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Abstract

Transposable elements (TEs) contribute to a large fraction of the expansion of many eukaryotic genomes due to the
capability of TEs duplicating themselves through transposition. A first step to understanding the roles of TEs in a
eukaryotic genome is to characterize the population-wide variation of TE insertions in the species. Here, we present a
maximum-likelihood (ML) method for estimating allele frequencies and detecting selection on TE insertions in a diploid
population, based on the genotypes at TE insertion sites detected in multiple individuals sampled from the population
using paired-end (PE) sequencing reads. Tests of the method on simulated data show that it can accurately estimate the
allele frequencies of TE insertions even when the PE sequencing is conducted at a relatively low coverage (¼ 5X). The
method can also detect TE insertions under strong selection, and the detection ability increases with sample size in a
population, although a substantial fraction of actual TE insertions under selection may be undetected. Application of the
ML method to genomic sequencing data collected from a natural Daphnia pulex population shows that, on the one hand,
most (> 90%) TE insertions present in the reference D. pulex genome are either fixed or nearly fixed (with allele
frequencies > 0:95); on the other hand, among the nonreference TE insertions (i.e., those detected in some individuals
in the population but absent from the reference genome), the majority (> 70%) are still at low frequencies (< 0:1).
Finally, we detected a substantial fraction (�9%) of nonreference TE insertions under selection.

Key words: transposable elements, insertion polymorphism, purifying selection, maximum-likelihood, population
genomics.

Introduction
Transposable elements (TEs) are a class of DNA components
found in most eukaryotic genomes. Due to their selfish spread
within host genomes, TEs play critical roles in shaping the
host’s genomic architecture. As an extreme example, TEs
constitute �85% of the maize genome (SanMiguel et al.
1996). Although in rare cases, TE insertions may contribute
to the creation of regulatory sequence (Chuong et al. 2017), in
most cases, mobilizations of TEs have negative impacts on
gene functions, and thus may result in deleterious mutations
(Hurst and Werren 2001). Therefore, studying the insertion
polymorphisms of TEs is necessary for understanding the
demographic mechanisms by which these aggressive ele-
ments spread through host populations.

The spread and maintenance of TEs in a population are
determined by the relative rate of gained insertions (i.e., trans-
position activity) and of TEs loss by selection (i.e., related to
fitness effects) (Charlesworth and Langley 1989; Charlesworth
et al. 1992; Sniegowski and Charlesworth 1994). Given the
generally negative effects of TE insertions, host individuals
containing excessive TEs often experience selective

disadvantages (Pasyukova et al. 2004). TE insertions with
strongly deleterious effects will be removed by purifying se-
lection before they have a chance to produce new insertions
with less deleterious effects (Blumenstiel et al. 2002; Hazzouri
et al. 2008). Only TE insertions with sufficiently mild delete-
rious effects on the host genome can avoid being eliminated,
and thus have opportunities to spread in a population. It was
reported that most TEs in Drosophila are present at low fre-
quencies, supporting the hypothesis that most TE insertions
are selected against (Franchini et al. 2004; Cridland et al. 2013;
Barr�on et al. 2014). The accumulation of mildly deleterious
mutations in TE sequences leads to eventual transposition
inactivation of the inserted element (Maside et al. 2005).
Therefore, among thousands of TEs identified in various spe-
cies, only a few of them have been formally demonstrated to
be autonomous (Lynch 2007).

In principle, the number of TEs can reach equilibrium in a
population with the number of TEs gained by transposition
equaling the number lost due to selection and/or excision
(Charlesworth and Charlesworth 1983). Estimates of TE inser-
tion frequencies in a population can reveal important
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information about the genomic structure and the strength of
natural selection on the genome, and thus are fundamental in
population genomics (Bi�emont 1992; Yang and Nuzhdin
2003). Previous studies using PCR to survey TE insertions
were biased towards insertions with high population frequen-
cies (Petrov et al. 2003, 2011), whereas unbiased estimates of
frequencies of TE insertions obtained by DNA display in pre-
vious studies were limited to only a few TE families (Maside
et al. 2001). With the development and rapidly declining cost
of next-generation sequencing (NGS) technologies, new bio-
informatics tools have been proposed to characterize TE
insertions at the whole-genome scale (Hormozdiari et al.
2010; Ewing 2015; Rishishwar et al. 2017). All of the designed
approaches first map NGS reads onto the reference genome,
and then search for TE insertions based on paired-end reads
or by splitting reads that span the breakpoint of the inserted
TE. Specifically, most methods based on paired-end reads take
as inputs the paired-end reads, the available reference ge-
nome sequence, and a TE sequence library. If one of the
two paired-end reads is mapped onto a TE sequence in the
library, whereas the other one is mapped onto a nonrepetitive
region in the reference genome (i.e., the flanking region of the
inserted TE), these paired-end reads support the presence of a
TE insertion. This approach is capable of identifying novel TE
insertions that are not contained in the reference genome,
although it is limited by the availability of element sequences
collected in the TE library. Despite the limitation of currently
available methods, researchers have moved from the analysis
of small datasets to genome-wide data for all TEs in a host
genome. Such approaches were summarized in a recent re-
view of TEs in Drosophila melanogaster (Barr�on et al. 2014).
For instance, in a pooled-sequencing sample, it is possible to
estimate the frequencies of TE insertions in a population
represented by the pooled samples. One previous study de-
veloped a software tool PoPoolation to identify almost twice
as many “novel” (nonreference) TE insertion sites in a
Drosophila melanogaster population as the “known” (refer-
ence) sites in the reference genome (Kofler et al. 2012).

Although TE insertions are an important type of genomic
structural variation, estimates of TE insertion frequencies are
not as straightforward as the estimates of frequencies of single
nucleotide variations (SNVs) from NGS data. Even though the
computational methods mentioned above can detect TE
insertions, the high sequence similarity among TE elements
in the same family may introduce bias in TE detection.
Specifically, current TE detection algorithms may miss some
TE insertions due to relatively low read coverage and incom-
pleteness of the reference assembly with repetitive DNA, and
thus may underestimate the frequencies of these TE inser-
tions. When the frequencies are estimated from individual
genome sequencing data, the detection bias may also affect
the genotyping results. For example, a heterozygous insertion
site may be interpreted as a homozygote if one of the alleles
(present or absent with respect to the novel TE insertion) is
not called from the sequencing data. Developing appropriate
statistical methods is crucial to address this issue for genome-
wide surveys of TE insertions in populations.

Here, we present a maximum-likelihood (ML) method for
estimating the frequencies of TE insertions from population
genome sequencing data. Combined with bioinformatics
pipelines to detect the presence/absence of TE insertions us-
ing NGS data, the ML method can estimate the allele fre-
quencies at polymorphic sites of TE insertions after correcting
for the bias in TE detection based on the observed genotypes
of the sequenced individual genomes. Like other programs for
identifying TE insertions using paired-end (PE) reads (Adrion
et al. 2017), our TE detection algorithm is unable to discover
nested/overlapped TEs or TEs in complex genomic regions
(e.g., containing a large number of tandem duplications).
Therefore, the method presented here is suitable for genotyp-
ing TE insertions identified in well-assembled, nonrepetitive
genomic regions using whole genome resequencing data.
Evaluation of the method on simulated data shows that un-
biased estimates of TE insertion frequencies can be obtained
with low read coverage. Our method can also identify puta-
tive TE insertions under strong purifying selection based on
the correct estimates of allele frequencies of TE insertions.
Application of this method to a natural microcrustacean
Daphnia pulex population reveals that the allele-frequency
distributions of reference and nonreference TE insertions fol-
low different patterns, and that a subset of TE insertions is
under negative selection.

Results

Estimating the Performance of TE Detection
Algorithms
We developed a bioinformatics pipeline, including two algo-
rithms, to detect the presence and absence of TE insertions at
each site in an individual genome (see Materials and
Methods). To test the performance of our TE detection algo-
rithms, we selected a chromosome representative of scaf-
fold_1 (with length of 1.6 MB nucleotides) in the D. pulex
assembly PA42, randomly inserted TE sequences from the D.
pulex TE library into the chromosome, simulated Illumina
paired-end sequencing reads, and then ran our TE detection
algorithms on the simulated sequencing data (see Materials
and Methods). Our results on the simulation study suggested
that, under a reasonably high coverage (20�), both the TE-
presence and TE-absence detection algorithms showed high
accuracy to detect TE insertions, with low false-negative rates
(FNR¼ 0 for both algorithms) and low false-positive rates
(FNR, 0.03 and 0 for the TE-presence and TE-absence detec-
tion algorithms, respectively). Under a relatively low coverage
(10�), the false-negative rates increased for both the TE-
presence (FNR¼ 0.11) and the TE-absence (FNR¼ 0.12) de-
tection algorithms, whereas the false-positive rates decreased
to FPR¼ 0.005 for the TE-presence detection algorithm (the
false-positive rate of the TE-absence detection algorithm
remains at 0). These results indicated that our TE detection
algorithms perform well on sequencing data with a high cov-
erage, but may miss some TE insertions when the sequencing
coverage is relatively low.
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Estimating TE-Insertion Frequencies on Simulated
Data
We present a maximum-likelihood (ML) method for estimat-
ing the allele frequencies of TE insertions in a population
based on the number of reads supporting the presence and
absence of the TE insertion at each site in each sequenced
individual genome (see Materials and Methods). We used
p��, pþ�, and pþþ to denote the frequencies of genoty-
pes:��(homozygous, where neither chromosome contains
the TE insertion), þ� (heterozygous, where only one chro-
mosome contains the TE insertion), and þþ (homozygous,
where both chromosomes contain the TE insertion) in the
population, respectively, and thus, the allele frequency of the
TE insertion (þ) is q ¼ pþ�=2þ pþþ.

To estimate the performance of the ML method for esti-
mating TE insertion frequencies q, we introduced an impor-
tant parameter h in the analysis to account for the relative
detection abilities of the presence and absence of TE inser-
tions, with h ¼ 0:5 when no detection bias exists (see
Materials and Methods). We first need to estimate the pa-
rameter h in advance. With the genotypes derived from the
simulated reads in 100 clones (with a preset TE allele fre-
quency q ¼ 0:5), the bias parameter h is estimated to be
0.51, which is consistent with the observation that our TE
detection method has no bias in detecting TEs based on the
simulated paired-end reads from a well-assembled genomic
region. Consequently, the estimate of allele frequency q ¼
0:53 by the ML method is close to the preset 0:5.

The purpose of this study is to develop an ML method for
estimating the TE insertion frequencies under different con-
ditions. Therefore, we simulated different genotypes to fur-
ther evaluate the performance of our ML method when
detection bias indeed exists (see Materials and Methods).
For each simulation, a total of 100 replicates was conducted
for the estimates of p�� and pþ�, with different preset values
for the parameter h, coverage l, sample size N, inbreeding
coefficient f, as well as the allele frequency q0 of the TE inser-
tion under Hardy–Weinberg equilibrium (HWE), selective
disadvantages of TE insertions s1 (for genotype pþ�)
and s2 (for pþþ). To demonstrate the advantage of the
ML method, we also estimated the allele frequency by using
a naı̈ve method, which simply computes the frequency based
on observations from the TE insertion detection algorithms
(i.e., the numbers of reads supporting the presence or absence
of TE insertions) without correction for detection bias.

We observed that the ML method can yield nearly unbi-
ased estimates of TE-insertion allele frequencies q (supple-
mentary fig. S1, Supplementary Material online). Changes of
sample size N and inbreeding coefficient f do not seem to bias
estimates of q, although the standard deviation of estimated
q decreases with the increasing sample size N. We note that
unbiased estimates of q can be reached by even the naı̈ve
method if the depth of coverage is moderate or high
(l � 10�) or no strong bias in TE-insertion detection algo-
rithms (0:2 � h � 0:8).

In contrast, for sites with relatively low read coverage l
(� 10�) and/or strong bias in detecting TE insertions

(h � 0:9 or h � 0:1), where some reads supporting the
presence or absence of TE insertions may not be detected,
the estimates of q are inaccurate by the naı̈ve method (fig. 1).
For h < 0:5, where the TE-presence detection algorithm is
more likely to miss reads than the TE-absence detection al-
gorithm, that is, a heterozygote (þ�) may be interpreted as a
homozygote (��), the naı̈ve method underestimates q
(fig. 1A, C, and D), whereas for h > 0:5, where the TE-
absence detection algorithm is more likely to miss reads
than the TE-presence detection algorithm, that is, a hetero-
zygote (þ�) may be interpreted as homozygote (þþ), the
naı̈ve method overestimates q (fig. 1B). In these cases, the
parameter h introduced in the ML method is crucial to cor-
rect this bias, resulting in more accurate estimates of q than
those of the naı̈ve method. Even in the cases with a very low
depth of coverage (l ¼3� in fig. 1C) or a strong bias
(h ¼ 0:9 in fig. 1B), although the ML method cannot give
very accurate estimates of q due to insufficient numbers of
supporting reads, it still significantly improves the accuracy of
estimates of q compared with the naı̈ve method.

The accuracies of the observed genotypes (þþ,þ�,��)
depend on the product of l and h: if 1=l � h � 1� 1=l,
the observations are consistent with the true genotypes of the
individuals, and thus q can be estimated accurately by the
naı̈ve method. Notably, although h is known in the simulation
experiment, the ML method assumes it is unknown and
derives ĥ from inferred heterozygous individuals, which is
very accurate when the sequencing coverage is high
(l �20�) but leads to slight deviations from h when
the coverage is moderate or low (l � 10�). For instance,
when l ¼10�, we estimated ĥ ¼ 0:28 when h ¼ 0:3 is
simulated. However, it seems that such slight deviation
will not influence the accuracy of estimating q using the
ML method.

Finally, as expected, increasing the sample size (N) can
improve the accuracies of estimates of ĥ and allele frequency
q̂. However, for a very low coverage l ¼3�, even a large
sample size N ¼ 500 cannot further improve the accuracy
of the estimates of q (data not shown), indicating that a
modest sequencing coverage is required for the effective ap-
plication of the ML method.

Detecting Selection on TE Insertions in Simulated
Data
The ML method can also detect putative selection on TE
insertions (see Materials and Methods). To evaluate the
power of the ML method for detecting selection, we simu-
lated data with different values of q0, s1, and s2 under three
selection models with inbreeding coefficient f known in ad-
vance: the recessive-effect model (s1¼ 0 and s2 6¼ 0 ), the
additive-effect model (s2 ¼ 2s1), and the dominant-effect
model (s2 ¼ s1). For each model, a series of q0 ranging
from 0.1 to 0.9 were simulated with sample sizes N ¼ 100
or N ¼ 500, in an attempt to test the impact of N on the
statistical power of the ML method. The other parameters
are set as coverage l ¼20�, parameter h ¼ 0:3, and inbreed-
ing coefficient f ¼ 0:02, which are comparable with
those of the D. pulex KAP population sequencing data.
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We repeated the simulation 100 times for each parameter
setting. The log-likelihood ratio test (LRT) was used to test if
the \maximum likelihood computed using the ML
method is significantly better (P� value � 0:01) than
that under the neutral model (s1 ¼ s2 ¼ 0 ). If the neu-
tral (null) model was rejected, we concluded that selec-
tion is present.

Overall, the ML method has a low false-positive rate on
detecting selection, generally � 0:01 regardless of q0, and is
essentially zero in most cases (fig. 2, for the recessive-effects
model). On the other hand, the statistical power of the
method is relatively low, but increases with the larger sample
size N, as indicated by true-positive rate (TPR) in figure 2.
Although the statistical power does not linearly increase with
the strength of selection (s1 or s2), sites under strong selection
(s2 > 0:8) can be detected in most cases where the TE inser-
tion frequency is relatively high (q0 > 0:5). For instance, the
TPR reached 1.0 when 0:3 < q0 < 0:9 and s2 > 0:65 for
the sample size N ¼ 500. In contrast, weak selection
(s2 < 0:2) is difficult to detect using the ML method regard-
less of q0, indicating the limitation of the ML method.
However, TE-insertion sites under strong negative selections
generally have little chance to reach very high allele

frequencies; therefore, the TE-insertion with high allele fre-
quency in a natural population is unlikely under strong
selection.

Among the three selection models, the additive-effect
model is not as easily detected compared with the other
two models (see supplementary fig. S2, Supplementary
Material online). For the TE insertion sites detected under
selection, we examined which model fits the data better by
using the LRT statistics. We found that selection can be
detected by the LRT when any of the three selection models
is assumed. However, the selection model used in the simu-
lation cannot be distinguished from the other two models in
all examined cases, as the likelihood value computed under
the true model is not significantly greater than the likelihood
computed under the other two models. Moreover, the ML
method cannot report accurate estimates of the selection
strengths (i.e., s1 or s2) because different combination of q0,
s1 or s2 may produce similar observed genotype frequencies
(see simulation results in supplementary fig. S3,
Supplementary Material online). For instance, we cannot dis-
tinguish the genotype frequencies under strong selection but
with a high allele frequency (s2 > 0:8 and q0 ¼ 0:9) from the
frequencies under a neutral model but with a low allele

FIG. 1. Estimates of TE insertion frequencies q with simulated data. The mean and standard deviation of q estimated by using the naı̈ve method
and the ML method are shown in comparison with the true values of q, under the condition of low coverage (l) or strong bias of TE insertion
detection (h) in the simulation. (A) h ¼ 0:1, (B) h ¼ 0:9, (C) l ¼3�, (D) l ¼5�. Except for the parameters shown in the subtitles, the settings of
parameters are: N ¼ 100, l ¼10�, h ¼ 0:3, f ¼ 0, s1 ¼ s2 ¼ 0. The parameter h was assumed unknown and estimated in the ML method. A total
of 100 replicates were conducted in the simulation for each set of parameter values. The mean estimates of q̂ under additional parameter settings
are shown in supplementary figure S1, Supplementary Material online.
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frequency q0 < 0:9 (supplementary fig. S3. A2,
Supplementary Material online).

Genome-wide Identification of TE Insertion Sites in
D. pulex KAP Population
We applied our method to a population of D. pulex, a micro-
crustacen commonly found in ephemeral ponds and a well-
documented model system in ecological and evolutionary
genomics. The D. pulex population studied here reproduces
by parthenogenesis for 3–5 generations each year but also
undergoes obligate sexual reproduction as the pond dries up
annually. An early season sample with 96 clones was collected;
sequencing reads were obtained on these clones and then
were used to identify TE insertions in each clone (see
Materials and Methods). The D. pulex TE library as input of
our TE detection algorithms have been established in a pre-
vious study, which is a comprehensive D. pulex TE library
annotated from two available D. pulex reference genome as-
semblies (TCO and PA42), including 1,461 full length and
27,849 fragmented TE sequences (Jiang et al. 2017).

On average, reference (present in the PA42 assembly) and
nonreference (absent in the PA42 assembly) TE insertion sites
were detected in 65 and 64 clones with the sequencing cov-
erage of�20�, respectively. The mean reads count support-
ing the reference and nonreference TE insertion sites among
these clones are �30� and �18�, respectively. We initially
identified on average�7,000 TE insertions in each clone using
the TE-presence detection algorithm. Under the condition
that the presence and/or absence of TE insertion have to
be supported by at least five reads in �50 clones, a total of
17,658 polymorphic TE insertion sites were identified in the
KAP population, including 2,263 (�13%) reference TE inser-
tion sites and 15,395 (�87%) non-reference TE insertion sites.
Compared with the previous comprehensive comparison of
TE insertion difference between D. pulex asexual and sexual
groups, we identified fewer TE insertions (17,658 in this study
vs. 19,301 in eight sexual D. pulex clones, Jiang et al. 2017). For

the purpose of estimating allele frequencies, we used a strict
filtering process in this study that only TE insertion (present
or absent) sites supported by at least five reads in�50 clones
were retained, which is the main reason for this discrepancy.
Under such strict conditions, our TE detection algorithm may
have abandoned a substantial number of TE insertion sites
detected only in a small number of clones. Moreover, as
stated above, like many other TE detection algorithms based
on paired-end reads, our method is unable to detect nested
TEs or TEs in complex genomic regions. Thus, our estimates
should be interpreted as a lower bound of the actual numbers
of TEs in the population.

In order to estimate the TE allele frequencies, we first es-
timated the parameter h. We treated the reference and non-
reference TE insertions separately in our analysis as reads
mapping may be differential for the regions with or without
a TE in the reference genome. Using the number of reads
supporting the presence and absence of TE insertions in the
heterozygous clones in a population, we estimated that the
average h across TE insertion sites for reference and nonrefer-
ence TE insertions in the KAP population are 0.78 and 0.35,
respectively. Note that the parameter h deviates from 0.5 in
both cases, indicating that our TE-insertion detection algo-
rithms would likely overestimate the allele frequencies of ref-
erence TE insertions and underestimate the allele frequencies
of nonreference TE insertions if the bias was not corrected.
Hence, we used different h in the analyses for reference and
nonreference TE insertions. The average inbreeding coeffi-
cient of KAP population is estimated as f ¼ 0:02 in a previ-
ous study (Lynch et al. 2016), implying that the KAP
population is close to HWE but is slightly inbred. All estimates
of parameters used in the ML analysis are summarized in
table 1.

Our results show that about two-thirds of the 17,658 TE
insertions have low allele frequencies (63.4% insertions with
allele frequencies < 0:10), some are fixed or nearly fixed
(14.2% insertions with frequencies > 0:95), with the

FIG. 2. The power of detecting selection on TE insertions with the ML method. The recessive-effects model (s1¼ 0 and s2 6¼ 0 ) with sample sizes of
N¼ 50 (A), N¼ 100 (B), and N¼ 500 (C) were used here. The true-positive rate (TPR) is depicted. The setting of other parameters are: l ¼20�,
h ¼ 0:3, f ¼ 0. A total of 100 replicates were simulated for each set of parameter values. The power analyses of selection detection using the ML
method with two other selection models are shown in supplementary figure S2, Supplementary Material online.
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remaining sites segregating at intermediate frequencies
(22.4% insertions with frequencies between 0.10 and 0.95).
The distributions of allele frequencies of reference and non-
reference TE insertions are quite different: most reference TE
insertions are nearly fixed (93.9% with allele frequencies
> 0:95) and few have low frequencies (0.3% with allele fre-
quencies < 0:10), whereas more than two-thirds of non-
reference TE insertions have low frequencies (72.7% with
frequencies < 0:10) and few have high frequencies (2.6%
with frequencies > 0:95). The distributions of TE insertion
frequencies are shown in figure 3.

As shown in the simulation results section, although the
ML method may detect selection on the TE insertions with
very high allele frequencies (> 0:9), TE insertions under
strong selection in a natural population are unlikely to have
arisen to such frequencies. Moreover, the false-positive rates
in detecting selection are relatively high (FPR � 0:05) in
some cases with low sequencing coverage l ¼5� (see sup-
plementary fig. S4, Supplementary Material online).
Therefore, we only tried to search for potential selection on
the TE insertion sites with allele frequencies < 0:9 and in
clones with high sequencing coverage (10�). In total, 18 ref-
erence and 8,189 nonreference TE insertions were retained for
this analysis. The ML method revealed that 4 of 18 reference,
and 734 of 8,189 (�7.9%) nonreference TE insertion sites are
under potential negative selection in the KAP population. We
noted that all TE insertion sites inferred to be under selection
have allele frequencies q between 0.3 and 0.7. Only TE inser-
tions with mild deleterious effects on host fitness may reach a

relatively high allele frequency. Therefore, it is not surprising
that we did not detect any TE insertion sites with high allele
frequencies (> 0:7) under selection.

The ML method is relatively conservative in detecting se-
lection and cannot detect weak purifying selection on TE
insertions, especially for those with low frequencies, as dem-
onstrated in our simulation experiments. This is one possible
reason for why only a small fraction of novel TE insertions is
detected to be under selection in the KAP population. On the
other hand, the clones sequenced in the KAP population
were collected from hatchlings, and thus the selection effect
on these clones may not be significant, which may also ex-
plain our observation.

Discussion
High-throughput genome sequencing has become an impor-
tant approach to characterizing genome-wide structural var-
iations, including the mapping of TE insertion sites and
insertion polymorphisms. Several tools have been developed
to identify novel TE insertions from paired-end reads (Keane
et al. 2013; Lee et al. 2014; Zhuang et al. 2014). These methods
can be exploited on individual sequencing data to character-
ize genome-wide TE insertion polymorphisms in a population
from which the genomes are sampled. However, to accurately
estimate the allele frequencies of TE insertions at population-
levels for a diploid organism, we need to address two addi-
tional issues.

For diploid organisms, we need to detect the genotypes of
TE insertions based on the number of reads supporting both
the presence and absence of TE insertions, Some existing
algorithms using paired-end reads can report such informa-
tion (Cridland et al. 2013; Adrion et al. 2017). However, the
heterozygous individuals may not be distinguished from the
homozygous individuals in the condition of low coverage.
Second, some TE detecting algorithms were designed for us-
ing pooled-sequencing data, which assume that the pooled
sample is a good representative of a population (Kofler et al.
2012). However, this is not always the case. Furthermore, the
assumption that the number of reads supporting presence of

Table 1. Parameter Estimates for TE Insertions in the KAP Population.

Type Alla Fixedb h N m f

Reference 2,263 2,124 0.78 65 303 0.02
Nonreference 15,395 471 0.35 64 183 0.02

NOTE.—The bias parameters h, coverage parameter m, and inbreeding coefficient
f denote the average values across all individuals. N is the average number
of sequenced clones a TE insertion is found in the KAP population.
aNumber of total TE insertions summarized in KAP population.
bNumber of fixed TE insertions (>0.95 frequency).

FIG. 3. Distribution of the estimates of q for reference (A) and nonreference (B). TE insertions in the D. pulex KAP population.
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a TE insertion is proportional to the frequency of TE insertion
in the pooled-sequencing data may not hold either, due to
the potential bias in detecting the presence and absence of a
TE insertion, respectively. As shown in our results, such bias
existed in the natural D. pulex population data: the parameter
h in our method deviated from 0.5 (no bias), and h was
distinct for reference and nonreference TE insertions. We
emphasized that, although similar algorithms have been ap-
plied to the characterization of TE insertion polymorphisms
from pooled-sequencing data in previous studies, the detec-
tion bias was also observed in other algorithms for direct
estimates of allele frequencies of TE insertions (Kofler et al.
2016). Therefore, even though individual genome sequencing
is costly compared with the widely employed pooled-
sequencing approach (Schlotterer et al. 2014), it may provide
more accurate estimates of allele frequencies of TE insertions.

In this paper, we developed a ML method and utilized
simulated data to demonstrate the accuracy of the ML
method to estimate allele frequencies of TE insertions when
detection bias is present. As shown in our simulation results,
estimates of allele frequencies deviate from the true data
when sequencing coverage is not sufficiently high (fig. 4).
The parameter h introduced in the ML process is necessary
to correct potential detection bias in estimating allele-
frequency of TE insertions. The ML method performs well
even when the coverage is moderately low (l ¼5�), indicat-
ing that it is ready to be applied to genome-wide character-
ization of TE polymorphisms in well-assembled genomic
regions in population sequencing projects.

An advantage of the ML framework is that it allows the
assessment of significance of a putative selection model
through a LRT statistic. A correctly specified likelihood

function can be used to evaluate if selection models are sta-
tistically significantly better than neutral models for explain-
ing population data, as long as the inbreeding coefficient f is
known. Purifying selection potentially affects the allele fre-
quencies of TE insertions, as only TE insertions with no sig-
nificant selective disadvantage are unconstrained to drift
to high frequencies. Nevertheless, detection of the most
likely selection model is a critical challenge in the analysis
of TE polymorphism. Although a large sample size
improves the statistical power for detecting selection
(fig. 2), it is generally difficult to determine the most likely
selection model, especially for the TE insertions with low
allele frequencies (< 0:2). This is because the frequencies
of TE insertions that subjected to purifying selection in
the population will not change much in one generation.
For instance, for the recessive-effect model case (s1¼ 0),
as long as the TE frequency in a population is low, selec-
tion will not be efficient in reducing the frequencies of
deleterious TE insertions because deleterious insertions
may be hidden in heterozygotes. As a result, it is almost
impossible to rid a population of recessive deleterious TE
insertions, even when such TE insertions are lethal in a
homozygous state (i.e., s2¼ 1).

Although some examples have shown that TE insertions
may regulate expression levels of the neighboring genes and
bring some benefits to the host genomes (Daborn et al. 2002;
Aminetzach et al. 2005), most TE insertions are considered to
be deleterious or neutral to the host (Hurst and Werren
2001). Therefore, we only considered the negative selection
of TE insertions in this study. Despite the ML method is
conservative to detect selection, the observations that most
TEs are present at low population frequencies in D. pulex and

FIG. 4. Outline of the method used to identify the presence and absence of TE insertions in an individual genome. “Reference” TE insertions (A, B)
and “Nonreference” TE insertions (C, D) are depicted separately, representing the cases where an TE insertion is or not in the reference genome,
respectively. Two different algorithms are used to detect the presence (A, C) and absence (B, D) of TE insertions (see Materials and Methods).
Paired-end reads are depicted with arrowed lines in the colors of black and green, representing reads mapped to TEs and unique regions in the
reference genome, respectively.
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a fraction of novel TE insertion sites are under selection sup-
port the concept that TE insertions are mostly deleterious to
the host genome.

A previous study proposed a method to infer the proba-
bility distribution of the TE insertion allele frequencies in a
population, based on the age of TE insertions (Blumenstiel
et al. 2014). Both the previous and our method provide con-
servative estimates of the selection on TE insertions and are
suitable for analyzing resequencing data in which TEs are
identified in a well-assembled genome, and both assumed
TE insertion alleles are independent. Without the assump-
tions of a constant transposition rate, the previous study also
provided the evidence of negative selection against most TE
insertions, which is consistent with our results. The previous
method also detected a small subset of TEs under positive
selection. But it cannot be used for DNA transposons due to
the challenge of inferring their age, indicating that our
method may be complementary to the previous method.
Even with its own limitations, the ML approach developed
in our study represents a new method for detecting TE inser-
tions under selection only using paired-end sequencing data.

Recently, in an effort to establish D. pulex as a model sys-
tem for evolutionary genomics, a project to sequence �100
clone isolates from each of �30 D. pulex populations
throughout the geographic range of the species has been
initiated (Lynch et al. 2016). Inspired by these available
paired-end sequencing data, we have developed here a bio-
informatics pipeline for the identification of TE insertions,
estimating allele frequencies of TE insertions, and detecting
selection on TE insertion sites in a population. By applying our
pipeline to a natural D. pulex population data, we computed
the distribution of population-level allele frequencies of TE
insertions. We observed a distribution of TE insertion fre-
quencies in D. pulex similar to that reported in Drosophila
melanogaster (Kofler et al. 2012), that is, most TEs identified in
the KAP population were not present in the PA42 reference
genome, whereas a high fraction of TE insertions are segre-
gating at very low frequencies, for example, a high fraction
(73%) of novel TE insertions in the KAP population occur at
frequencies < 0:1.

Much like other algorithms for identifying TE insertions
using paired-end reads, our TE detection algorithms are un-
able to discover TEs located in complex genomic regions, and
the detection power also depends on the completeness of the
TE library and the quality of the reference genome assembly.
Even for the well-assembled Drosophila melanogaster ge-
nome, long repeats are common in heterochromatin and it
is difficult to detect TEs in heterochromatic regions using
paired-end sequencing data (Chakraborty et al. 2018). TE
abundance and diversity are highly variable in different spe-
cies. Therefore, new methods for accurately mapping the
reads are still desirable. In this work, we focused on our ML
method to correct the bias in estimating allele frequencies
once we obtained the genotypes of TE insertions, although
we may miss some variants of TE insertions in the population
(and thus cannot estimate their allele frequencies). However,
our ML method performs better than the naı̈ve method in
estimating TE allele frequencies in all simulated conditions.

The framework outlined here is the first of its kind to
provide accurate estimates of allele frequencies of TE inser-
tions using individual sequencing data in a population, as well
as attempting to detect potential selection on TE insertion
sites without additional genomic information. It is worth not-
ing that the method can be applied to other type of insertion
polymorphism, and is not limited to TE insertions.

Materials and Methods

Identification of TE Insertion Sites Using Paired-End
NGS Data
In a diploid genome, two alleles can be observed at each TE
insertion site: presence of a TE insertion (denoted as þ) or
absence of a TE insertion (denoted as �). To infer the allele
frequencies of TE insertions (þ), we first need to obtain the
frequencies of genotypes��,þ�, andþþ in a population.
We developed a bioinformatics pipeline to detect the pres-
ence and absence of TE insertions at each site in an individual
genome from its paired-end whole genome sequencing data.

First, a previously published graph-based algorithm was
used to identify potential TE insertions from the paired-end
(PE) reads (Lee et al. 2014). This algorithm takes as input a
reference genome, a TE library, and PE sequencing data, and
reports a list of read-pair clusters to identify TE insertions (i.e.,
the alleleþ). Second, we implemented an additional python
script to detect the absence of a TE (i.e., the allele �) as
follows. PE reads were first mapped to a reference genome
with BWA (Li 2013) and were then located onto unambigu-
ous positions using Samtools (Li et al. 2009). Here, we classi-
fied the putative TE insertion sites into two types: reference if
the TE insertion is present in the reference genome, and
nonreference if the TE insertion is absent from the reference
genome (fig. 4). Two different criteria were applied for deter-
mining the absence of reference and nonreference TE inser-
tions at a site, respectively: 1) for a reference TE insertion site,
if one or more PE reads are mapped across the flanking
regions of the TE on the reference genome; 2) for a non-
reference TE insertion site, if the distance between the read
pairs mapped on the reference genome is consistent with the
insert size of the PE read library (fig. 4A). This algorithm also
reports the numbers of PE reads supporting the absence of TE
insertions at each site (fig. 4B). We note that our TE detection
methods are not designed to detect nested TEs or TEs in
complex regions, and thus our estimates may provide a lower
bound for the actual numbers of TEs in each clone.

Estimating False-Negative/Positive Rates (FNRs/FPRs)
for TE Detection Algorithms
To estimate FNRs and FPRs of the two TE detection algo-
rithms, we simulated paired-end sequencing reads using a
recent published algorithm simulaTE (Kofler 2017) and ana-
lyzed the simulated data. We generated one TE-free clean
chromosome with RepeatMasker (Smit et al. 2004), using
scaffold_1 of D. pulex assembly PA42 (�1.6 MB). Next, we
randomly inserted a set of 100 TEs chosen from D. pulex TE
library with the length about 2 KB (Jiang et al. 2017). To detect
the TE insertions, we assigned the simulated TE insertions
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with two different frequencies, 1.0 (presence) and 0 (absence).
Finally, we simulated Illumina PE reads with a read length of
100 bp, insert size of 300 6 50 bp, and two coverages 20�
and 10�, respectively (see Supplementary Material for pa-
rameter setting). We then identified TE insertions using our
TE detection algorithms with the simulated PE reads, the TE
library, and the clean chromosome. This process was con-
ducted in 100 simulated clones.

False-positive rates were estimated for TE insertions as
FPR¼FP/TN, where FP is the number of discovered TEs falsely
inferred to be insertions, and SN is the number of the simu-
lated TE insertions. False-negative rates were estimated as FNR
¼ FN/SN, where FN is the number of simulated TE insertions
that were not identified. The average FPR and FNR across 100
simulated individuals was reported, providing the estimates of
accuracies for the detection algorithm used in this study.

Estimating the Allele Frequencies of TE Insertions by a
ML Approach
The ML method for estimating the allele frequencies of TE
insertions in a population takes as input the numbers of reads
supporting the presence and absence of the TE insertion at
each site in each sequenced individual genome (as obtained
using the algorithms described above).

Letting nþi and n�i be the numbers of reads from an indi-
vidual genome i that support allelesþ and� at a specific TE
insertion site, respectively, the likelihood of observing nþi and
n�i supporting reads in an individual i, based on the genotype
frequencies, is

Pðnþi ; n�i Þ ¼ p��A�� þ pþ�Aþ� þ pþþAþþ ; (1)

where p��, pþ�, and pþþ denote the frequencies of geno-
types ��, þ�, and þþ in the population, and the Aj de-
note the conditional probabilities of observing the supporting
reads provided the individual i is of genotype j¼ þþ,þ�, or
��.

The basic assumption in our model is that while all
detected read pairs supporting the presence or absence of
a TE insertion are true, some reads may not be detected by
the TE detection algorithm due to low coverage. Given the
inputs of nþi and n�i from a number of individuals, there are
three types of observations: if nþi > 0 and n�i ¼ 0, the indi-
vidual i may have the genotype þ� or þþ; if n�i > 0 and
nþi ¼ 0, the individual i may have the genotypeþ� or��;
and if nþi > 0 and n�i > 0, the individual i must have the
heterozygous genotype þ�. The general expressions for Aj

and the corresponding likelihood conditional on different
observations (i.e., nþi and n�i ) are summarized in table 2.

Note that we introduce a parameter h in the analysis (see
table 2) to account for the relative detect abilities of the two
alleles þ and � by using paired-end (PE) reads. We define h
and ð1� hÞ as the average probabilities of sampling TE-
presence and TE-absence allele, respectively, in heterozygotes
(genotypeþ�). h is assumed to be different for reference and
nonreference TE insertion sites in a population, respectively,
but is constant across the genome for both cases, and thus
can be estimated independently prior to the ML analysis, by

setting h=ð1� hÞ to be the ratio of the numbers of reads
supporting alleles � and þ in all definitive heterozygous
individuals across either the reference or nonreference
TE insertion sites in the population, that is, h¼
½
PNh

i¼1ðnþi =n�i Þ=nh�=½1þ
PNh

i¼1ðnþi =n�i Þ=nh�, where nh is
the total number of reference or nonreference heterozygotes.

Given the supporting reads in N individuals sampled in a
population, the log likelihood of the full set of data in a single
locus is

L ¼
XN

i¼1

lnPðnþi ; n�i Þ (2)

The ML solution of the actual genotype frequencies (p̂��,
p̂þ�, and p̂þþ ¼ 1� p̂�� � p̂þ�) is obtained by maximiz-
ing L with respect to nþi and n�i . In this paper, we used a grid
search to solve the ML maximization problem, allowing po-
tential solutions of p�� and pþ� as m=N, where m is an
integer between 0 and N. The estimated allele frequency of TE
insertions in the population is then

q̂ ¼ p̂þ�=2þ p̂þþ (3)

Detecting Purifying Selection on TE Insertions
The ML method can be used to detect putative selection on
TE insertions. When no selection and no inbreeding occurs,
the genotype frequencies are expected to follow the Hardy–
Weinberg equilibrium (HWE), that is, the expected frequencies
of ��, þ�, and þþ are ð1� q0Þ2, 2q0ð1� q0Þ, and q0

2,
respectively, where q0 is the allele frequency of the TE insertion.
When selection occurs, the relative contributions of the three
genotypes to the next generation become ð1� q0Þ2w��,
2q0ð1� q0Þwþ�, and q0

2wþþ, respectively (note that these
values should be normalized to obtain the actual genotype
frequencies), where w��, wþ�, and wþþ are the fitness of
the genotypes��,þ�, andþþ, respectively. Letting s1 and
s2 denote the selective disadvantages of the TE insertions in the
genotypesþ� andþþ, respectively, the fitness of the three
genotypes ��, þ�, and þþ can be written as w�� ¼ 1,
wþ� ¼ 1� s1, and wþþ ¼ 1� s2, respectively.

Finally, note that the expected genotype frequencies will
further differ from the above if the inbreeding coefficient f
measuring the deviation from HWE prior to selection is non-
zero. Here, we assume f can be estimated from the genotype
frequencies across single nucleotide polymorphic (SNP) sites
unassociated with the TE insertions from population genomic
data. Thus, the expected frequencies of genotypes p��, pþ�,
and pþþ of a TE insertion are:

Eðp��Þ ¼ 1� q0ð Þ2 þ fq0 1� q0ð Þ
� �

= �W (4a)

Eðpþ�Þ ¼ 2q0 1� q0ð Þ 1� fð Þð1� s1Þ= �W (4b)

EðpþþÞ ¼ q0
2 þ fq0 1� q0ð Þ½ �ð1� s2Þ= �W (4c)

where �W ¼ 1�2q0 1�q0ð Þ 1� fð Þs1� q0
2þ fq0 1�q0ð Þ½ �s2

is a normalization factor. Note that q0 represents the
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frequency of the allele þ (containing TE) prior to selection,
which is distinct from the observed allele frequency in the
population (denoted as q in the previous section).

The parameters in equations (4a–c) to be solved for by ML
become q0, s1, and s2 (instead of p�� and pþ�). In the sim-
plest case of no selection (s1 ¼ s2 ¼ 0), the likelihood equa-
tions need only be solved for one unknown parameter q̂0. By
contrasting the selection and neutral models, one can test the
hypothesis that no selection occurs at each TE insertion site
using a log-likelihood ratio test (LRT) statistic,

LRT ¼ 2ðLL1 � LL0Þ ; (5)

where LL0 denotes the log-likelihood under the null hy-
pothesis, that is, the neutral (no selection) model
(s1 ¼ s2 ¼ 0), whereas LL1 denotes the log-likelihood un-
der the alternative hypothesis in which the likelihood
function (eq. 2) is maximized subject to p�� and pþ�.
The LRT statistic approximately follows a v2 distribution
with one or two degree of freedom (s1 and/or s2). If the
neutral model (s1 ¼ s2 ¼ 0) is rejected by the LRT
statistic, we conclude that the TE insertion site is under
selection. We developed several perl and python scripts to
evaluate the ML parameters and the LRT statistic for
detecting selection.

Evaluation of ML Approach by Simulation
We used computer simulation to evaluate two aspects of the
performance of the ML approach based on genotyping data:
the accuracy of allele-frequency estimation, and the power to
detect selection on TE insertions. We started our simulation
from the expected genotype frequencies in the population
computed using the different combinations of preset param-
eters f and h to mimic the potential bias in detecting the
presence and absence of TE insertions from paired-end se-
quencing data. The parameters q0, s1, and s2 were set based
on the neutral model or three biological selection models.
Any alternative models allowing for selection (s2 6¼ 0 and/or
s1 6¼ 0) can be written as s1¼ ks2 , where each different k
represents a different selection model. The three selection
models considered here include: k¼ 0, representing the
recessive-effect model (s1¼ 0 and s2 6¼ 0); k¼ 0:5,

representing the additive-effect model (s2 ¼ 2s1); and
k¼ 1:0, representing the dominant-effect model (s2 ¼ s1).

The expected genotype (þþ, þ�, or ��) at each TE
insertion site in a simulated individual is then sampled based
on the genotype frequencies according to equations (4a–c).
Finally, we simulated the numbers of reads supporting the
presence or absence of TE insertions (i.e., nþi or n�i ) in the
individual based on its expected genotype and the parame-
ters of h and coverage l.

In the simulations, the allele frequency q0 was assigned a
value between 0 and 1, and the selection coefficients s1 and s2

were set to be between 0 and 1 as TE insertions are considered
to be generally deleterious (under purifying selection). The
remaining parameters were also preset in line with some pop-
ulation sequencing projects, including the Daphnia project
data to be analyzed here (see the next section): sample size
N was set to be between 30 and 500; the inbreeding coefficient
f was set to be between 0.0 and 0.30; the expected sequencing
coverage l (see below) was set to be between 3 and 30; and
the bias parameter h was assigned a value between 0.1 and 0.9.

For each simulation experiment, the parameters N, h, and f
were kept constant, and the actual sequencing coverage of an
individual was drawn from a Poisson distribution with the
mean of l. We implemented this simulation process in
Python, and the simulation results were used to evaluate
the accuracy of the estimated TE insertion frequency q and
the detected TE insertion sites under selection using the ML
method. All code and data used in this study are released in
Github (https://github.com/xiaoqian1984/TE_detection).

Application to D. pulex Population Sequencing Data
In this study, the D. pulex population sequencing data
includes 96 clones, and was collected in the spring of 2013
from Kicka Pond (KAP), located in Illinois, immediately after
resting-egg hatchling to minimize the chance of sampling
genetically identical individuals. These clones were main-
tained in benign laboratory conditions to keep animals repro-
ducing parthenogenetically. DNA was extracted from each
clone using a cetyltrimethylammounium bromide method
(Doyle 1987). Paired-end sequencing performed on the
Illumina MiSeq platform generated 100 or 150 bp reads.
The raw reads of this study have been previously deposited
in NCBI Sequence Read Archive (SRA) with accession number
SRS1785808 (Lynch et al. 2016).

Raw reads from all clones were first preprocessed for qual-
ity control by using Trimmomatic and Fast-Toolkit (Gordon
and Hannon 2010; Bolger et al. 2014). Several subsequent
steps were used to further filter the data: 1) we first aban-
doned clones with low genome coverage (� 5�); 2) we then
applied a published tool MAPGD, which uses population-
genomic data to estimate pairwise relatedness, to prevent
the inadvertent inclusion of clone mates in the original clone
collection (Ackerman et al. 2017). 3) we abandoned the se-
quencing data of clones with average insert size < 250bp of
PE reads because our TE insertion identification algorithm
cannot find TE insertions if PE reads have short insert size.
After these filtering steps, a total of 73 clones were retained in

Table 2. The Probability of the Genotype A and the Corresponding
Likelihood Given Each of the Three Types of Observations in an
Individual Genome i.

Observation Probability of the
observation given

the genotype

Pðnþi ; n�i Þ

A�=� Aþ=� Aþ=þ

nþi 50 , n�i >0 1 1� h½ �n
�
i 0 p�� þ pþ� 1� h½ �n

�
i

nþi >0 , n�i >0 0 1 0 pþ�

nþi >0 , n�i 50 0 hnþi 1 pþ�hnþi þ pþþ

Note.—Aj denotes the conditional probability of observing the supporting reads
provided the individual i is of genotype pj ¼þþ,þ�, or –. nþi and n�i denote the
number of reads supportting the presence and absence of TE insertions, respec-
tively. The parameter h denotes the detection bias.
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the KAP population for further analysis, with average cover-
age�20� and average insert size�340 bp of PE read library.

The input of TE identification algorithms include: a D.
pulex PA42 assembly as the reference genome (Ye et al.
2017); a previously established D. pulex TE library consisting
of 1,461 full-length and 27,849 fragmented TEs (Jiang et al.
2017); and the whole-genome sequencing data from each of
the 73 D. pulex clones from the KAP population. We aban-
doned TE insertion sites with < 5 supporting PE reads in
each clone, and we also excluded the TE insertion sites cov-
ered in < 50 clones in the population.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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