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Cerebral hemodynamic response 
during the resuscitation period 
after hypoxic‑ischemic insult 
predicts brain injury on day 5 
after insult in newborn piglets
Yasuhiro Nakao1, Shinji Nakamura1*, Yinmon Htun1, Tsutomu Mitsuie1, Kosuke Koyano2, 
Kenichi Ohta3, Yukihiko Konishi1, Takanori Miki3, Masaki Ueno4 & Takashi Kusaka1

Perinatal hypoxic-ischemic brain injury of neonates remains a significant problem worldwide. 
During the resuscitation period, changes in cerebral hemoglobin oxygen saturation (ScO2) have 
been identified by near-infrared spectroscopy (NIRS). However, in asphyxiated neonates, the 
relationship between these changes and brain injury is not known. Three-wavelength near-infrared 
time-resolved spectroscopy, an advanced technology for NIRS, allows for the estimation of ScO2 
and cerebral blood volume (CBV). Here, we studied changes in ScO2 and CBV during the resuscitation 
period after hypoxic-ischemic insult and the relationship between these changes after insult and 
histopathological brain injuries on day 5 after insult using an asphyxiated piglet model. Of 36 newborn 
piglets subjected to hypoxic-ischemic insult, 29 were analyzed. ScO2 and CBV were measured 0, 5, 
10, 15, and 30 min after the insult. Brain tissue was histologically evaluated on day 5. ScO2 and CBV 
increased immediately after the insult, reached a peak, and then maintained a consistent value. The 
increase in CBV 5 to 30 min after the insult was significantly correlated with histopathological injury 
scores. However, there was no correlation with ScO2. In conclusion, an increase in CBV within 30 min 
after hypoxic-ischemic insult reflects the histopathological brain injury on day 5 after insult in a piglet 
model.

Perinatal brain injury in term newborn infants mainly results from hypoxic-ischemic encephalopathy (HIE), 
which is a significant cause of global pediatric mortality and disability, despite the introduction of therapeutic 
hypothermia1–3. During the postnatal resuscitation period, cerebral oxygenation and hemodynamics should 
be assessed because the changes in these parameters during HIE may be critical determinants of brain injury 
severity4. However, the neonatal resuscitation guidelines recommend routine monitoring of heart rate (HR) 
and oxygen saturation by pulse oximetry/electrocardiography, which assesses only systemic oxygenation and 
circulation, and there is no indication for assessment of cerebral hemodynamics5–7.

Near-infrared spectroscopy (NIRS) allows the noninvasive continuous measurement of cerebral hemoglobin 
(Hb), cerebral hemoglobin oxygen saturation (ScO2), or the tissue oxygen index at the bedside. Furthermore, 
three-wavelength near-infrared time-resolved spectroscopy (TRS) is an advanced NIRS mode for measuring not 
only ScO2, but also the absolute value of cerebral blood volume (CBV), calculated from total Hb. CBV measure-
ments using TRS have been used to monitor changes in cerebral hemodynamics after birth8–10.

CBV measurements are also useful in the assessment of brain injury after HIE. We reported that, in HIE 
neonates, high CBV values at 6 h after birth indicated adverse outcomes10. Moreover, in an asphyxiated piglet 
model, we found that the CBV increment 1–6 h after hypoxic-ischemic (HI) insult is associated with a poor out-
come after insult11. In that and another study12, we also reported a CBV increment within 30 min after HI insult. 
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Moreover, the CBV increment varied according to the degree of the insult. However, these previous studies did 
not address the relationship between the degree of the CBV increment within 30 min and the histopathological 
outcome. In clinical practice, the first 30 min after birth is considered the “critical period” for neonatal resusci-
tation. In the guidelines on neonatal resuscitation, if all resuscitation steps are effectively completed and there 
is no cardiac response by 20 min, a change in direction of care should be discussed with the team and family13. 
Therefore, in clinical practice, the assessment of brain injury at 20–30 min after birth was considered important 
for subsequent treatment decisions. If we can show that the changes in CBV in the piglet in the first 30 min after 
HI insult are predictive of brain injury severity, NIRS could be used in clinical practice to measure CBV values 
during the resuscitation of HIE neonates to assess insult severity. Hence, evaluation of the severity of brain injury 
using TRS during this resuscitation period will enable the earlier initiation of brain protective treatments such 
as therapeutic hypothermia and other adjunct therapies and will thus help to improve the prognosis of HIE.

In this study, using an asphyxiated piglet model, we addressed whether changes in CBV within the 30 min 
“resuscitation period” can indicate the severity of histopathological brain injuries on day 5.

Results
We performed HI insult in 36 piglets. The piglets were allocated to three groups based on the results of histo-
pathological scores. Piglets with a total histopathological score of zero were classified as undamaged. Piglets 
that did not survive for 5 days and died en route were classified as dead. Piglets that survived for 5 days and had 
histopathological damage to the brain were classified as damaged. There were 4 undamaged piglets, 19 damaged 
piglets, and 13 dead piglets. Two of the four undamaged piglets were excluded because the first had severe anemia 
(due to bleeding from the umbilical cord before preparation) and the second had instability in the TRS reading. 
Of the 19 damaged piglets, 2 were excluded due to either a lack of histological (HIST) data or TRS data. Of the 13 
dead piglets, three were excluded because the first and the second had severe anemia (due to bleeding from the 
umbilical cord before preparation) and the third had respiratory failure with aspiration. Of the 10 dead piglets 
analyzed, eight died within 1 day after the HI insult (including one that died at 4 h post-extubation) and two 
piglets died on day 2 after the insult. The cause of death in all piglets was severe seizure. The piglets in this study 
were not euthanized but rather their deaths were sudden or accidental. Therefore, when we examined them, the 
piglets had been dead for some time, making brain perfusion impossible. For these reasons, we analyzed the 
remaining 29 piglets.

Blood biochemistry.  Blood pH, partial pressure of oxygen (PaO2), partial pressure of carbon dioxide 
(PaCO2), and base excess were markedly lower after HI insult than at baseline, whereas blood glucose, lactate, 
and Hb levels were markedly increased (Table 1).

Physiological status of the piglets.  Figure  1 shows representative examples of the changes in CBV 
before and after the HI insult in dead, damaged, and undamaged piglets. The changes in CBV after HI insult 
reflected the outcome. In the dead piglet group, CBV increased and maintained its value until 30 min after the 
insult. It then gradually decreased but increased again from around 1 h after the insult (Fig. 1A). In the damaged 
piglet group, CBV increased once after the insult and then decreased before 30 min and did not increase again 
(Fig. 1B). In the undamaged piglet group, CBV increased slightly after the insult but quickly decreased (Fig. 1C).

Figure 2 shows the time course of the HR, mean arterial pressure (MAP), CBV, and ScO2 changes in the first 
30 min after HI insult in all piglets. After initial resuscitation, HR values immediately increased and peaked 
within a few minutes or stayed the same, followed by an increase about 20 min after insult (Fig. 2A). MAP 
also increased immediately and peaked within 10 min, followed by a gradual decrease (Fig. 2B). For cerebral 
hemodynamic changes, ScO2 and CBV immediately increased after HI insult, before peaking and maintaining 
consistently high values (Fig. 2C,D).

Piglet characteristics and histological data and scoring.  Table 2 shows the physiological character-
istics, outcomes, and HIST scores of each piglet. Two piglets had no histological damage, 10 piglets died, and 
the remaining 17 piglets survived and had histological damage. All of the dead piglets had seizures but not all of 

Table 1.   Measurements of blood gas at baseline and the end of HI insult (n = 29). Data are presented as mean 
(standard deviation). Blood samples were taken about 2 h before HI insult and at the end of the insult. There 
was one missing data point for PaO2. HI, hypoxic-ischemic; pH, arterial pH; PaO2, arterial partial pressure of 
oxygen; PaCO2, arterial partial pressure of carbon dioxide; BE, base excess; Hb, hemoglobin.

Baseline End of HI insult p value

pH 7.46 (0.06) 6.89 (0.10)  < 0.0001

PaO2 (mmHg) 103 (22) 15.7 (4.7)  < 0.0001

PaCO2 (mmHg) 42.1 (6.0) 31.7 (9.9)  < 0.0001

BE (mmol/mL) 5.35 (2.4)  − 25.5 (2.7)  < 0.0001

Glucose (mg/dL) 153 (33) 225 (90)  < 0.0001

Lactate (mg/dL) 19.4 (15) 211 (26)  < 0.0001

Hb (g/dL) 10.2 (1.9) 10.7 (2.0)  < 0.0001
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those who had seizures died. No seizures were observed in the undamaged piglets. In the 17 damaged piglets, 
there was no significant relationship between the presence or absence of seizures and the HIST score in any part 
of the brain.

Changes in CBV after HI insult.  Absolute CBV varied substantially among individual piglets (Fig. 2D). 
As in the typical case shown in Fig. 1, we considered that the pattern of the changes in CBV within 30 min 
reflected the outcome. However, we concluded that outcome could not be determined based on the CBV pattern 
alone because most of the temporal changes in CBV in each piglet overlapped, regardless of the group (Fig. 3). 
Thus, we examined whether the degree of the change in CBV, rather than the pattern, reflected the outcome: 
we calculated the differences in CBV from the end of the insult and 5 min after the HI insult to each time point 
until 30 min and investigated the relationship between these differences in CBV and the histological brain injury 
using the HIST score.

Relationship of the changes in HR, MAP, ScO2, and CBV with HIST score.  Table  3 shows the 
relationship of the changes in CBV and ScO2 5, 10, 15, and 30 min after HI insult with the HIST scores of the 
respective brain regions (white matter [WM], gray matter [GM], hippocampus [HIPP], and cerebellum [CERE]) 
on day 5 after insult. At 10 and 15 min, CBV was significantly correlated with HIST scores in the WM, GM, and 
HIPP. Furthermore, at 30 min, there was a significant correlation of CBV with HIST scores in the WM, GM, 
HIPP, and CERE. Table 4 shows the relationship between the changes in CBV, ScO2, HR, and MAP 10, 15, and 
30 min from 5 min after HI insult and the HIST scores of the respective brain regions on day 5 after insult. At 5 to 
10, 5 to 15 min, and 5 to 30 min, CBV was significantly correlated with HIST scores in the WM, GM, HIPP, and 
CERE. In other words, a larger increase in CBV indicated more severe brain injury. As shown in the tables, these 
correlations tended to become stronger over time. In addition, in piglets with an increased CBV, CBV remained 
higher in those with worse histopathological damage and showed a tendency for a decrease in those with less 

Figure 1.   Typical pattern of changes in CBV before and after HI insult in dead, damaged, and undamaged 
piglets. (A) Typical pattern of changes in CBV in a dead piglet. CBV increased and maintained its value until 
30 min after the insult. It then gradually decreased but increased again from around 1 h after the insult. (B) 
Typical pattern of changes in CBV in a damaged piglet. CBV increased once after the insult and then decreased 
before 30 min and did not increase again. (C) Typical pattern of changes in CBV in an undamaged piglet. CBV 
increased slightly after the insult but quickly decreased. HI hypoxic-ischemic, CBV cerebral blood volume.
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damage. The same analysis was performed for changes in HR, MAP, and ScO2. For MAP, there was a significant 
correlation with the HIST scores in the WM at 5 to 10 min and 5 to 30 min and in the CERE at 5 to 10 min and 5 
to 15 min; for ScO2, the HIST scores in the HIPP at 5 to 30 min exhibited a significant correlation (Tables 3 and 
4). In addition, the same analysis was performed excluding dead piglets (n = 19) (Tables 5 and 6). These results 
showed that the correlation between CBV and HIST scores was similar to that in Tables 3 and 4. However, for 
ScO2, a correlation was observed for the changes in ScO2 from 5 to 30 min, except in the GM. In the dead piglet 
group (n = 10), there was no correlation of the CBV, ScO2, HR, and MAP with HIST scores.

Discussion
Here, we examined the changes in CBV and ScO2 in the first 30 min, considered the critical resuscitation period, 
after HI insult and the relationship between these changes and the histological brain injury on day 5 after insult. 
We found that the changes in CBV from the endpoint of the HI insult and 5 min after the insult to 30 min after 
the insult were correlated with the histopathological brain injury on day 5 after insult: the greater the increase 
in CBV, the more severe the histological brain injury.

An increase in CBV in the first 30 min after HI insult, considered the earlier period and reflective of transient 
cerebral hyperemia, may be caused by vasodilatation due to the accumulation of lactic acid and other vasoactive 
substances such as ADP and AMP during ischemia14–16. We previously reported that the CBV increase 6 and 12 h 

Figure 2.   Time course of HR (A), MAP (B), ScO2 (C), and CBV(D) in the first 30 min after HI insult. CBV 
cerebral blood volume, HI hypoxic-ischemic, HR heart rate, MAP mean arterial pressure, ScO2 cerebral 
hemoglobin oxygen saturation.
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Table 2.   Piglet characteristics and histological data and scoring (n = 29). M, male; F, female; BW, body weight; 
WM, white matter; GM, gray matter; HIPP, hippocampus; CERE, cerebellum.

Sex BW (g) Presence of clinical seizures Outcome WM GM HIPP CERE

1 M 1400  −  Undamaged 0.0 0.0 0.0 0.0

2 M 1760  −  Undamaged 0.0 0.0 0.0 0.0

3 F 2100  +  Damaged 3.8 3.8 3.2 0.0

4 F 1720  −  Damaged 2.2 1.9 1.2 0.4

5 M 1900  −  Damaged 3.6 3.4 3.8 0.0

6 F 1800  +  Damaged 3.8 3.8 4.0 2.8

7 F 1800  +  Damaged 2.6 2.0 1.0 0.0

8 M 1630  −  Damaged 3.6 3.6 3.4 0.6

9 M 2000  −  Damaged 3.6 3.6 4.0 2.0

10 M 1640  −  Damaged 3.0 3.3 3.8 1.8

11 M 1670  +  Damaged 4.0 4.0 4.0 2.0

12 M 1900  −  Damaged 3.0 1.0 2.0 0.0

13 M 1910  +  Damaged 4.0 3.0 4.0 1.0

14 M 1800  +  Damaged 0.0 1.0 0.0 0.0

15 F 1780  −  Damaged 3.8 4.0 4.0 0.0

16 F 1950  −  Damaged 1.0 3.0 3.0 0.0

17 F 2000  +  Damaged 3.0 4.0 3.0 3.0

18 M 1700  −  Damaged 1.0 3.0 1.0 1.0

19 F 1760  +  Damaged 1.3 3.4 1.2 1.2

20 M 2000  +  Dead 4.0 4.0 4.0 4.0

21 F 1850  +  Dead 4.0 4.0 4.0 4.0

22 M 1600  +  Dead 4.0 4.0 4.0 4.0

23 F 1810  +  Dead 4.0 4.0 4.0 4.0

24 M 1790  +  Dead 4.0 4.0 4.0 4.0

25 F 1710  +  Dead 4.0 4.0 4.0 4.0

26 F 1870  +  Dead 4.0 4.0 4.0 4.0

27 M 1700  +  Dead 4.0 4.0 4.0 4.0

28 M 1810  +  Dead 4.0 4.0 4.0 4.0

29 M 1750  +  Dead 4.0 4.0 4.0 4.0

Figure 3.   The difference in CBV from after the HI insult to each time point (A) and from 5 min after the insult 
to each time point (B). Both immediately after HI insult and 5 min after insult, most of the temporal changes in 
CBV in each piglet overlapped, regardless of the group. CBV cerebral blood volume, HI hypoxic-ischemic.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13157  | https://doi.org/10.1038/s41598-022-16625-1

www.nature.com/scientificreports/

after HI insult reflected severe brain injury in newborn piglets17, as in this study, and Marks et al. reported that a 
larger increase in cerebral total hemoglobin (totalHb) within 6 h after HI insult was associated with more severe 
cerebral injury18. These results indicate that the CBV increase after HI insult reflects higher cerebral blood flow 
(CBF) due to impaired cerebral autoregulation4 and that piglets with impaired cerebral autoregulation cannot 
maintain adequate CBF to meet oxygen demand in the brain, culminating in permanent brain injury.

Table 3.   Correlation coefficients between changes in CBV and ScO2 from the endpoint of HI insult and HIST 
scores on day 5 in different brain regions in all piglets (n = 29). 0–5 min, 0–10 min, 0–15 min, and 0–30 min 
indicate changes in CBV and ScO2 from the endpoint of HI insult to 5 min, 10 min, 15 min, and 30 min, 
respectively. CBV, cerebral blood volume; ScO2, cerebral hemoglobin oxygen saturation; HI, hypoxic-ischemic; 
HIST, histological; WM, white matter; GM, gray matter; HIPP, hippocampus; CERE, cerebellum. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001; Spearman’s rank correlation coefficient was used for nonparametric data.

0–5 min 0–10 min 0–15 min 0–30 min

r p r p r p r p

CBV

WM 0.525 0.0034** 0.616 0.0004*** 0.562 0.0015** 0.713  < 0.0001****

GM 0.367 0.0503 0.469 0.0103* 0.396 0.0335* 0.624 0.0003***

HIPP 0.338 0.0729 0.448 0.0147* 0.381 0.0417* 0.573 0.0012**

CERE 0.294 0.1212 0.380 0.0419* 0.328 0.0826 0.502 0.0055**

ScO2

GM − 0.064 0.7402 − 0.101 0.6029 − 0.089 0.6456 − 0.000 0.9989

WM − 0.191 0.3198 − 0.254 0.1843 − 0.284 0.1349 − 0.170 0.3774

HIPP − 0.093 0.6296 − 0.139 0.4733 − 0.146 0.4497 − 0.013 0.9477

CERE − 0.019 0.9235 − 0.094 0.6276 − 0.124 0.5210 − 0.026 0.8922

Table 4.   Correlation coefficients between changes in CBV, ScO2, HR, and MAP from 5 min after the endpoint 
of HI insult and HIST scores on day 5 in different brain regions in all piglets (n = 29). 5–10 min, 5–15 min, 
and 5–30 min indicate changes in CBV, ScO2, HR, and MAP from 5 min after the endpoint of HI insult to 
10 min, 15 min, and 30 min, respectively. For HR and MAP, six piglets were missing data. CBV, cerebral 
blood volume; ScO2, cerebral hemoglobin oxygen saturation; HR, heart rate; MAP, mean arterial pressure; 
HI, hypoxic-ischemic; HIST, histological; WM, white matter; GM, gray matter; HIPP, hippocampus; CERE, 
cerebellum. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; Spearman’s rank correlation coefficient was used 
for nonparametric data.

5–10 min 5–15 min 5–30 min

r p r p r p

CBV

WM 0.524 0.0036** 0.519 0.0039** 0.686  < 0.0001****

GM 0.458 0.0126* 0.409 0.0275* 0.645 0.0002***

HIPP 0.416 0.0247* 0.377 0.0441* 0.580 0.0009***

CERE 0.428 0.0207* 0.407 0.0284* 0.569 0.0013**

ScO2

WM 0.042 0.8274 0.193 0.3150 0.352 0.0613

GM − 0.037 0.8474 0.100 0.6074 0.277 0.1462

HIPP 0.038 0.8439 0.188 0.3294 0.439 0.0173*

CERE − 0.120 0.5341 0.047 0.8107 0.263 0.1674

HR

WM − 0.124 0.5824 − 0.066 0.7696 0.070 0.7569

GM − 0.041 0.8571 0.116 0.6069 0.236 0.2901

HIPP − 0.055 0.8089 0.057 0.8026 0.169 0.4515

CERE − 0.099 0.6609 − 0.056 0.8035 0.064 0.7775

MAP

WM − 0.433 0.0443* − 0.333 0.1304 − 0.522 0.0126*

GM − 0.224 0.3169 − 0.128 0.5711 − 0.335 0.1270

HIPP − 0.232 0.2998 − 0.135 0.5503 − 0.400 0.0650

CERE − 0.608 0.0027** − 0.490 0.0208* − 0.345 0.1156
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The CBV responses identified here may reflect the cerebral hemodynamic conditions during HI insult. HI 
insults can be divided into an “initial compensation period” and a subsequent progressive “HI decompensation 
period” and culminate in profound systemic hypotension with cerebral hypoperfusion19,20. When the initial 
compensation period is before the initial resuscitation, CBF can be maintained without severe brain hypoper-
fusion during the insult and cerebral autoregulation remains intact. In this case, although the systemic blood 
pressure and HR rise immediately after the initial resuscitation, the CBF remains stable owing to unimpaired 

Table 5.   Correlation coefficients between changes in CBV and ScO2 from the endpoint of HI insult and 
HIST scores on day 5 in different brain regions after the exclusion of dead piglets (n = 19). 0–5 min, 0–10 min, 
0–15 min, and 0–30 min indicate changes in CBV and ScO2 from the endpoint of HI insult to 5 min, 10 min, 
15 min, and 30 min, respectively. CBV, cerebral blood volume; ScO2, cerebral hemoglobin oxygen saturation; 
HI, hypoxic-ischemic; HIST, histological; WM, white matter; GM, gray matter; HIPP, hippocampus; CERE, 
cerebellum. *p < 0.05; **p < 0.01; Spearman’s rank correlation coefficient was used for nonparametric data.

0–5 min 0–10 min 0–15 min 0–30 min

r p r p r p r p

CBV

WM 0.524 0.0213* 0.652 0.0025** 0.681 0.0013** 0.686 0.0012**

GM 0.340 0.1544 0.488 0.0339* 0.434 0.0637 0.624 0.0043**

HIPP 0.288 0.2324 0.419 0.0741 0.384 0.1042 0.533 0.0189*

CERE 0.156 0.5238 0.217 0.3717 0.225 0.3552 0.253 0.2970

ScO2

WM − 0.125 0.6095 − 0.127 0.6044 0.034 0.8917 0.032 0.8973

GM − 0.333 0.1637 − 0.372 0.1171 − 0.228 0.3482 − 0.171 0.4832

HIPP − 0.118 0.6302 − 0.116 0.6354 − 0.012 0.9597 0.063 0.7977

CERE − 0.026 0.9159 − 0.090 0.7139 − 0.010 0.9669 0.030 0.9039

Table 6.   Correlation coefficients between changes in CBV, ScO2, HR, and MAP from 5 min after the 
endpoint of HI insult and HIST scores on day 5 in different brain regions after the exclusion of dead piglets 
(n = 19). 5–10 min, 5–15 min, and 5–30 min indicate changes in CBV, ScO2, HR, and MAP from 5 min after 
the endpoint of HI insult to 10 min, 15 min, and 30 min, respectively. For HR and MAP, four piglets were 
missing data. CBV, cerebral blood volume; ScO2, cerebral hemoglobin oxygen saturation; HR, heart rate; MAP, 
mean arterial pressure; HI, hypoxic-ischemic; HIST, histological; WM, white matter; GM, gray matter; HIPP, 
hippocampus; CERE, cerebellum. *p < 0.05; **p < 0.01; Spearman’s rank correlation coefficient was used for 
nonparametric data.

5–10 min 5–15 min 5–30 min

r p r p r p

CBV

WM 0.528 0.0201* 0.619 0.0047** 0.624 0.0043**

GM 0.487 0.0343* 0.455 0.0504 0.627 0.0041**

HIPP 0.382 0.1068 0.368 0.1216 0.519 0.0230*

CERE 0.279 0.2467 0.370 0.1195 0.316 0.1881

ScO2

WM 0.188 0.4413 0.434 0.0635 0.467 0.0441*

GM 0.082 0.7382 0.312 0.1939 0.403 0.0874

HIPP 0.206 0.3976 0.426 0.0689 0.616 0.0050**

CERE − 0.103 0.6747 0.252 0.2988 0.465 0.0448*

HR

WM − 0.171 0.5546 − 0.068 0.8164 − 0.217 0.4508

GM − 0.056 0.8474 0.205 0.4783 0.195 0.5008

HIPP − 0.055 0.8514 0.127 0.6624 0.141 0.6274

CERE − 0.165 0.5682 − 0.054 0.8547 − 0.239 0.4048

MAP

WM − 0.185 0.5231 − 0.227 0.4298 − 0.662 0.0119*

GM 0.287 0.3172 0.245 0.3936 − 0.373 0.1883

HIPP 0.170 0.5590 0.118 0.6835 − 0.401 0.1548

CERE − 0.555 0.0423* − 0.502 0.0697 − 0.268 0.3498
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cerebral autoregulation, leading to less cerebral reperfusion and a lower CBV increase. However, when the HI 
decompensation period is before the initial resuscitation, cerebral autoregulation can be severely impaired. After 
the initial resuscitation, CBF passively rises due to an immediate increase in systemic blood pressure and HR. We 
reported, using the asphyxiated piglet model, that the decrease in CBV during HI insult was correlated with the 
increase in CBV at 1 h after insult12. In addition, fetal lamb studies linked the hypotensive period during severe 
asphyxia with cerebral injury across paradigms, likely because of the close relationship between the maintenance 
of fetal blood pressure during severe asphyxia and changes in brain perfusion19,20.

There have been many reports on ScO2 changes in the earlier period21–24, suggesting the value of cerebral 
oxygenation monitoring for evaluating the oxygen delivery/demand balance. In this animal study, we used TRS 
to measure both CBV and ScO2. However, the changes in ScO2 did not reflect brain injury, as also found for HR 
and MAP. It is unclear why ScO2 showed a consistently high value after a transient increase in the first 30 min after 
HI insult, whereas CBV showed various changes. ScO2 was calculated as the oxyhaemoglobin (oxyHb):totalHb 
ratio. We speculate that, because arterial vasodilation might more strongly increase not only totalHb, but also 
oxyHb in the earlier period with both impaired and intact cerebral autoregulation, its ratio and the ScO2 increase 
might not differ among all piglets.

Although the Neonatal Cardio-Pulmonary Resuscitation (NCPR) guidelines recommend the monitoring of 
HR and arterial oxygen saturation (SpO2) after birth7,13,25,26, these post-birth changes may not always be useful 
for predicting brain injury severity in the clinical setting. NIRS has the potential to enable easy, non-invasive 
monitoring of cerebral hemodynamic changes and assessment of the severity of brain injuries immediately after 
birth compared with other metrics such as HR and SpO2. Furthermore, another important feature of NIRS is 
that, unlike the case with other instruments such as magnetic resonance imaging (MRI) machines, the patient 
does not need to be moved to a different room to use NIRS, which means that resuscitation can continue in the 
delivery room while measurements are being taken, thereby allowing assessment of brain injury while resusci-
tation is performed. Although MRI and electroencephalography (EEG) are useful for predicting brain injury, 
they are difficult to perform during resuscitation. In mature piglets, global hemodynamic parameters are poorly 
correlated with tissue oxygenation/perfusion parameters during asphyxial cardiac arrest and resuscitation27. 
Hence, cerebral hemodynamic parameters such as CBV cannot be replaced with other global hemodynamic 
parameters. The monitoring of CBV changes from immediately after birth in neonates with asphyxia should 
help to differentiate brain damage severity. NIRS helps to explain the cerebral hemodynamics in neonates in the 
postnatal transition period4. In the future, CBV monitoring during the transition period might clarify postnatal 
brain injury severity and boost initial neuroprotective therapies such as therapeutic hypothermia.

In the clinical setting, it is difficult to measure CBV immediately after birth and there is a time lag until CBV 
measurement can be started. This study showed that a CBV increase from 5 min after insult can detect brain 
injury. Monitoring of cerebral oxygenation and hemodynamics in the 30 min after birth, in the earlier period, is 
critical for evaluating the balance of oxygen delivery and demand in the brain. Morimoto et al. and Schwaberger 
et al. reported a decreased CBV in the first 15 min after birth in healthy vaginally delivered neonates8 and in 
those delivered by cesarean section28. Furthermore, Morimoto et al. reported a greater CBV decrement in vaginal 
deliveries than in cesarean sections during the first 15 min after birth in healthy neonates9. Primary damage 
sustained in the earlier period after birth may be estimated by evaluating changes in the cerebral hemodynamic 
and oxygen metabolism early after resuscitation. Hence, an initial diagnosis and treatment for HIE during the 
critical resuscitation period can improve the prognosis for HIE neonates.

There are several limitations to this work. First, our experimental population was small. Furthermore, we 
investigated CBV and ScO2, which can be measured simply and sequentially, but could not examine direct 
parameters related to the cerebral circulation or oxygen metabolism, such as CBF or cerebral metabolism ratio of 
oxygen (CMRO2). We also histopathologically evaluated the brain with hematoxylin and eosin staining alone. An 
additional staining technique should be used to more accurately investigate the brain damage. Changes in CBV 
after HI insult can be used to determine the severity of brain injury. In clinical practice, using TRS, the monitor-
ing of CBV immediately after birth may help to evaluate the severity of the brain injury in neonates with HIE.

Methods
Ethical approval and informed consent.  This study was conducted with the approval of the Kagawa 
University Animal Care and Use Committee (15070-1) and in accordance with Animal Research: Reporting 
In Vivo Experiments (ARRIVE) guidelines. The study was carried out in compliance with the ARRIVE guide-
lines. All methods were carried out in accordance with relevant guidelines and regulations.

Animal preparation.  Thirty-six newborn piglets (22 males, 14 females; body weight, 1400–2100 g) were 
anaesthetized and prepared for surgery. They were born within 24 h after the mother went into labor and at term 
gestation (term piglets have a gestational age of 16 weeks). Prior to the start of the experimental procedures, 
the piglets were placed under a radiant warmer and briefly observed for activity and alertness. Anesthesia was 
induced via inhalation of 1–2% isoflurane (Forane® inhalant liquid; Abbott Co., Tokyo, Japan) with the use of a 
facemask. Each piglet was intubated and mechanically ventilated using an infant ventilator. The umbilical vein 
and artery were cannulated with a 3- or 4-Fr neonatal umbilical catheter (Atom Indwelling Feeding Tube for 
Infants; Atom Medical Co., Tokyo, Japan). The umbilical vein catheter was placed at a site 5 cm deep from the 
incision and the umbilical artery catheter was placed at a site 10 cm deep from the incision for blood pressure 
monitoring and blood sampling, respectively. After cannulation, the piglets were anesthetized with fentanyl 
citrate at an initial dose of 10 μg/kg followed by continuous infusion at 5 μg/kg/h and were paralyzed with pan-
curonium bromide at an initial dose of 100 μg/kg followed by continuous infusion at 100 μg/kg/h. Maintenance 
solution (electrolytes plus 2.7% glucose [KN3B]; Otsuka Pharmaceutical Co., Tokyo, Japan) was continuously 
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infused at 4 mL/kg/h via the umbilical vein (glucose was infused at 2 mg/kg/min). Arterial blood was sampled 
at critical points and when clinically indicated during the experiment. Each piglet was then placed in a copper 
mesh-shielded cage under a radiant warmer to maintain a rectal temperature of 38.0 ± 0.5 °C. Inspired gas was 
prepared by mixing O2 and N2 gases to obtain the required oxygen concentrations. Ventilation was adjusted to 
maintain PaO2 and PaCO2 within their normal ranges. Arterial blood pressures were measured and recorded via 
the umbilical arterial catheter.

Time‑resolved near‑infrared spectroscopy and analysis.  The probes of a portable three-wavelength 
TRS system (TRS-10; Hamamatsu Photonics K.K., Hamamatsu, Japan) were attached to the head of each piglet. 
The light emitter and detector optodes were positioned on the parietal region of each piglet with a 30-mm inter-
optode distance. In the TRS system, a time-correlated single-photon-counting technique is used for detection. 
The concentrations of oxyHb and deoxyhaemoglobin (deoxyHb) were calculated from the absorption coeffi-
cients of oxyHb and deoxyHb, with background absorption assumed to be due only to 85% (by volume) water. 
The total cerebral Hb concentration, ScO2, and CBV were calculated as described previously29–31.

Amplitude‑integrated electroencephalography.  Neural activity was measured by amplitude-inte-
grated electroencephalography (aEEG) (Nicolet One; Cardinal Health, Inc., Dublin, OH). All electrical devices 
and the copper mesh shield were grounded. The signal was displayed on a semi-logarithmic scale at low speed 
(6 cm/h). We conducted measurements every second. Gold-plated electrode needles were placed at the P3 and 
P4 positions, which corresponded to the left and right parietal regions of the head. A maximum amplitude < 5 µV 
was defined as low-amplitude integrated electroencephalography (LAEEG).

Hypoxic‑ischemic insult protocol.  Because the details were reported in our previous studies11,31–33, the 
HI insult protocol is only outlined here. Hypoxia was induced by reducing the inspired oxygen concentration of 
the ventilator to 3%–4% after at least 120 min of stabilization from the initial anesthetic induction. To obtain the 
LAEEG pattern (< 5 μV), the inspired oxygen concentration was reduced further if required; care was taken to 
avoid cardiopulmonary arrest. From the beginning of LAEEG, LAEEG was maintained for 20 min. Fraction of 
inspiratory oxygen (FiO2) was decreased (0.01 decrements) or increased (0.01 increments) during the HI insult 
to maintain LAEEG, HR (> 130 beats/min), and MAP (> 70% of baseline). After LAEEG for 20 min, hypoten-
sion was induced by decreasing FiO2 until MABP was < 70% of the baseline and was maintained for 10 min. 
Consequently, the total LAEEG duration during the insult was 30 min. Hypoxia was terminated by resuscitation 
with 100% oxygen. NaHCO3 was used to correct a base deficit (base excess below − 5.0 mEq/L) to maintain a 
pH of 7.3–7.5. After 10 min of 1.0 FiO2, the ventilator rate and FiO2 were gradually reduced to maintain SpO2 
of 95%–98%.

Posthypoxic‑ischemic insult treatment.  Once the piglets were weaned off the anesthesia and ventilator 
and extubated 7–24 h after HI insult, they were allowed to recover and survive for 5 days in an incubator. They 
were fed 50–100 mL of artificial animal milk via a nasogastric tube every 6 h. The temperature of the incuba-
tor was maintained at 28–32 °C. Seizure presence was recognized clinically as rhythmic pathologic movements 
(cycling) and tonic postures sustained between cycling episodes. If seizures occurred, the piglet was treated 
with intramuscular phenobarbital (20 mg/kg). If seizures persisted, the piglet was treated with two successive 
anticonvulsant doses. If seizures persisted after two successive anticonvulsant doses, the piglet was euthanized.

Histological assessment.  On day 5 after HI insult, each animal’s brain was perfused with 0.9% saline 
and 4% phosphate-buffered paraformaldehyde. The brain tissue was histologically evaluated, and irregu-
larities were graded according to a validated histopathology grading scale for a piglet model of posthypoxic 
encephalopathy11,32,34. Coronal blocks of WM, GM, HIPP, and CERE were embedded in paraffin and cut with a 
microtome at 4 µm. At regular intervals, three sections of each region were examined. For hematoxylin and eosin 
staining, the extent of the damage in each of the four regions was graded in 0.5-unit intervals on a 9-step scale 
that ranged from 0.0 to 4.0 as follows: grade 0, no damage; grade 1, ≤ 10% of the area affected with morphologi-
cal changes including individual necrotic neurons and small patchy, complete or incomplete infarcts; grade 2, 
20–30% of the area affected with partly confluent incomplete or complete infarcts; grade 3, 40–60% of the area 
affected with large confluent complete infarct; and grade 4, > 75% of the area affected with neuronal necrosis in 
the hippocampus and total disintegration of the cortex11,34. In the calculations, we awarded the maximal score 
of 4.0 for each region (cortical WM, 4.0; cortical GM, 4.0; HIPP, 4.0; CERE: 4.0) to the experimental piglets that 
failed to survive for 5 days because of severe seizures35.

Statistical analysis.  We defined the period during which the CBV increased during this critical resuscita-
tion period after insult—from the end of the HI insult to 30 min after the insult—as the “earlier period” and the 
period during which the CBV increased again after the first increment—from 1 to 6 h after the HI insult—as the 
“latent period” (Fig. 1).

The final sample size was 29. Values are expressed as mean ± standard deviation for blood gas data, whereas 
the median with interquartile range is used for histological scores. Spearman’s rank correlation coefficient was 
used for nonparametric data such as the HIST scores, and the Wilcoxon signed-rank test was used for blood gas 
differences between pre- and post-insult effects. A p-value < 0.05 was considered to indicate statistical signifi-
cance. All statistical analyses were performed using GraphPad Prism 7.02 (GraphPad Software, La Jolla, CA).
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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