

by restricted mean.
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interpretation, foreshadowing the utility of this methodology for

exploratory data analysis.

7 DISCUSSION

In this article, we have presented a model for heterogeneity in

time-to-event data. Although its actual formulation is straight-

forward, the treatment of unknown classification, a consider-

ation of the implications for censoring, the effect on genomic

predictors and diagnostic analysis have not been previously con-

sidered. Finally, we have presented a novel and informative ana-

lysis in Section 6, which begins to identify the set of survival-

associated and subgroup-dependent alterations in expression.

Admirably, this model relaxes the whole model PH assump-

tion to conditional PH given cluster membership. In an explora-

tory situation, the utility of this flexibility cannot be overstated.

Both our simulated and applied analysis highlight that our

understanding of censoring has been augmented and the use of

information in the model is intuitively simple.
In a data analytic view, informaticists are familiar with un-

supervised clustering analysis and class-label supervised cluster-

ing analysis. Our algorithm may be seen as a way to use a

survival time (possibly censored) to supervise the clustering of

gene expression data. This clustering property is distinct from

ensemble-type methods [e.g. Jordan and Jacobs (1994)], where

covariate information may be used to reweight components. As

we saw with its treatment of posterior class probabilities, the

mixture believes each observation comes from a single compo-

nent, while averaging over weak learners or hidden layers may be

relevant to a more admixed sample.
With respect to developing ovarian cancer biomarkers, our

data analysis has shown an example where class identification

leads to risk stratification. We might further identify high- and

low-risk classes within the assigned clusters as is standard prac-

tice, but this is no longer a required post-processing part of the

expression analysis. The CAC algorithm has also given us its

posterior weights allowing a concrete measure of uncertainty

for downstream analyses.
In the TCGA project, as in many other cancer genomic stu-

dies, there are issues of both high-dimensional data and variable

selection. As presented, the CAC regression framework does not

incorporate these, but it can be extended with additional study.
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A B C

Fig. 3. (A) Uncertainty in censored observations with regression line for the censored points added shows that certainty increases with follow-up. (B)

Hazards and (C) estimated coefficients for clusters 3 and 5 show non-PH and heterogenous effects. Genes highlighted in the text are shown in bold

A B C

Fig. 4. (A) Receiver operating characteristic plot with AUC estimates. (B) The one component Cox model risk score has to be dichotomized for high-/

low-risk Kaplan–Meier estimates. (C) For comparison, two components of the K¼ 5 CAC model show more prognostic ability
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