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In nature, light is a key driver of animal behaviour and physiology. When
studying captive or laboratory animals, researchers usually expose animals to
a period of darkness, tomimic night. However, ‘darkness’ is often poorly quan-
tified and its importance is generally underappreciated in animal research.
Even small differences in nocturnal light conditions can influence biology.
When light levels during the dark phase are not reported accurately, exper-
iments can be impossible to replicate and compare. Furthermore, when
nocturnal light levels are unrealistically dark or bright, the research is less eco-
logically relevant. Such issues are exacerbated by huge differences in the
sensitivity of different light meters, which are not always described in study
methods. We argue that nocturnal light levels need to be reported clearly
and precisely, particularly in studies of animals housed indoors (e.g. ‘<0.03
lux’ rather than ‘0 lux’ or ‘dark’), and that these light levels should reflect
conditions that the animal would experience in a natural context.

1. Introduction
In biological experiments, an organism’s response to different treatments is
typically compared to a control that represents conditions in a natural environ-
ment. The results of this comparison therefore depend not only on the effect of
the treatment, but also on the control conditions. An important condition of
most environments, which is frequently overlooked in current research, is the
nocturnal light level. Exposing captive and laboratory animals to a 24 h cycle
of darkness and light, to mimic night and day, might seem straightforward.
However, the level of ‘darkness’ can be critical. ‘Darkness’ is a human concept
with no quantitative definition, and even small differences in light levels can
have large biological effects. When light levels are not reported adequately,
experiments cannot be meaningfully replicated. Furthermore, when controls
do not reflect natural conditions, the ecological relevance of research is ques-
tionable. Here, we aim to highlight the severity of this problem, and describe
how to overcome it.
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Figure 1. Nocturnal light levels below 1 lux or even 0.1 lux, which are often described simply as ‘dark’ in biological studies, can have substantial effects on animal
behaviour and physiology. The left panel shows approximate nocturnal illuminance during various lunar phases and environmental conditions (cloudy without airglow =
black, starlight with airglow = dark blue, partial moon = medium grey, full moon = pale grey, supermoon = dashed line) [11–13]. The right panel provides examples of
biological effects that can occur at these illuminance levels, compared with lower light levels. These include (from bottom to top) increased activity in owl monkeys
(Aotus azarai) [14], increased foraging in nocturnal bees (Lasioglossum texanum) [15], decreased foraging in fruit bats (Cynopterus sphinx) [16], decreased melatonin
production in Eurasian perch (Perca fluviatilis) [17], increased cortisol and decreased foraging in spiny mice (Acomys cahirinus and A. russatus) [18], decreased plasma
melatonin in nude rats (Rattus norvegicus) [19], and decreased plasma melatonin and increased activity in blackbirds (Turdus merula) [20]. Created with BioRender.com
with additional illustrations from PhyloPic (blackbird by Anthony Caravaggi and owl monkey by E. Lear/Yan Wong).
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Light is a key driver of biological processes. Throughout
evolutionary history, there have been predictable fluctuations
in light, in relation to time of day, lunar phase and season [1].
Accordingly, almost all organisms have evolved daily, monthly
and annual rhythms in their biology [1–3]. Forexample, animals
typicallyhave daily rhythms in sleep andmetabolism, aswell as
seasonal rhythms in reproduction [1,3,4]. Light influences these
biological rhythms primarily via melatonin, a photosensitive
hormone that is highly conserved across taxonomic groups
[5]. Light also facilitates animal vision, which in turn can facili-
tate behaviours such as spatial navigation, foraging andmating
[4]. Given these diverse and pervasive effects on biology, light
should be a fundamental consideration in all animal research.
Nocturnal lighting is arguably particularly important, since
light levels at night are a cue not only for time of day, but also
lunar phase and daylength [1]. Nevertheless, there are two
common issues with how nocturnal lighting is reported and
used in animal research, which we outline below.

First, the descriptions of dark conditions in many pub-
lished studies are inaccurate or imprecise. Light levels are
most often reported in lux1, a unit that represents illuminance
as perceived by the human eye under daytime adaptation.
Many published studies, including recent studies, report
nocturnal light conditions as ‘0 lux’ or simply as ‘dark’ (e.g.
[6–9]). In a strictly physical sense, 0 lux means there are no
photons, which is not physically possible in a standard lab-
oratory setting. When a light meter detects ‘no light’,
researchers should report that the light level was below the
measurement capability of their instrument and specify
what this limit was (e.g. ‘<0.03 lux’). This matters because
the measuring capabilities of different instruments are
vastly different. For example, the most common commercial
light meters have a resolution of 1 lux, but a precision of sev-
eral lux (i.e. a minimum sensitivity of 3 or more lux). From a
visual perspective, a report of ‘0 lux’ could therefore rep-
resent anything from the conditions experienced several
meters from a streetlight, to being unable to see at all.

Second, creating an extremely dark environment at night
is not necessarily desirable or realistic [3,10]. Even in a natural
setting, without artificial lights, most animals experience light
at night from the moon, airglow and stars (figure 1). When
there is very little light, such as during overcast skies when
the moon is set, even nocturnal animals may become inactive
at night. For example, nocturnal bees (Lasioglossum texanum)
only forage at night after twilight when there is moonlight
present [15]. Owl monkeys (Aotus azarai) also decrease their
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nocturnal activity during new moon nights and compensate
by increasing their activity the following morning [14].
Very dark conditions in studies of captive animals could
similarly mask natural nocturnal behaviour, forcing noc-
turnal animals to become active during light periods or
extending inactive periods in diurnal or crepuscular animals.
Thus, researchers might misinterpret the results of their
research [3]. In some contexts, researchers might be led to
underestimate the effects of the experimental treatment. In
other contexts, abnormally dark conditions might amplify
or even cause differences between the treatment and control.
For example, a topic of growing interest is the effect of light
pollution on wildlife. Light pollution, typically defined as
increased light at night due to anthropogenic sources, can
have pervasive effects on animal behaviour, physiology,
reproduction and survival [21,22]. In studies of light pol-
lution, researchers often compare a treatment of dim light
at night (dLAN) to a dark control. Differences in behaviour
between dLAN and dark control are then attributed to ‘nega-
tive’ impacts of light. However, if the control conditions are
too dark, behaviours under dLAN might actually be
normal nocturnal behaviours that the animal would exhibit
in the wild, with behavioural differences being caused by
unnaturally low light during the control.

Asking researchers to distinguish between very low
light levels, in the range of 0.001 to 0.1 lux, may seem
unnecessarily fastidious. However, these differences matter.
A well-studied example is the influence of moonlight on
animal behaviour [2]. Across the lunar cycle, illuminance can
vary from <0.006 lux (starlight during a new moon or when
the moon is set) to around 0.3 lux, with a summertime full
moon typically in the range of 0.05 to 0.20 lux [11,12]. Even
at such low light intensities, moonlight influences a wide
range of behaviours, including coral spawning [23], foraging
in nocturnal animals [15,16,24] and singing in diurnal song-
birds [25]. Studies of light pollution now demonstrate these
influences as well (e.g. [10,25,26]). Describing <0.1 lux as ‘dark-
ness’ is therefore far too imprecise; there is still a wide range of
biologically relevant light levels below this threshold.

Low intensities of light can also have important effects on
physiology, including the suppression of melatonin [10,13].
Exposure to light, particularly blue wavelengths of light, sup-
presses melatonin production primarily through non-visual
pathways [5,13]. Studies have found that light intensities as
low as 0.028 lux (monochromatic blue light) and 0.3 lux
(white light) are capable of suppressing melatonin in rodents
and birds, respectively [13]. One recent study found that even
0.01 lux light at night reduces melatonin production in fresh-
water fish, compared to a ‘control’ below 0.00167 lux [17].
These examples underscore our point that results can be mis-
leading if control conditions either too dark or too bright, and
impossible to interpret when control conditions are not
properly reported.

Studies of animals housed indoors should use an ecologi-
cally relevant level of light during the dark phase, which will
depend on the animal and its natural habitat. Natural noctur-
nal light levels will be very different for a beetle in dense
forest undergrowth, for example, compared with a bison on
the open plains ([27]; also see below). Ideally, researchers
should decide the most appropriate light level by measuring
light in the animal’s natural habitat, using a suitable device.
This is more straightforward for some animals than others.
Some research animals might come fromheavily light-polluted
environments, where light levels are increased above natural
levels. Researchers must then decide whether to use these
same light levels in the laboratory, or whether to mimic
(hypothetical) natural light conditions in the absence of
anthropogenic influences (based on the published literature,
modelling or measurements in a different location). In such
cases, the best approach will depend on the research question.
Biomedical studies also often use inbred laboratory models,
which can be quite different from their wild-type relatives.
For these studies, environmental measurements may be less
relevant, but the animal’s physiology and visual capacity
should still be taken into careful consideration. Previous
research has already highlighted issues with the use of sub-
thermoneutral housing temperatures in mouse studies [28];
suboptimal lighting has the potential to bias outcomes in a
similar way.

In field studies, establishing ecologically relevant light
conditions is rarely an issue, since animals are already
being studied in their natural environment. Nevertheless,
nocturnal light levels are still relevant for interpreting
results, as well as comparing results between studies. This
is true not only for nocturnal species, but also for diurnal
animals whose sleep and subsequent daytime behaviour
is influenced by light at night [4,29,30]. Nocturnal light
conditions are influenced by many different features of an
animal’s habitat, including reflectance of the ground, shading
from overhanging vegetation, shielding of light by rocks and
mountains, attenuation by the atmosphere and water, and
light pollution. Conditions also vary temporally, due to fac-
tors such as cloud cover, lunar phase, and season [12,31].
For example, ground reflectance may vary seasonally
depending on snow cover, vegetation, water coverage (e.g.
flooding) and moisture. These differences are not trivial;
cloud cover combined with snow cover can increase subur-
ban sky brightness by a factor of about 190 [31]. This
variability in nocturnal light, from both anthropogenic and
natural sources, is important to consider when designing
and reporting study methods.

Importantly, controlling and measuring nocturnal light-
ing requires researchers to understand the precision of their
measuring devices. It is therefore imperative for researchers
to be wary of the issues with measuring light and to use
devices with an appropriate level of precision for their
research. For some studies, it may be helpful to seek help
from researchers that deal more centrally with light (e.g.
astrophysicists, optical physicists or visual ecologists).
In many cases, commercial DSLR cameras may also be a suit-
able alternative to illuminance meters [11,32,33]. Researchers
should also be careful to avoid inadvertently exposing
research animals to unnecessary light; for example, light-
emitting power buttons and monitors might need to be
covered at night. Here, it is also important to consider that
some animals can detect wavelengths of light that humans
cannot, such as UV and infrared light [34,35].

Experimental studies rely on meaningful comparisons
[3,36]. To draw reasonable conclusions, we require a clear
understanding of experimental and natural conditions, and
how these affect the study animal. Sometimes, the most
basic aspects of an animal’s environment can be the easiest
to overlook. Nocturnal lighting is not the only environmental
variable that researchers need to consider, but it is one that is
frequently neglected in current research. Fortunately, the
issue is also reasonably simple to address. As previously
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highlighted by the editors of Nature Neuroscience, ‘the key to
reproducibility is accurate reporting of these seemingly mun-
dane details, which potentially have large effects’ [37]. We
would also add that to interpret the results of animal
research, we need to consider the perspective of the study
animal: what they see, what they experience and how the
research environment compares to their natural habitat.
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Endnote
1We are aware that the human-centric photometric quantity of illumi-
nance might not be the most appropriate choice for all studies.
However, this discussion is not focused on which metric to use, but
rather on how to report metrics and design controls. We emphasize
that the concepts discussed here also apply to other radiometric
units, such as irradiance, and that reports of ‘0 W m−2’ or
‘0 photons s−1 m−2’ should also be avoided.
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