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Hematopoietic Stem Cells Focus

Analyzing signaling activity and function in
hematopoietic cells
Tobias Kull and Timm Schroeder

Cells constantly sense their environment, allowing the adaption of cell behavior to changing needs. Fine-tuned responses to
complex inputs are computed by signaling pathways, which are wired in complex connected networks. Their activity is highly
context-dependent, dynamic, and heterogeneous even between closely related individual cells. Despite lots of progress, our
understanding of the precise implementation, relevance, and possible manipulation of cellular signaling in health and disease
therefore remains limited. Here, we discuss the requirements, potential, and limitations of the different current technologies
for the analysis of hematopoietic stem and progenitor cell signaling and its effect on cell fates.

Cellular signaling
Cells must adapt their behavior to the needs of the organism.
These needs are always changing, not only during development
and aging, but throughout life even in seemingly homeostatic
conditions. Cells constantly sense their environment through
receptors for different chemical and physical components. These
receptors activate signaling pathways, which activate molecular
target programs initiating the cells’ responses (Fig. 1 A). Relevant
environmental stimuli are highly diverse, complex, and dy-
namic, and cells must be able to compute finely tuned output
responses, both as individual cells and coordinated, as a popu-
lation, from these combined and changing inputs. This response
computation happens at the level of signaling pathways, which
translate the different combinations of inputs into output pro-
grams (Landry et al., 2015). While many receptors exist in our
genomes, individual cells express far fewer receptors than the
number of different environmental situations they can react to.
In addition, an even more limited number of cell-intrinsic sig-
naling pathways are available. As a result, although the activa-
tion of different receptors leads to different cellular responses,
they often activate a highly overlapping set of pathways. To
enable the required high number of fine-tuned responses with
the limited set of existing pathways, these are wired in complex
interconnected networks. Their activity is nonlinear, context-
dependent, dynamic, and heterogeneous, even between closely
related individual cells (Tay et al., 2010; Lane et al., 2017; Mitra
et al., 2017; Wang et al., 2021), enabling a much-increased
number of combinatoric and dynamic outputs (Fig. 1 B). A

further increase in output possibilities is achieved by modu-
lating the quantity and quality of the input ligands or receptors
(Ho et al., 2017; Purvis et al., 2012). For example, a change in the
topology of erythropoietin dimers by variation of distance and
angle between monomers changes how the receiving pathways
are activated (Kim et al., 2017; Moraga et al., 2015).

Inflammatory signaling in hematopoietic stem and progenitor
cells (HSPCs)
Inflammatory signaling in HSPCs is activated upon detection of
injury or infection and regulates the appropriate cellular re-
sponses. Various pathways, most prominently NF-κB, JAK/
STAT, protein kinase B (AKT), and p38, are triggered by
pathogen-associated molecular patterns or pro-inflammatory cy-
tokines like TNF-α, IFNs, and ILs (Hemmati et al., 2017). Pathways
lead to the expression of an array of target genes involved in
pathogen elimination, immune cell recruitment, and a general
adaptation of cell state and fate (Newton and Dixit, 2012). In-
flammatory signaling controls HSPC fates (Endele et al., 2014;
Rieger et al., 2009; Takizawa andManz, 2017; Trumpp et al., 2010),
and misregulation is associated with stem cell exhaustion, malig-
nant transformation, and other disorders (Hemmati et al., 2017;
Takizawa et al., 2012). For example, both IFN-γ and IFN-α activate
quiescent hematopoietic stem cells (HSCs) and trigger cycling
(Baldridge et al., 2010; Essers et al., 2009) and emergency mega-
karyopoiesis (Chicha et al., 2004; Haas et al., 2015; Manz, 2008).
LPS-induced NF-κB activation triggers apoptosis in T cells but
proliferation in the common lymphoid progenitor population
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(Chandra et al., 2008; Welner et al., 2008). TNF-α promotes HSC
survival but induces apoptosis in granulocyte monocyte progenitors
(Yamashita and Passegué, 2019), and a correct NF-κB response seems
crucial for ex vivo HSC expansion (Chagraoui et al., 2019). Inflam-
matory signaling is used as a target for therapeuticmanipulation,most
successfully by small molecules or peptides. For example, JAK2 in-
hibitors treat JAK2-induced myeloproliferative neoplasms (Kiladjian
et al., 2016), and thep38 inhibitor ralimetinib reduced theproliferative
effects of IL-1 in acute myeloid leukemia (AML) in preclinical studies
(Carey et al., 2017). Inhibition of NF-κB signaling by parthenolide
shows activity in AML stem cells (Guzman et al., 2005). Differentia-
tion in myelodysplastic syndrome and AML can be induced by TLR
agonists (Hemmati et al., 2017). For a more exhaustive discussion of
the many effects of signaling, please refer to the other reviews of this
series.

Thus, signaling is a core regulator of HSPC fate choices in
health and disease, and its comprehensive understanding also
holds the potential for the development of drugs for improved
therapeuticmanipulation.However,much remains unknown about
exact signal transduction mechanisms, crosstalk and combinatorics
of pathways, and how specific fate changes are encoded by these
signals. This is due to the complexity of signaling networks and the
required theoretical and experimental approaches for their analysis.
Here, we discuss some of the requirements, potential, and limi-
tations of current technologies for the quantification of signaling
components and activity and their relevance for HSPC fate control.

Technological requirements
Analyzing signaling networks and their functional im-
plementation is notoriously difficult. As discussed above,

individual activated receptors usually activate multiple parallel
and interconnected pathways, each with complex regulation
through cascades of biochemical layers and feed-forward and
feedback loops (Fig. 1 A). This wiring leads to many possible
dynamics and combinations, which massively increase the
amount of information that can be encoded from the limited
number of available signal transduction pathways (Fig. 1 B).
Short- and long-range feedback signaling between cells of a
tissue or even the whole organism makes this even more
complex (Charest and Firtel, 2006). This increases both the
signalings’ potential for accurately controlling biology and the
experimental requirements for its comprehensive analysis.
How information is encoded, how specificity is achieved (Behar
and Hoffmann, 2010), and how it is possible to integrate many
input combinations and their spatiotemporal dynamics over
time to generate accurate spatiotemporal outputs remain some
of the big central mysteries in life sciences. This is due not only
to the limitations in mathematical and computational tools for
understanding nonlinear dynamic control systems but also to the
lack of technologies for the quantification of the many signaling
components and associated cell fate choices with the required
spatiotemporal resolution, dimensionality, and throughput.

Ideally, signaling is quantified (1) at the single-cell level, (2)
continuously, (3) with spatial information of the cells in their
environment, and (4) linked to past and future molecular and
cellular behavior of the analyzed cells (Fig. 2).

Since signaling is usually heterogeneous between individual
cells even in seemingly homogeneous and closely related cells,
the analysis of population averages is insufficient (Etzrodt et al.,
2014; Hoppe et al., 2014; Loeffler and Schroeder, 2019;

Figure 1. Complex signaling pathway network wiring increases output encoding possibilities. (A) Ligand-receptor binding activates specific signaling
pathways. Variation of ligand and receptor configurations and concentrations increase the number of possible outputs. Feedback/forward loops and inter-
pathway crosstalk lead to complex pathway activity patterns and make the comprehensive analysis of signal transduction mechanisms extremely challenging.
(B) Individual receptors can activate combinations of multiple signaling pathways, each with different possible activity dynamics. This increases the number of
distinct possible outputs encoded by the limited number of available signaling pathways, allowing cells to fine-tune their responses to numerous different
external signaling inputs.

Kull and Schroeder Journal of Experimental Medicine 2 of 11

Technologies for cell signaling analysis https://doi.org/10.1084/jem.20201546

https://doi.org/10.1084/jem.20201546


Schroeder, 2005, 2008; Fig. 2). For example, there is a linear
correlation between the TNF concentration used for stimulation
and the NF-κB response amplitude of the whole stimulated 3T3
fibroblast population, suggesting an analogue NF-κB response.
However, analysis at the single-cell level demonstrated an en-
tirely different regulation: Individual cells respond in a digital
all-or-nothing on/off fashion, and only the frequency of re-
sponding cells is correlating with the TNF concentrations (Tay
et al., 2010). Furthermore, the current geometric state of indi-
vidual cells can influence their transcriptional responses to TNF
stimulation (Mitra et al., 2017).

In addition, signaling pathways are active not only in an on/
off type fashion but alsowith different dynamics (e.g., sustained,
transient, oscillatory; Fig. 1 B; Behar and Hoffmann, 2010; Purvis
and Lahav, 2013). If done only at individual time points, even
single-cell analyses will miss this crucial information (Fig. 2;
Hoppe et al., 2014; Loeffler and Schroeder, 2019; Purvis and
Lahav, 2013; Schroeder, 2005, 2011). These signaling activity
dynamics can be specific for the target cell type or stimulus used
but are typically heterogeneous between individual cells. Im-
portantly, these different dynamics seem to activate different
molecular target programs (Hoffmann et al., 2002), and to cause
specific cell fates, even though only one pathway is activated
(Marshall, 1995; Nandagopal et al., 2018; Purvis et al., 2012). For
inflammatory signaling, different ligands trigger NF-κB signaling,
but with different dynamics, and different NF-κB activity dy-
namics are followed by the activation of distinct transcriptional

target programs in the RAW 264.7 cell line and fibroblasts
(Hoffmann et al., 2002; Lane et al., 2017; Werner et al., 2005).
Even if all cells exhibited the same response dynamics, but in an
asynchronous way, time course quantification of population
averages would lead to wrong conclusions (Fig. 2).

Also, cellular responses are typically dependent on their lo-
cation within a tissue or a culture dish (Battich et al., 2015), thus
requiring analysis technologies to also provide that spatial in-
formation (Fig. 2). The generation and effects of spatiotempo-
rally layered patterns of signaling activation and its coordinated
propagation through 2D cultures and 3D tissues are even more
complex, fascinating, crucial for normal biology, and ill-
understood. The best in vivo examples come from embryology
in simpler model organisms as well as vertebrates and mammals
(Eldar et al., 2002; Golan et al., 2018; Hashimura et al., 2019;
Mongera et al., 2019; Pohl and Bao, 2010; Schier, 2001; Chen and
Schier, 2001).

In vitro assays, while providing better cell accessibility,
throughput, and well-defined chemical conditions, only partly
reflect conditions in vivo, and adjacent niche cells as well as
surrounding factors typically differ substantially between the
two (Juno et al., 2019). Therefore, in vitro findings have to be
validated by in vivo analyses of cells in their native 3D envi-
ronments. However, in vivo analyses are extremely complex,
with many unknown and usually confounding influences on
cells. Cell and molecular systems in vivo will be redundant and
quickly adapt to, e.g., chemical or genetic manipulation, making

Figure 2. Continuous multiplexed spatial single-cell quantification is required for a comprehensive analysis of signaling activities. Ideally, signaling is
quantified at the single-cell level (left), continuously (middle) and with spatial information of the cells in their environment (right). Analysis of population,
temporal and/or spatial averages can obscure true signaling activities (bottom).
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it almost impossible to analyze the precise immediate effect of a
defined manipulation. The combination of simpler and chemi-
cally defined in vitro assays with in vivo studies will therefore
often be required.

In vivo analysis is especially difficult for the hematopoietic
system, where most tissues are (semi)liquid, are constantly
mixing, and lack the obvious compartmentalized and stratified
3D organization of other tissues. The location andmorphology of
a cell in its tissue can reliably predict its type, environment, and
signaling inputs and responses in many solid tissues (Barker
et al., 2007; Quiroz et al., 2020; Sato et al., 2011). However,
this is not the case, or not yet understood, for most of the highly
motile hematopoietic cell types, which also share very similar
in vivo morphologies. Indeed, the location of HSPCs in hema-
topoietic tissues, as well as the location and cellular and mo-
lecular composition of their niches, remain disputed in mice and
unknown in humans (Acar et al., 2015; Hérault et al., 2017;
Kokkaliaris et al., 2020).

Available technologies
Snapshot analyses of population averages
Quantitative PCR and RNA sequencing technologies enable de-
tection of signaling target genes, but not of the activity of protein
pathway components (Wu et al., 2014; Ziegenhain et al., 2017).
While direct proteome analyses can analyze averages of large
cell populations (Blagoev et al., 2003), specific signaling proteins
are typically detected by antibodies (ABs). Western blotting
identified expression and activity of signaling proteins (Janes,
2015; Renart et al., 1979), e.g., by detecting their phosphorylation
(Li et al., 2006), and coimmunoprecipitation can detect their
molecular interactions (Bonifacino et al., 1999; Laird et al., 2009;
Lee, 2007). These approaches provided fundamental insights
about signaling pathways (Danial et al., 1995; Zhang et al., 1997).
However, while single-cell Western blot technology with limited
sensitivity exists (Hughes et al., 2014), these analyses of bulk
populations are not suitable for rare cell populations and miss
crucial information about individual cells (Fig. 3).

Snapshot single-cell analyses
Flow cytometry is a core method for single-cell quantification,
with high-throughput multiplexed protein detection. Fluores-
cent labels allow quantification of intracellular (cells are killed in
the process; Firaguay and Nunès, 2009) and surface proteins,
and sorting of living cells (Bonner et al., 1972; Herzenberg et al.,
1976). Imaging flow cytometry adds useful information on cell
morphology and subcellular molecule location (Doan et al., 2018;
McGrath et al., 2008). However, fluorescent labels have limited
multiplexing potential due to their spectral overlaps. Mass cy-
tometry (cytometry by time of flight [CyTOF]) improves mul-
tiplexing by labeling ABs with heavy metal ions, distinguished
by mass spectrometry with very high precision (Bandura et al.,
2009; Forthun et al., 2019; Yao et al., 2014). CyTOF was used, for
instance, to comprehensively quantify signaling behavior in
different normal bone marrow HSPCs (Bendall et al., 2011), or to
detect anti-tumor immune responses (Dempsey, 2017). How-
ever, CyTOF destroys cells and is thus blind to possible links
between the cells’ current molecular state and future behavior.

Labeling ABs by DNA sequences and their detection by high-
throughput sequencing increases multiplexing and throughput
potential even more (Peterson et al., 2017; Stoeckius et al., 2017;
Todorovic, 2017). These approaches have the potential to replace
most of the current flow cytometry experiments for snapshot
cell analysis, but not for live-cell sorting, since cells get de-
stroyed in the process. All these analyses of dissociated cells lose
the information on cells’ locations in their tissue or culture,
which is crucial to understand signaling regulation and cell–cell
communication (Fig. 3).

Spatial single-cell analysis
Imaging provides this spatial information including molecules’
subcellular location. Fluorescent ABs are the most used label for
imaging signaling components (Coons et al., 1942; Coons and
Kaplan, 1950). For HSPCs, much remains to be done for the
in situ quantification of their locations and signaling activities
induced by their microenvironments in vivo. Despite numerous
publications, the exact location of HSCs and their niches in
mouse bone marrow remains disputed (Acar et al., 2015; Boulais
and Frenette, 2015; Kokkaliaris et al., 2020; Méndez-Ferrer
et al., 2010; Morrison and Scadden, 2014). The locations and
niches of other HSPC types have not yet been well analyzed in
mice, and almost no studies exist for human hematopoietic or-
gans. This is mostly due to lacking technology. 3D imaging
usually only allows a very limited number of fluorescent chan-
nels to be distinguished. Together with the lack of single
markers for the identification of specific HSPC types—
combinations of several markers are usually required for their
reliable identification—this prevents the simultaneous identi-
fication of specific cell types, their microenvironment, and
signaling components required for understanding the spatio-
temporal distributions of signaling activities in specific HSPCs
in vivo. In addition, due to the acquisition time requirements
on expensive machinery and the huge amounts of data result-
ing from imaging approaches, only small spatial volumes are
typically imaged, limiting the required sample numbers for
representative data acquisition and statistically sound con-
clusions. Recently, imaging approaches for large 3D volumes,
such as whole mouse bones with up to 10 simultaneous fluor-
escent channels, and custom software pipelines for the quan-
titative analysis of the resulting huge data volumes have been
developed (Coutu et al., 2017, 2018; Nombela-Arrieta et al.,
2013). This indeed demonstrated that previous conclusions
about HSC location bone marrow have to be taken with caution
(Kokkaliaris et al., 2020). Recently, the quantification of 3D
distributions of secreted regulatory proteins in large tissue
volumes with even single-molecule sensitivity was developed
(Kunz and Schroeder, 2019), based on proximity ligation assay
amplification of fluorescent signals (Söderberg et al., 2006). This
will now also allow quantifying where signaling ligands actually
locate in hematopoietic tissues, greatly improving our under-
standing of the spatiotemporal concentrations and availability of
these signals to HSPCs in their native in vivo environments.

Cyclic immunostainings with several rounds of AB exposure
increase multiplexing (Gut et al., 2018; Lin et al., 2015), and
limited fluorescence multiplexing potential can be overcome by
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mass cytometry detection of metal-labeled ABs. Stepwise scan-
ning of tissue sections by sequential laser ablation of AB-stained
tissue voxels with subsequent mass spectrometry and compu-
tational image reconstruction can generate 2D images with
highly multiplexed protein quantification per pixel (Giesen
et al., 2014). This approach was used to map the immune sys-
tem changes in type 1 diabetes (Wang et al., 2019) and to phe-
notype breast cancer (Ali et al., 2020), and is continuously
improving in scanning speed, multiplexing ability, and possible
3D imaging (Bodenmiller, 2016; Lun and Bodenmiller, 2020). For
the detection of mRNAs, single-molecule RNA fluorescence
in situ hybridization imaging (Raj et al., 2008) and spatial
transcriptomics (Ståhl et al., 2016) provide spatial information
with subcellular resolution. Cyclic fluorescence in situ hybridi-
zation staining and imaging enable very high multiplexing and
allow absolute quantification of mRNA molecule numbers per
cell (Lubeck and Cai, 2012; Xia et al., 2019). Spatial tran-
scriptomics physically barcode 3D tissue positions with subcel-
lular resolution before dissociation and later match these
barcodes to single-cell sequencing results (Vickovic et al., 2019).
This approach has enabled the identification of cells’ previous
tissue location and helped to identify a plaque-induced gene
network in Alzheimer’s disease (Chen et al., 2020). All of these
technologies provide snapshot observations at single time points.
However, for quantification of the important dynamic behavior
of signaling networks, continuous analyses are required (Fig. 3).

Continuous long-term single live-cell quantification
Patch clamping (Neher and Sakmann, 1992) or impedance
sensing (Xu et al., 2016) can measure cellular electrical prop-
erties over time and are therefore able to detect concentrations
of second messengers like Ca2+ in real time (Franks et al., 2005;
Frey et al., 2010). However, fluorescent live-cell imaging is the
most abundantly used technology for continuous single live-cell

analysis, even for up to weeks (Kokkaliaris et al., 2016;
Schroeder, 2011). Genetically encoded biosensors can be used to
quantify even very fast signaling activity dynamics. They typi-
cally report signaling activity either by changing fluorescence
resonance energy transfer (Fritz et al., 2013), leading to a
spectral change of signaling reporter emission (Krause et al.,
2013; Tuleuova et al., 2010), or by changing the subcellular lo-
cation of the biosensor. Fluorescence resonance energy transfer
sensors can also be modified to detect the abundance of small
molecule secondary signaling messengers, like cyclic di–GMP,
and therefore expand the detection limit beyond proteins
(Anderson et al., 2020; Dippel et al., 2018). Translocation-based
reporters often have a higher dynamic range and require only
one fluorescent channel, thus improving multiplexing with
other reporters. They are usually generated by adding a fluo-
rescence tag to a key signaling protein, thus changing its in-
tracellular location upon pathway activation (e.g., NF-κB [De
Lorenzi et al., 2009], AKT [Gross and Rotwein, 2015], and
STAT3 [Herrmann et al., 2004; Watanabe et al., 2004]). They
have provided important insights into the dynamical encoding
of signal information. For example, a GFP-p65 reporter showed
that different NF-κB dynamics correlate with the expression of
specific target gene programs (Lane et al., 2017) and that NF-κB
signaling can be entrained in cell populations, which are also
regulated by noise (Heltberg et al., 2016). An AKT translocation
sensor was employed to screen for the effect of growth factors
on signaling dynamics (Gross and Rotwein, 2016). A new gen-
eration of translocation biosensors is based on a fusion between
fluorescent proteins and a protein fragment containing nuclear
export and localization signals that change activity upon phos-
phorylation by kinases of signaling pathways. This approach can
be applied to report the activity of essentially any kinase and
thus many signaling pathways by adjusting the kinase docking
site in the protein complex (Regot et al., 2014).

Figure 3. Technologies for analyzing signaling at
different levels of resolution. Technologies often
used for analysis of signaling, categorized by their ca-
pacity for providing single-cell, temporal, and spatial
information. Continuous single-cell technologies yield
most relevant information but are usually lower in
throughput and/or dimensionality than other methods.
Blue text boxes labels technologies that additionally retain
spatial information. q-rtPCR, quantitative RT-PCR; RNA-
seq, RNA sequencing; scRNAseq, single-cell RNA se-
quencing; scWesternBlot, single-cell Western Blot.
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Importantly, the relevance of signaling dynamics for con-
trolling cell fates can only be evaluated if the future fates of the
same cells are known. Only if specific signaling outputs reliably
lead to specific future fates of the same cell or its progeny can
their role in inducing this fate be demonstrated. However, due to
the slow implementation of fate programs, especially in mam-
mals, it can take up to days or weeks until the lineage choice of
a differentiating HSC can be detected (Hoppe et al., 2016;
Kokkaliaris et al., 2016; Strasser et al., 2018). The same cells (and
all of their progeny) in which signaling had been quantified at
the start of the experiments have to be tracked without losing
their identity over these long periods of time. This is technically
much more demanding than the relatively short-term live-cell
imaging for the identification of signaling activity or dynamics,
which only has to span minutes to hours (Endele et al., 2014;
Endele and Schroeder, 2012; Schroeder, 2005, 2011). Long-term
single-cell imaging and fate quantification of mammalian HSPCs
has been accomplished in vitro, for instance demonstrating the
production of blood cells from hemogenic endothelium (Eilken
et al., 2009), the lineage instruction of hematopoietic progenitor
cells by inflammatory cytokine signaling (Endele et al., 2017;
Rieger et al., 2009), the asymmetric cell division of HSCs
(Loeffler et al., 2019), or the direct regulation of the core he-
matopoietic transcription factor PU.1 by TNF and IL-1 in HSCs
(Etzrodt et al., 2019; Pietras et al., 2016). This approach also
enables the identification and quantification of signaling dy-
namics in HSPCs (Endele et al., 2014; Wang et al., 2021).

Combining protein analyses for detecting signaling activity with
single-cell high-dimensional snapshot endpoint analysis meth-
ods like transcriptome sequencing (Wu et al., 2014; Ziegenhain
et al., 2017) enables the comprehensive detection of molecular
regulators and target programs of signaling pathways. It was
used to show that specific NF-κB dynamics correlate with target
gene expression (Lane et al., 2017). Detection of signaling dif-
ferences even between closely related cells can further be used
to distinguish cellular subpopulations that are not distinguish-
able by flow cytometry or other assays. In addition, it could
contribute important insights to the ongoing discussion as to
whether hematopoietic differentiation is a discrete process
(with fast changes in relevant cell states) or a continuous one
(with slow changes across the transcriptome and variable [de]
activation sequences for individual genes), as suggested by re-
cent transcriptome sequencing studies (Laurenti and Goettgens,
2018; Liggett and Sankaran, 2020).

While long-term single-cell imaging is possible in vitro, it
remains even more demanding in vivo. In addition to the more
difficult access to cells deeper in tissues, the required immobi-
lization of animals or even patients typically prevents experi-
ments longer than a day. Live HSPC in vivo imaging is possible
(Lo Celso et al., 2009), but with muchmore limited duration and
throughput, and signaling activity and links to future cell fates
have not yet been analyzed. Due to its easier accessibility at the
outside of the organism, single-cell imaging of skin (Rompolas
et al., 2012; Sun et al., 2017) enables insights into the changing

Figure 4. Simplified representation of the inflammatory NF-κB pathway with currently available detection and manipulation methods. After binding
of TNF or LPS to their receptors, the pathway is activated and eventually releases the active transcription factor p65-p50, a heterodimer, into the nucleus,
where transcription of many target genes is triggered. Tools for manipulation and quantification are available for various pathway components.

Kull and Schroeder Journal of Experimental Medicine 6 of 11

Technologies for cell signaling analysis https://doi.org/10.1084/jem.20201546

https://doi.org/10.1084/jem.20201546


signaling activities of differentiating primary skin stem and
progenitor cells in vivo (Quiroz et al., 2020).

Manipulation of cellular signaling
For a full understanding of signal transduction mechanisms, it is
usually not enough to only observe. Instead, defined perturba-
tions are necessary to reveal signaling properties that are oth-
erwise hidden. Classic transgenic manipulations for knockdown,
knockout, and overexpression of pathway components in animal
models provide important insights (Gao et al., 2019; Yamamoto
et al., 2003). In humans, insights into signaling regulation and
relevance came from “natural” pathway perturbations, due to
disease-causing germline or somatic mutations that alter sig-
naling (Katoh, 2007; Pencik et al., 2016; Zhao et al., 2017). Sig-
naling pathways can simply be stimulated with their ligands
in vitro and, with much less control over concentrations, ki-
netics, and combinations, in vivo. In addition, pharmacologic
activation or inhibition by small molecules, peptides, or ABs is
an extremely successful addition, both for research and for
clinical therapy (Fig. 4; Carey et al., 2017; Kiladjian et al., 2016;
Nelson et al., 2004; Purvis et al., 2012). Technologies for effi-
cient, automated, and time-controlled (micro)fluidic handling
can be required here to enable automated high-throughput
manipulation of media compositions, in particular with de-
fined fast changes over time. For NF-κB, it was shown that
the pathway entrains to external periodic TNF-α stimulations,
which were achieved with microfluidic cell culture devices
(Heltberg et al., 2016; Kellogg and Tay, 2015). However, most
microfluidic devices are not suitable for use with rare non-
adherent cells like primary HSPCs, which require efficient cell
capture and flow-free media changes with sufficient speed
(Dettinger et al., 2018, 2020). Optogenetic approaches are a very
exciting approach allowing the experimental switching between
signaling activity states by light exposure with single-cell reso-
lution and extremely fast kinetics (Boyden et al., 2005; Bugaj
et al., 2013). It has been used, e.g., to precisely control the ac-
tivity of ERK and AKT pathways by light exposure (Johnson and
Toettcher, 2019; Katsura et al., 2015), and will allow many im-
portant insights in the future.

Data analysis
While it cannot be covered in more depth here, it is important to
point out that the analysis of the data generated by these tech-
nologies, in particular by high-throughput and time-resolved
single-cell approaches, is critically dependent on computa-
tional data analysis, modeling, and curation (Hilsenbeck et al.,
2016; Skylaki et al., 2016). This, and not the data acquisition,
often is the relevant bottleneck for comprehensive insights, and
the required software is typically not readily available. Re-
searchers must therefore be able to develop or adjust the re-
quired software to their needs.

Concluding remarks
Cellular signaling is central for controlling cell fates. While we
already understand a lot, and targeted manipulation of signaling
is successfully used even for clinical therapy, much more re-
mains to be analyzed and understood. Recent technological

developments, in particular for single-cell analyses and dy-
namics quantification and manipulation, now enable improved
insights into the regulation and function of cellular signaling in
controlling cell fates. While often developed in easy-to-use
model systems, they are increasingly applied to also analyze
primary cells including HSPCs and will lead to important novel
insights and the development of improved targeted therapeutic
manipulations.
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