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Inborn and acquired metabolic defects in cancer
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Abstract The observation that altered metabolism is the
fundamental cause of cancer was made by Otto Warburg
nearly a century ago. However, the subsequent identification
of oncogenes and tumor suppressor genes has displaced
Warburg's theory pointing towards genetic aberrations as the
underlining cause of cancer. Nevertheless, in the last decade,
cancer-associated mutations have been identified in genes
coding for tricarboxylic acid cycle (TCA cycle, also known
as Krebs cycle) and closely related enzymes that have
essential roles in cellular metabolism. These observations
have revived interest in Warburg's hypothesis and prompted
a flurry of functional studies in the hope of gaining
mechanistic insight into the links between mitochondrial
dysfunction, metabolic alterations, and cancer. In this review,
we discuss the potential pro-oncogenic signaling role of
some TCA cycle metabolites and their derivatives (oncome-
tabolites). In particular, we focus on their effects on
dioxygenases, a family of oxygen and «-ketoglutarate-
dependent enzymes that control, among other things, the
levels and activity of the hypoxia-inducible transcription
factors and the activity of DNA and histone demethylases.
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Introduction

At the beginning of the 20th century, Otto Warburg
observed that cancer tissues have high rates of glycolysis
even in the presence of oxygen, a metabolic phenotype that
he labeled “aerobic glycolysis” ([1] and reviewed in [2]).
Warburg attributed these metabolic changes to defects in
mitochondrial respiration and ATP production (oxidative
phosphorylation). The aerobic glycolysis of cancer cells has
been widely investigated throughout the years, and it is
now considered as one of the metabolic hallmarks of
cancer transformation and has been exploited to develop
novel diagnostic and therapeutic tools [3]. Nevertheless,
in subsequent decades after Warburg's pioneering findings,
belief in his theory waned, partly due to the identification
of mutations in cancer predisposition genes including
oncogenes (pro-tumorigenic) and tumor suppressor genes
(anti-tumorigenic). Furthermore, convincing evidence that
mitochondrial dysfunction is the actual cause of the metabolic
switch in cancer and of tumorigenesis in general was
scarce [2]. However, in the last decade, the identification of
loss- or gain-of-function mutations in key metabolic
enzymes that have a causal role in tumorigenesis has
awakened interest in Warburg's hypothesis [4, 5].

Genetic evidence for the involvement of metabolic
enzymes in tumorigenesis

SDH mutations in hereditary paragangliomas
and pheochromocytomas and other sporadic tumors

Mitochondrial succinate—coenzyme Q oxidoreductase,

which catalyzes the conversion of succinate to fumarate in
the TCA cycle (Fig. 1a) while simultaneously transferring
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electrons from succinate to coenzyme Q (complex II of the
respiratory chain), is comprised of four subunits: succinate
dehydrogenase (SDH) SDHA, SDHB, SDHC, and SDHD all
of which are nuclear genes encoding mitochondrial
enzymes. A decade ago, heterozygous germline mutations in
SDHB, SDHC, and SDHD subunits were identified as the
causal tumor suppressor genes in hereditary paragangliomas
and pheochromocytomas (hPGL), a rare hereditary cancer
predisposition syndrome of the chromaffin tissue arising in
the adrenal medulla pheochromocytoma (PCC) or derived
from the parasympathetic tissue of the head and neck
paraganglioma (PGL) [6-8]. Also, more recently, mutations
in SDHA and the SDH assembly factor SDHAF?2 (formerly
known as SDH5 and required for flavination of SDH) have
been described in hPGL [9-11]. Though primarily associated
with hPGL, SDHB mutation carriers have additional increased
susceptibility to renal cell cancers (RCC) [12—14]. In all cases,
the loss-of-function germline mutations are followed by a
somatic “second hit” of the second allele (usually deletion) in
the tumor cells [15]. Furthermore, somatic mutations in
several SDH genes are increasingly appreciated in sporadic
PGL, PCC, and RCC [16]. Recently, a role for SDH
mutations in gastrointestinal stromal tumors (GISTs) was also
proposed. In particular, it was found that mutations in SDHB,
SDHC, and SDHD are correlated with the rare development
of a combination of hPGL and GIST, defined as Carney—
Stratakis syndrome, and with the nonfamilial Carney triad,
characterized by the presence of extra-adrenal paraganglio-
mas, GIST, and pulmonary chondromas (reviewed in [17]).

FH mutations in hereditary leiomyomatosis and renal cell
cancer

Fumarate hydratase (FH) catalyzes the reversible conver-
sion of fumarate to malate in the TCA cycle (Fig. 1a). Loss-
of-function germline mutations in FH predispose to
hereditary leiomyomatosis and renal cell cancer (HLRCC),
inherited leiomyomas (generally benign tumors of the
smooth muscle), and renal (type II papillary and collecting
duct) carcinoma [18, 19]. There is evidence to suggest that
FH mutations may also be involved in the pathogenesis of
breast, bladder, and testicular (Leydig cell) cancers [20, 21].
Similar to SDH in hPGL, enzymatic activity of FH is absent
in HLRCC tumors and loss of the wild-type allele is
observed in the majority of tumors [19].

IDH mutations in glioma and AML

Recently, mutations in isocitrate dehydrogenase (IDH) have
been identified in gliomas and acute myelogenous leukemia
(AML) [22-26]. IDHI is one of three human IDH enzymes
that catalyze the oxidative decarboxylation of isocitrate to
o-ketoglutarate (aKG, also known as 2-oxoglutarate). IDH
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mutations are somatic and unlike SDH and FH mutations in
hPGL and HLRCC respectively, no loss of heterozygosity
has been demonstrated (i.e., all tumors retained one wild-
type allele). Furthermore, the majority of /DHI mutations
in gliomas are strictly confined to a single residue, R132,
whereas mutations in SDH and FH occur throughout the
gene and though predominantly missense, changes also
manifest as truncating, insertion, and deletion mutations.
Sequence analysis of gliomas that are wild type for IDHI
R132 revealed a subset of tumors harboring mutations in the
homologous exon of /DH2 and at the equivalent residue
R172 [26]. Therefore, from a genetic point of view, IDHI/
IDH2? mutations in glioma and AML appear dominant,
oncogenic gain-of-function mutations. Indeed, a recent study
demonstrated that these specific point mutations in IDH
change the activity of the enzyme which no longer produces
o-ketoglutarate but rather uses (reduces) x-ketoglutarate to a
less familiar metabolite, 2-hydroxyglutarate (2HG) [27] (see
below and Fig. 1a).

Biochemical and biological consequences of mutations
in the cancer-associated metabolic enzymes

SDH and FH mutations in cancer: a tale of PHDs and HIFs

The observation that tumors derived from SDH or FH
mutations are genetically and histologically characterized
by a strong hypoxic signature and are significantly more
vascularized [28-30] suggested a causal link between TCA
cycle dysfunctions and the activation of the hypoxia-
inducible transcription factors (HIFs), master regulators of
the response to low oxygen. Importantly, HIF activation can
also explain some of the metabolic alterations observed in
these tumors and it may play a supportive role in the
tumorigenic process. In fact, HIF is known to orchestrate
the metabolic and genetic reprogramming required to
sustain tumor cell growth, vascularization, and proliferation
[31, 32]. The molecular link between TCA cycle dysfunc-
tion and HIF activation was initially proposed by Selak and
colleagues who demonstrated that the accumulation of
succinate in SDH-deficient cells causes the inhibition of
the HIF prolyl 4-hydroxylases (PHDs), important regulators
of the stability of the o subunit of HIF [33]. In normoxic
conditions, PHDs hydroxylate two proline residues on the
oxygen-dependent degradation domain of HIF«x, targeting
it to the ubiquitin—proteasome degradation machinery
(Fig. 1b). This hydroxylation requires oxygen and o-
ketoglutarate and produces carbon dioxide and succinate.
For that reason, the accumulated succinate in SDH-
deficient cells impairs PHDs activity and leads to HIFx
stabilization under normoxic conditions, a phenomenon
that has been defined as pseudohypoxia [15]. Importantly,
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Fig. 1 The biochemistry and A
pathophysiology of oncometa-
bolites accumulation in cancer. a
Fumarate and succinate accu-
mulate in the mitochondria and
in the cytosol of cells expressing
loss-of-function mutants of SDH
or FH. 2-Hydroxyglutarate is
accumulated as a consequence
of neomorphic mutations in
IDHI in the cytosol and IDH2
in the mitochondria.

b Biochemical effects of the
accumulated oncometabolites in
the cell. The effects are color
coded: red for succinate, blue
for fumarate, and green for
2HG. The accumulation of
succinate impairs the enzymatic
activity of several

fumarate ..

succinate

mitochondrion

pyruvate - ---- glucose

AcCoA
OAA

malate

~-@ FH
fumarate

citrat citrate

isocitrate

iDH2/ | 1K1y NADP
/ I(NADPH

akKG
NADPH

TCA cycle isocitrate
|DH3/

+

- @ SDH

succinate akKG

succinyl-CoA IDH{R132x

NADP+

2HG

aKG-dependent dioxygenases:
JMJd3, which regulates chro-
matin structure; PHD3, which is
involved in promoting neuronal
apoptosis in response to NGF
withdrawal; and PHD2, which
primarily regulates HIF «
stability. Similarly, fumarate
inhibits PHD2 enzymatic
activity causing HIF stabiliza-
tion. 2HG accumulation impairs
DNA demethylation via the
inhibition of the aKG-dependent
dioxygenase TET2 and

affects hematopoietic cells

hematopoietic differentiation

2
OHsuccin:f\te aKG CO, . CI)(ZG
\ \ succinate a
*-5mC \\TTZ 5mC X JMJ3 ,CHS
T ’ N\ histone==——=""histone

\

epigenetic change

co 0

' HIF
HRE genes &= HIFoL?

nucleus

differentiation : o cytosol
i |—1| . 0(KG succinate proteasome
JUN a
I 2 2
- J

the metabolic inhibition of PHDs is not unique to
succinate as fumarate, which is accumulated in HLRCC
cells, was also demonstrated to be a potent inhibitor of
PHDs [34]. The accumulation of succinate and fumarate in
the relevant cancer tissues as well as the accompanied
PHD inhibition and pseudohypoxia was confirmed both in
HLRCC leiomyomas and PGL tissues by Pollard et al.
[35]. The biochemical characterization of the inhibition of
PHDs by succinate and fumarate, as opposed to other TCA
cycle metabolites, has been reported [36]. Furthermore,
other biochemical studies showed that PHD activity is
competitively inhibited by succinate or fumarate and,
therefore, the ratio between a-ketoglutarate and succinate
(or fumarate) rather than the absolute concentrations of
these metabolites dictates PHD activity. In line with this,

plasma membrane

MacKenzie et al. used cell-permeable esters of
a-ketoglutarate to reactivate PHDs enzymatic activity
and thus alleviated pseudohypoxia caused by the accumu-
lation of succinate or fumarate [37, 38].

An alternative model that links SDH and FH deficiency
with PHD inactivation and HIF stabilization was proposed:
Relying on a previously characterized role of respiratory
chain-derived reactive oxygen species (ROS) as signals for
HIF stabilization under hypoxia [39, 40], Guzy and
colleagues showed that cells expressing mutant SDHB,
but not mutant SDHA, are characterized by significant
mitochondrial ROS production required, together with
succinate, for a complete inactivation of PHDs [41].
Interestingly, these results fit better with earlier observa-
tions when SDHA was the only subunit of SDH that
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appeared not to be associated with hPGL. However, as
discussed above, SDHA was recently added to the list of
tumor suppressors in hPGL [11]. Nevertheless, it is still
plausible that ROS accumulation in some SDH-mutated
tumors may have an additive modifying role that affects the
type and severity of the tumor (SDHB mutations are
associated with RCC and more aggressive PCC). Of note,
ROS accumulation was observed also in FH-deficient cells
though the underlining mechanism appeared to be different.
In fact, Sudarshan et al. demonstrated that in an FH-
deficient cell line, defects in oxidative phosphorylation
cause upregulation of glycolysis that initiates ROS
generation by NADPH oxidase [42]. Unfortunately,
conflicting findings do not allow for defining a clear
biological picture of the role of ROS in these tumors. For
instance, the findings of Selak and colleagues could not
support the need of ROS for HIF«x stabilization in SDH-
deficient cells [43]. In addition, the reduction of fumarate
levels, without the recovery of mitochondrial function
obtained by reconstituting a cytosolic-confined FH into
FH-deficient cells, was found to be sufficient for reac-
tivating PHDs and for HIFx degradation [44].

Recently, the relevance of succinate as a regulator of HIF
stability was extended also to hypoxia. Puisségur and
colleagues found that the HIF-dependent expression of
microRNA-210 (miR-210) targets several subunits of the
respiratory chain and, importantly, SDHD, which causes
accumulation of succinate [45]. This amplification loop
suggests that the stabilization of HIF & under hypoxia could
be modulated not only by the concentration of oxygen but
also by the concentration of succinate allowing a further
control of PHDs activity.

Is HIF the only relevant target?

While the key function of PHDs is to hydroxylate and
destabilize HIFx, it is likely that other substrates of PHDs
are playing roles in the response to hypoxia. Therefore,
when PHDs are inhibited by succinate or fumarate, the
inhibition of hydroxylation of these PHD substrates may
contribute to tumorigenesis regardless of HIF activity. Two
studies proposed a novel, HIF-independent role of PHD3 in
neuronal apoptosis [46, 47]. These investigators found that
apoptosis of neuronal or neuroendocrine-derived cells (like
PGL and PCC) at early stages of development requires
PHD3 activity (Fig. 1b). In this scenario, the accumulation
of succinate due to SDH deficiency would impair PHD3-
dependent apoptosis, therefore setting the stage for their
neoplastic transformation. These findings also help to
explain why SDH mutations predispose patients to PGL
and PCC. However, direct PHD3 targets that may mediate
the apoptotic response have not been identified. A similar
PHD3-dependent developmental defect in FH-deficient
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cells has not been reported. In contrast, a genome-wide
transcriptomic analysis revealed that FH-deficient leiomyo-
mas are characterized by a significant downregulation of the
serum response factor (SRF) and its target genes FOS and
JUNRB [48]. This genetic signature suggests that the cause of
leiomyoma formation might be a defective SRF-dependent
smooth muscle differentiation. However, whether PHDs
could have a role in SRF-mediated differentiation is not
known.

So far, succinate and fumarate have been depicted as
mitochondria-to-cytosol signaling molecules that activate
the HIF pathway via the inactivation of PHDs. However,
the activity of other enzymes could be affected by the
accumulation of TCA cycle metabolites. In particular, all
members of the «-ketoglutarate-dependent dioxygenase
family [49] may be inhibited by succinate or fumarate
since similar to PHDs, their enzymatic activity requires
o-ketoglutarate and they produce succinate. Among the
members of this family, the jumonji domain- containing
(JMIC) histone demethylases have been recently investigated.
These enzymes remove the methyl marks on the arginine
and lysine residues of histones after performing an o-
ketoglutarate- and oxygen-dependent hydroxylation. It was
shown that succinate accumulation in SDH-deficient cells
impairs the activity of the histone demethylase JMJD3,
leading to changes in the methylation mark of histone H3 on
arginine 27 (Fig. 1b) [50]. Similarly, in a yeast model of
paraganglioma, another histone demethylase, Jhdl, was
found to be inhibited both in vitro and in vivo by succinate
accumulation; importantly, this effect was reverted by the
addition of exogenous, cell-permeable o-ketoglutarate[51].

Histone methylation is an important epigenetic mod-
ification which has been demonstrated to regulate gene
expression by modulating chromatin structure and the
binding of transcription factors [52]. Interestingly, it was
recently shown that HIF1 promotes the transcription of
two JMJ domain containing proteins, JMJDIA and
JMID2B [53, 54], possibly to facilitate the binding of
HIF to the promoter regions of other HIF target genes.
These findings might suggest that HIF transcriptional
activity requires chromatin remodeling via the activity of
these «o-ketoglutarate-dependent enzymes. Importantly,
unlike PHDs, these dioxygenases retain their activity even
at low oxygen levels [55]. It is therefore likely that the
presence of inhibiting concentrations of succinate or
fumarate may modulate transcriptional activity of HIF
and hence, may be responsible for transcriptional differ-
ences between hypoxic and pseudohypoxic conditions.
Therefore, it is tempting to speculate that succinate and
fumarate could act not only as mitochondria-to-cytosol but
also as mitochondria-to-nucleus signaling units with the
power to regulate gene expression by regulating chromatin
structure.
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Extracellular roles of succinate and fumarate: ways to help
tumorigenesis?

Beyond the inhibition of «-ketoglutarate-dependent dioxyge-
nases, a potentially additional role in the pathophysiology of
TCA cycle metabolites was recently identified. In 2004, it was
found that two orphan G protein-coupled receptor, namely
GPR99 and GPR91, members of the purinergic P2 receptors
family, were not activated by nucleotides, as initially
proposed, but were actually responsive to extracellular oc-
ketoglutarate and succinate, respectively. These studies
suggest that o-ketoglutarate and succinate can have a
hormone-like role; they can be secreted into the bloodstream
and convey specific signals to distal cells and tissues. In
particular, it was shown that the stimulation of the GPR91
receptor by succinate triggers the secretion of renin from the
kidney and leads to increased blood pressure [56]. More
recent reports have shown that several other organs such as
liver, adipose tissue, and the retina could sense succinate
accumulation via the membrane receptor GRP91 (see [57]
for a review). Interestingly, in ischemic retina, succinate
activates GPR91 in retinal ganglion cells thus promoting
vascular endothelial growth factor secretion and local neo-
vascularization which is HIF- independent [58]. This impor-
tant observation may suggest that in addition to the PHD-HIF
pathway, some of the metabolic and pro-angiogenic effects of
succinate in hPGL may actually depend on, or synergize
with, the paracrine activation of the succinate receptor.
Intriguingly, fumarate was found to have a role in regulating
blood pressure and its accumulation in the blood correlates
with hypertension in a salt-sensitive rat model [59]. It is
tempting to speculate that the hormone-like physiological
roles of succinate and potentially of fumarate may comple-
ment their intracellular metabolic signaling effects and further
alter tumor microenvironment to support tumorigenesis.

IDH: a tumor suppressor or an oncogene?

In 2008, a genome-wide screening revealed somatic
mutations of the TCA cycle enzyme IDHI1 in low grade
gliomas and secondary glioblastomas [24]. Just a few
months after this seminal discovery, a large parallel DNA
sequencing study found /DHI mutations in AML patients
[60]. Interestingly, subsequent studies demonstrated that
also IDH2 is mutated in AML and glioma patients [26, 61,
62]. IDH1 and IDH2 are closely related NADP-linked
enzymes, while IDH3 is NAD-linked (Fig. 1a). IDH2 and
IDH3 are mitochondrial enzymes that function in the TCA
cycle while IDHI is located in the cytosol and peroxisomes,
where it supplies NADPH-reducing equivalents for bio-
synthetic and other reactions [5]. It should be stressed that
the canonical NAD-dependent reaction in the TCA cycle is

a specific task of IDH3 which did not appear to be mutated
in these cancers. As discussed above, the pattern of
mutations (always at the same amino acid residue) and the
heterozygosity state of the tumors (no loss of the wild-type
allele) suggested an oncogenic, rather than a tumor
suppressive role for /DH mutants. An unbiased metabolo-
mic analysis of mutant /DH-overexpressing cells found a
striking intracellular accumulation of a poorly characterized
metabolite, 2HG. In order to explain this finding, Dang et
al. demonstrated that the mutant IDHI acquires a neo-
morphic catalytic activity that allows a NADPH-dependent
reduction of o-ketoglutarate into 2HG [27]. Importantly,
this metabolite is significantly accumulated in glioma cells
and in the blood of AML patients and therefore, despite its
unclear role in tumorigenesis, the definition “oncometabo-
lite” was coined by Dang et al. to portray the potential
oncogenic contribution of 2HG (see [5] for discussion).
Other than the obvious genetic and biochemical differ-
ences between the loss of SDH and FH functions to the
gain of IDH functions in tumors, several biological differ-
ences suggested that /DH mutations in cancer significantly
differ from the genuine TCA cycle dysfunctions. First, as
anticipated above, IDH1 and IDH2 appear to be mostly
involved in the regulation of the NADP/NADPH ratio in
the mitochondria and the cytosol [5] rather than in NADH
production, a primary role of the TCA cycle which is
executed by IDH3. Of note, the limited roles of IDH1 and
IDH2 in the TCA cycle were substantiated by the absence
of significant changes in the levels of TCA cycle
metabolites in [DHI/IDH2-mutated cells [27, 62]. In
addition, despite the fact that 2HG was proposed to act,
similarly to succinate and fumarate, as an inhibitor of PHDs
[63, 64], the presence of a HIF signature in /DH mutant
cells and in gliomas is still debated. For the above reasons,
while there may be some overlapping roles of 2HG, succinate,
and fumarate, the underlining biochemical features which
contribute to tumorigenesis in IDH and FH/SDH mutant cells
seem to differ. A recent study in AML demonstrated genetic
redundancy (mutual exclusiveness) between /DH mutations
and TET? deletions [65]. Importantly, TET2 is a recently
discovered DNA demethylase which is also an «-
ketoglutarate-dependent dioxygenase [66]. Indeed, Figueroa
et al. demonstrated that 2HG can inhibit the DNA
methylation status of TET2-expressing cells (Fig. 1b).

Summary

So far, alterations in three enzymatic reactions have been
reported to possess genetically causal links to cancer
formation: (1) Germline mutations in FH are associated
with HLRCC (leiomyomas and RCC) and potentially with
other tumors. (2) Both germline and somatic mutations in
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any of the four subunits of SDH (SDHA, SDHB, SDHC,
SDHD) or the SDH assembly factor SDHAF2 are
associated with PGL, PCC, and/or RCC. (3) Somatic
mutations in either IDHI or IDH2 are associated with
gliomas or AML. While the FH and SDH mutations are
typically loss-of-function mutations and the genes in-
volved behave genetically like tumor suppressors, the IDH
mutations lead to a gain of a new NADPH-dependent oc-
ketoglutarate-reductase activity which generates 2HG.
Considering the fact that one wild-type IDH allele is
retained in tumors with /DH mutations, and no significant
changes in «-ketoglutarate or isocitrate levels were
observed in these tumors, it is safe to propose that
IDHI/IDH2 mutations are oncogenic gain-of-function
mutations.

In all three types of these genetic-metabolic events, it
appears that the underlying mechanism of tumorigenesis
involved the accumulation of metabolites that convey
oncogenic signals (oncometabolites). Although part of this
oncogenic activity might be attributed to hormone-like
effects of these molecules, strong evidence indicates that
the principal oncometabolic activities of succinate, fumarate
and 2HG are related to the inhibition of the «-ketoglutarate-
dependent dioxygenases, alas with different specificities to
different enzymes and therefore, with different biochemical
and biological consequences. More generally, these
observations reveal a dynamic and bidirectional interaction
between the metabolic status of the cell and its genetic profile
and propose that small metabolites may be novel and
unexplored signaling units.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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