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Maternal immune activation (MIA) is mediated by activation of inflammatory pathways
resulting in increased levels of cytokines and chemokines that cross the placental and
blood-brain barriers altering fetal neural development. Maternal viral infection is one
of the most well-known causes for immune activation in pregnant women. MIA and
immune abnormalities are key players in the etiology of developmental conditions such
as autism, schizophrenia, ADHD, and depression. Experimental evidence implicating
MIA in with different effects in the offspring is complex. For decades, scientists
have relied on either MIA models or human epidemiological data or a combination
of both. MIA models are generated using infection/pathogenic agents to induce an
immunological reaction in rodents and monitor the effects. Human epidemiological
studies investigate a link between maternal infection and/or high levels of cytokines
in pregnant mothers and the likelihood of developing conditions. In this review, we
discuss the importance of understanding the relationship between virus-mediated MIA
and neurodevelopmental conditions, focusing on autism and schizophrenia. We further
discuss the different methods of studying MIA and their limitations and focus on the
different factors contributing to MIA heterogeneity.

Keywords: autism spectrum conditions, autism, maternal immune activation (MIA), SARS-CoV-2, schizophrenia,
LPS, Poly(I:C)

INTRODUCTION

Maternal immune activation (MIA) is a major environmental factor known to increase likelihood
of neurodevelopmental conditions such as autism (Paraschivescu et al., 2020) and schizophrenia
(Kepinska et al., 2020; Purves-Tyson et al., 2021). MIA is mediated by activation of inflammatory
pathways resulting in increased levels of cytokines and chemokines that cross the placental and
blood-brain barriers (Patel et al., 2020; Mueller et al., 2021). This surge of inflammatory molecules
alters neurodevelopment in the fetus (Patel et al., 2020; Purves-Tyson et al., 2021).

A number of maternal conditions may be responsible for triggering this inflammatory response,
including autoimmune conditions (Chen et al., 2016), and asthma and allergic conditions (Gong
et al., 2019). However, inflammatory responses caused by maternal viral infections remains
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one of the major environmental causes of MIA (Careaga
et al., 2017; Baines et al., 2020; Cheslack-Postava and Brown,
2021). Case studies have associated viral infection from
varicella, cytomegalovirus, mumps and herpes simplex virus
with increased likelihood of autism (Patterson, 2011; Estes
and McAllister, 2015). Understanding of the effects of virus-
mediated MIA have also led researchers to consider the potential
effects of maternal SARS-CoV-2 infection on fetal development
(Reyes-Lagos et al., 2021).

INVESTIGATING THE EFFECTS OF
MATERNAL IMMUNE ACTIVATION ON
FETAL BRAIN DEVELOPMENT

Studying the effects of viral-induced MIA on the offspring can
be very challenging. For decades, scientists relied on either MIA
models or human epidemiological data or a combination of both.

Maternal Immune Activation
Presentation From Human
Epidemiological Studies
Epidemiological data has long implicated MIA as a likelihood
factor for neurodevelopmental and neuropsychiatric conditions
(Brown et al., 2004, 2014; Brown and Derkits, 2010; Estes and
McAllister, 2016). More than 30 years ago an observation of
higher incidence of schizophrenia and autism likelihood in
winter/spring birth encouraged further investigations of specific
infections such as influenza (Mednick et al., 1988; Kendell
and Kemp, 1989). Earlier, human studies suggested associations
between influenza and schizophrenia relying on ecological data,
which focused on exposure to influenza epidemics in Europe,
Australia and Japan (McGrath and Castle, 1995; Morgan et al.,
1997; Izumoto et al., 1999; Mino et al., 2000). While some
investigations reported an association between schizophrenia and
infection during the second trimester of pregnancy (Mednick
et al., 1988, 1994; Barr et al., 1990; Takei et al., 1996; Limosin et al.,
2003), other studies reported conflicting results (Erlenmeyer-
Kimling et al., 1994; Takei et al., 1995; Morgan et al., 1997;
Westergaard et al., 1999). The initial study (Murray and
Lewis, 1987) was met with a lot of criticism, as it failed to
account for later onset schizophrenia and post adolescence
changes (Folsom et al., 2006; Kochunov and Hong, 2014).
Upon further investigations, studies suggest the “three-hit” model
or “multiple hit” theory, making environmental, genetic, and
maternal infections (e.g., influenza) potential hits (Keshavan,
1999; Davis et al., 2016). This theory also proposed that maternal
infection increased the risk for childhood infections and later in
life schizophrenia development (Blomström et al., 2016). Other
studies looked at increased likelihood of schizophrenia with other
types of infections such as measles (Fuller Torrey et al., 1988),
mumps (O’Callaghan et al., 1994), and varicella zoster infections
(Fuller Torrey et al., 1988; O’Callaghan et al., 1994), however,
the results were conflicting and inconclusive. The inconsistency
of the findings reported may in part be due to methodological
limitation (Brown and Meyer, 2018). Ecological studies define

exposure according to population-level prevalence at a specific
location and a defined time and do not assess individuals
in terms of actual infection evidence. More refined methods
have emerged since then such as birth cohorts or case-control
designs. Birth cohorts prospectively acquire serologic biomarkers
of infection during individual pregnancies and investigate their
association with higher likelihood of schizophrenia, autism and
bipolar disorder (Meyer et al., 2009a; Brown and Derkits, 2010;
Harvey and Boksa, 2012; Meyer, 2014; Estes and McAllister, 2016;
Oliveira et al., 2017).

Studying MIA in humans relies on epidemiological data and
does not investigate the potential biological pathways. The use of
animal models filled this gap and provided the tool to examine
the effects of MIA on fetal brain development.

Maternal Immune Activation Animal
Models Reveal Underlying
Neurodevelopmental Mechanisms
The first animal model to study the effects of viral infection-
induced MIA on the offspring was developed by exposing
a pregnant mouse to the human influenza virus (Fatemi
et al., 2004). Studies have also used prenatal administration of
immunogenic liposaccharides (LPS), a cell wall component of a
gram-negative bacteria that induces an immunogenic reaction
via the transmembrane protein toll-like receptor (TLR) 4, or
polyriboinosinic–polyribocytidilic acid [Poly(I:C)] which is a
synthetic analog of dsRNA and induces an immunogenic reaction
in rodents via the TLR3 (Shi et al., 2003; Fatemi et al., 2004;
Jurgens et al., 2012; Honda-Okubo et al., 2014; Xia et al., 2014).
Administering these elements to pregnant rodents (Meyer et al.,
2005; Saadani-Makki et al., 2008; Meyer, 2014) and to non-
human primates (Bauman et al., 2013; Machado et al., 2015;
Weir et al., 2015; Rose et al., 2017) triggers the maternal immune
system, resulting in the secretion of pro-inflammatory cytokines,
microglial activation, and the induction of pro-inflammatory
transcription factors in the neonatal brain.

The effects of this activation on fetal brain development
may vary according to multiple factors including the timing
of infection and the resilience of the developing brain,
increasing the likelihood of developing neurodevelopmental
conditions later in life (Meyer, 2014). For instance, earlier
studies reported that prenatal exposure to Poly(I:C) leads to
brain histopathological features in the offspring similar to those
reported in schizophrenia, such as decreased hippocampal,
prefrontal, cortical and striatal volume, and enlarged ventricles
(Zuckerman et al., 2003; Piontkewitz et al., 2011). Other studies
reported that prenatal infections is associated with reduced
Purkinje neurons in the cerebellum, commonly reported in
autism cases (Shi et al., 2009; Naviaux et al., 2013).

In rodents, exposure to Poly(I:C) for a specific time course
(48 h) is sufficient to produce an acute inflammatory response
with elevated individual cytokine levels (Cunningham et al., 2007;
Fortier et al., 2007).

Some studies showed that irreversible neurodevelopmental
defects in rodents induced by Poly(I:C) are dependent on IL-6
and IL-17A induced by MIA (Choi et al., 2016; Smith et al., 2016;
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Wu et al., 2017). For instance, a single maternal injection of IL-
6 on day 12.5 of mouse pregnancy causes pre-pulse inhibition
(PPI) and latent inhibition (LI) deficits in the adult offspring,
mimicking central features of schizophrenia (Smith et al., 2007).
Moreover, even when introduced externally, IL-6 is sufficient to
alter brain development in the offspring (Ponzio et al., 2007;
Smith et al., 2007). IL-6 is known for its regulatory role in self-
renewal among neuronal precursor cells, neuronal migration,
and neurite outgrowth (Goines and Ashwood, 2013). IL-6 is also
a key factor for T helper cells (TH17) differentiation in both
human and mice. IL-17A, the main TH17 cytokine has been
found elevated in the serum of some children with autism (Suzuki
et al., 2011; Al-Ayadhi and Mostafa, 2012). Choi et al. (2016),
investigated the effect of the pathological activation of maternal
IL-17A pathways on fetal development by pre-treating pregnant
mothers with IL-17A blocking antibodies before injecting them
with poly(I:C) and examining cortical development in the fetus.
They reported disorganized cortical phenotypes in offspring
following in utero MIA and autism-like behavioral abnormalities
in offspring (Choi et al., 2016).

Another cytokine that has been associated with autism-like
behavioral changes in the mice offspring is IL-2 (Ponzio et al.,
2007). Interestingly, the behavioral changes reported after the
dual administration of LPS and Poly(I:C) were not seen when co-
administering antibodies for IL-6 and IL-2, which demonstrates
that the biological, structural, and behavioral changes are
mediated by cytokines (Smith et al., 2007; Girard et al., 2010).

Collectively, these studies show that these pro-inflammatory
cytokines (resulting from maternal infection) alter fetal brain
development. The exact mechanism through which these
cytokines affect the brain and increase the likelihood of
neurodevelopmental conditions is not clear, however, one theory
is that the maternal induced activation resulting from prenatal
infections lead to alterations in immunogenic molecules known
to regulate neuronal function in the offspring (Coiro et al., 2015;
Estes and McAllister, 2015).

Limitations of MIA Models
Maternal immune activation models provide an invaluable
experimental tool in investigating the link between maternal
infection and inflammatory molecules and altered fetal brain
development outcomes and likelihood of neuropsychiatric
conditions (Meyer et al., 2009a,b; Harvey and Boksa, 2012; Meyer,
2014). Nevertheless, these models have certain limitations.
First, the induction of a maternal immune response using
non-virulent agents [such as LPS and Poly(I:C)] cannot
reproduce the full spectrum of immune response that would
normally result following an infectious pathogen. This method
does not recapitulate pathogen-specific humoral and cellular
immune reaction, which is crucial in understanding the specific
mechanism contributing to the potential association (Shi et al.,
2003; Meyer et al., 2005). Although it has been shown that
the outcomes associated with MIA are not pathogen-specific
but rather are mediated by immune molecules (e.g., cytokines)
triggered by various infections, it is nonetheless important to note
that the mechanisms mediating these responses are specific to the
pathogen (Gilmore and Jarskog, 1997; Shi et al., 2003; Meyer et al.,
2009b; Labouesse et al., 2015).

Additionally, the controlled nature of the environment in
which the experiments are usually set up excludes the real-
life influences in humans. These influences are important
contributors to the susceptibility and resilience to maternal
infection, influencing the outcomes (Meyers, 2019).

Lastly, the use of rodents as MIA animal models might
sometimes be misleading and the field might benefit by
expanding studies to include more species that are evolutionarily
and ethologically closer to humans (Phillips et al., 2014;
Bauman and Schumann, 2018).

Rhesus macaques can provide a model to replicate the findings
found in rodents MIA models as they exhibit greater similarity
to humans regarding gestational timelines and fetal brain
development (Short et al., 2010; Phillips et al., 2014; Bauman and
Schumann, 2018). For instance, Short et al. (2010) investigated
the effects of immune activation during the third human
trimester immune, which cannot be possible in rodents whose
equivalent developmental stages occur postnatally. Moreover,
Rhesus macaque MIA studies offer another benefit over rodents
which is the ability to measure social behavioral phenotypes, such
as social attention and detection of facial expressions (Machado
et al., 2015). Other studies rely on induced pluripotent stem
cells to advance our understanding of how specific cytokines
induced by MIA can increase the likelihood of developing
neurodevelopmental conditions (Warre-Cornish et al., 2020).

HETEROGENEITY IN MATERNAL
IMMUNE ACTIVATION

Exposure to infections during pregnancy is quite common;
almost 50% of pregnant women get respiratory tract
infections while close to 20% getting urinary tract infections;
nonetheless this high prevalence of maternal infection results
in neurodevelopmental abnormalities in only a small portion of
the exposed offspring (Milada et al., 2017; Weber-Stadlbauer,
2017; Brown and Meyer, 2018). This dichotomy might hold
the key to certain protective that make certain pregnancies less
susceptible to others, and mechanistically evidence has suggested
impairment of cholinergic anti-inflammatory pathways in some
pregnant mothers to be linked to a heightened inflammatory
response (Reyes-Lagos et al., 2021).

Positive associations have been reported between maternal
proinflammatory molecules [(IL)-1a, IL-6, IL-8, interferon-
gamma (IFN-g), tumor necrosis factor alpha (TNF-a),
granulocyte macrophage colony-stimulating factor (GMCF), and
C-reactive protein (CRP)] and increased likelihood of autism and
schizophrenia. Other studies looked at the effects of increased
levels of maternal cytokines on fetal brain development, and
reported alterations in the connectivity of the amygdala (Graham
et al., 2018; Rudolph et al., 2018), and frontolimbic white matter
(Rasmussen et al., 2019) and observed cognitive abnormalities in
toddlers (Graham et al., 2018; Rudolph et al., 2018; Rasmussen
et al., 2019). These studies have confirmed the link between
maternal infections, the role of abnormal levels of cytokines
and the possibility of developmental anomalies in the offspring
(Brown and Meyer, 2018; Gumusoglu and Stevens, 2019; Weber-
Stadlbauer and Meyer, 2019). Notwithstanding the abundance
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of evidence implicating MIA in the etiology of neuropsychiatric
conditions, this pathogenic model appears to be naïve. The
type of infection, gestational time and the resilience of the
maternal immune system are important factors to consider when
trying to dissect the heterogeneity of the MIA-induced effects
(Meyers, 2019).

Identifying the factors that promote resilience to the MIA
or vulnerable factors that might make some pregnancies
more susceptible is of crucial importance. Different maternal
infections have distinct mode of actions even if the effect
associated is dependent on the immune reaction and not
the type of infection. Some pathogens can directly affect the
offspring through vertical transmission from the mother to
the fetus through the placenta or through breast milk. Other
pathogens are non-transmissible from the mother to the
fetus and they still impose serious influences on the offspring
for neurodevelopmental and neuropsychiatric conditions
(Mednick et al., 1988; Milada et al., 2017; Brown and Meyer,
2018). The specificity of the proinflammatory modulators
produced post infection can influence the severity of MIA
effects on fetal brain developments, is the specificity of the
proinflammatory modulators produced post infection. For
instance, recent studies using animal MIA models report
that different subtypes of toll-like receptors produce different
outcomes in the offspring (Meyer, 2014; Weber-Stadlbauer
and Meyer, 2019). Prenatal activation of TLR3 resulted in
cellular, neurochemical, and behavioral phenotypes of a
hyperdopaminergic state (Luan et al., 2018) while prenatal
activation of TLR4 induced a hypodopaminergic state
(Kirsten et al., 2012). This supports the notion that different
immunological molecules might have different pathological
outcomes. The intensity and timing of infections are potential
contributors to the susceptibility of certain pregnancies to
MIA. Studies have shown a positive correlation between
the severity of maternal inflammation and anomalies in
the developing brain in the general population and in a
schizophrenia cohort (Graham et al., 2018; Rudolph et al., 2018;
Rasmussen et al., 2019). Similarly, dose-dependent effects have
been confirmed in animal models of MIA (Meyer et al., 2005;
Hornig et al., 2018).

Maternal exposure to TORCH pathogens imposes a higher
probability of developing neurodevelopmental anomalies in the
first half of the pregnancy while the effects of the infection are
subtle and less severe in later gestational periods. Similarly, birth
cohort studies suggested a trimester -dependent effects of MIA
in increasing autism incidence (Hornig et al., 2018). Maternal
micronutrients such as vitamin D, iron, zinc omega-3 fatty acids
and choline and others have also been identified as important
factors to promote resilience to infections and optimal immune
functioning (Brown, 2011; Luan et al., 2018; Maggini et al., 2018;
Mattei and Pietrobelli, 2019).

The microbiome has been recently added to the equation as a
potential etiological factor not only in the neurodevelopmental
condition but also in the dysregulation of immune functions
(Conway and Brown, 2019). Therefore, it is one of the most
crucial factors in MIA heterogeneity. Immune function
abnormalities have been reported in autism and other

neuropsychiatric conditions, and recent studies propose the
involvement of the microbiota in this dysregulation (Hsiao et al.,
2013; Cryan and Dinan, 2015; Erny et al., 2015). Experimental
studies looking at the immunological effects of MIA reported
dysregulation of offspring microbiota in adulthood (Hsiao et al.,
2013; Mandal and Ghosh, 2013; Kim et al., 2017). A 2017 study
found that mice that have more TH17 cells with segmented
filamentous bacteria (SFB) were more susceptible to produce
behavioral changes caused by MIA (Kim et al., 2017). Both
MIA and microbiome dysregulation have been associated
with alterations in fetal brain development, autism, and other
neurodevelopmental conditions. Moreover, MIA activation alters
maternal gut bacteria which can affect the microbiome of the
offspring (Conway and Brown, 2019). This makes it extremely
challenging to dissect the cause-effect relationship between MIA
and the maternal microbiota, on offspring neurodevelopment.

Finally, the genetic background is a crucial contributor to the
susceptibility or resilience to neurodevelopmental effect of MIA.
Recent epidemiological studies have reported that familial history
of psychiatric conditions posits synergistic interaction with MIA
in increasing the probability of later developing schizophrenia.
However, studies that examining common variants associated
with schizophrenia showed no correlation interaction with MIA
in increasing the likelihood of schizophrenia in the offspring.
The latter does not remove the genetic background as a
potential contributor to MIA heterogeneity but rather points
out that polygenic scores are not proxy for genetic contribution
(Clarke et al., 2009; Nielsen et al., 2013; Benros et al., 2016;
Blomström et al., 2016). The genetic factors can be divided
into factors that promote MIA susceptibility (Ayhan et al.,
2016) or protection (Meyer et al., 2008). For instance, IL-10
polymorphisms have been associated with increased resilience
against MIA effects as the increased production of IL-10 offer
neurodevelopmental protection in the offspring post maternal
infection (Meyer et al., 2008).

POTENTIAL EFFECTS OF SARS-COV-2
ON FETAL BRAIN DEVELOPMENT

SARS-CoV-2 infection is known to stimulate production of
MIA-causing pro-inflammatory cytokines such as IL-6, IL10
and TNFα (Pedersen and Ho, 2020). Since the virus has
only been identified recently (end of 2019) there are yet no
studies that have been able to investigate neurodevelopmental
consequences in the offspring of affected mothers. Based on its
clinical manifestation and past “similar” infections, theories have
been proposed that suggest potential effects on the offspring
(Granja et al., 2021). Following infection with SARS-CoV-2,
there is an uncontrolled release of inflammatory cytokines and
chemokines that have been involved in brain development [e.g.,
interleukins (IL-1β,−2,−4,−6,−8,−10), tumor necrosis factor
alpha, interferons (IFN-α, IFN-γ)] (Reyes-Lagos et al., 2021).
Amid the exacerbated long-term inflammatory effects observed
in COVID-19 patients and the lessons learned from of viral-
mediated MIA effects on the progeny’s brain, it is crucial to

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 834058

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-834058 June 4, 2022 Time: 17:19 # 5

Massrali et al. Associations With Virus-Induced MIA

consider the neurological consequences of maternal SARS-CoV-2
infection on the offspring.

CONCLUSION

Human epidemiological data and MIA animal models have
consistently shown MIA is associated to increased likelihood of
developmental neuropsychiatric conditions; however, the effects
are very heterogenous. The high percentage of infected women
that give birth to neurotypical offspring highlight that one
pregnancy may be more susceptible to MIA adverse outcomes
than the other. Studies to identify these factors aim to protect
fragile pregnancies and inform us on potential contributors to the
development of neurodevelopmental conditions.
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