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Background: Nonalcoholic fatty liver disease (NAFLD) is now recognized as the most
prevalent chronic liver disease worldwide. However, the dysregulated gene expression for
NAFLD is still poorly understood.

Material andmethods:We analyzed two public datasets (GSE48452 and GSE89632) to
identify differentially expressed genes (DEGs) in NAFLD. Then, we performed a series of
bioinformatics analyses to explore potential hub genes in NAFLD.

Results: This study included 26 simple steatosis (SS), 34 nonalcoholic steatohepatitis
(NASH), and 13 healthy controls (HC). We observed 6 up- and 19 down-regulated genes in
SS, and 13 up- and 19 down-regulated genes in NASH compared with HC. Meanwhile,
the overlapping pathways between SS and NASH were PI3K-Akt signaling pathway and
pathways in cancer. Then, we screened out 10 hub genes by weighted Gene Co-
Expression Network Analysis (WGCNA) and protein-protein interaction (PPI) networks.
Eventually, we found that CYP7A1/GINS2/PDLIM3 were associated with the prognosis of
hepatocellular carcinoma (HCC) in the TCGA database.

Conclusion: Although further validation is still needed, we provide useful and novel
information to explore the potential candidate genes for NAFLD prognosis and therapeutic
options.

Keywords: nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, differentially expressed genes,
hepatocellular carcinoma, bioinformatics analysis

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is now recognized as the most prevalent chronic liver
disease worldwide, with a prevalence ranging from 13% in Africa to 42% in southeast Asia, and it may
become the major cause of end-stage liver diseases by 2025 (Zarrinpar et al., 2016; Younossi, 2019;
Huang et al., 2021). NAFLD represents a spectrum of disease severity, ranging from simple steatosis
(SS) termed as nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), cirrhosis,
and hepatocellular carcinoma (HCC) (Natarajan et al., 2014). It has been well-recognized that
obesity, insulin resistance, and type 2 diabetes mellitus are the strongest risk factors for NAFLD
(Chen and Tian, 2020). The cause of NAFLD is multifactorial, including genetic and environmental
factors (Chen and Tian, 2020). However, possible effects and underlying mechanisms for NAFLD are
still not understood. Meanwhile, NAFLD-related HCC usually lacks symptoms and tends to be
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diagnosed at a later stage and is related to poorer survival than
viral hepatitis-related HCC (Younossi et al., 2015; Huang et al.,
2021). In addition, NAFLD-related HCC is now proliferating and
will increase in parallel with the obesity epidemic (Desai et al.,
2019). Therefore, it is essential to investigate in detail the
mechanism in the pathogenesis of NAFLD to find new
potential targets for prognosis and therapy, especially in obese
population.

Many genome-wide association studies have indicated that
PNPLA3,HNF1A,NCAN,GCKR,MBOTAT, FADS1, PPAR, TNF,
and TM6SF2 are important genetic and epigenetic modifiers
played important roles in the pathogenesis and progression of
NAFLD (Choudhary and Duseja, 2021). Meanwhile, some
bioinformatics researches offer new ideas for exploring
potential targets of NAFLD. Zeng et al. (2020) found that
AKR1B10 and SPP1 were related to immune cell infiltrations
and associated with NAFLD progression. Liu et al. (2020)
reported that TOP2A, NHP2L1, PCNA, CHEK1, ACACA, CCS,
ACACB had a significant impact on NAFLD progression and
were associated with HCC progression. What’s more, Wang et al.
(2016) indicated that Lp1, Ces2, Fasn,Hmgcs1, Sc4mol, Fads1, and
Mup1 were associated with lipid metabolism, and Cbr3, Trib3,
Nfe212 were related to oxidative stress in NAFLD mouse model.
Obviously, there is significant heterogeneity between studies in
both animal and human experiments. Although many studies
have been devoted to exploring the pathogenesis and progression
of NAFLD, there are still no effective drugs for the treatment of
NAFLD except for lifestyle changes (Leoni et al., 2018). Thus,
combination bioinformatics analysis with public microarray data
will contribute to explore novel pathways and genes regulating
NAFLD.

Therefore, we analyzed two public datasets to identify
differentially expressed genes (DEGs) among healthy controls
(HC), SS, and NASH. Then, Weighted Gene Co-Expression
Network Analysis (WGCNA) and protein-protein interaction
(PPI) networks were performed to explore the impact of
DEGs on NAFLD. This study aimed to screen potential genes
for NAFLD development.

MATERIAL AND METHODS

Data Retrieving and Processing
The gene expression profiles of GSE48452 (Ahrens et al., 2013)
and GSE89632 (Arendt et al., 2015) were downloaded from Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo).
To prevent the effects of overweight in the evaluation, healthy
obesity with body mass index (BMI) over 24 kg/m2 were excluded
from the HC group. Besides, due to NAFLD commonly happened
to the obese population, NALFD patients with BMI less than
24 kg/m2 were also excluded from the experimental group. What
is more, individuals with bariatric surgery or severely missing
data at baseline were also ruled out. Finally, 9 SS samples, 17
NASH samples, and 5 HC samples in the GSE48452, and 17 SS
samples, 17 NASH samples, and 8 HC samples in the GSE89632
were included in this study (Table 1). HCC data were obtained
from The Cancer Genome Atlas (TCGA) database, including 374
HCC samples and 50 normal samples.

For the analysis of DEGs, we used the GEO2R (https://www.
ncbi.nlm.nih.gov/geo/geo2r/) to generate the R script, which used
two R packages (GEOquery and limma). The threshold for the
DEGs was set as p-value <0.05 and |log2 fold change (FC) | ≥ 1.
Heat maps were drawn using R package “pheatmap”. Venn
diagram was performed using the jvenn tool (http://jvenn.
toulouse.inra.fr/app/example.html), and the overlaps
represented the intersection between the two datasets. Figure 1
illustrated the overall research design.

Diagnostic Methods of Different States of
NAFLD
All the samples in GSE48452 and GSE89632 were validated using
histological examination by a board-certified pathologist before
molecular analysis, and hematoxylin and eosin (H&E) and
chromotrope aniline blue (CAB) stained sections were used
for histological analysis. The different states of NAFLD were
diagnosed using criteria from NAFLD Activity Score (NAS)
(Kleiner et al., 2005).

TABLE 1 | The data are shown as median (interquartile range, IQR). HC, healthy control; SS, simple steatosis; NASH, nonalcoholic steatohepatitis; BMI, body mass index;
NAS, NAFLD activity score.

Dataset HC SS NASH

GSE48452 (n) 5 9 17
Gender (male: female) 0:5 2:7 4:13
Age (years) 45.0 (35.0–62.0) 37.0 (32.0–46.5) 47 (36–50.5)
BMI (kg/m2) 21.0 (18.8–23.5) 51.9 (45.7–55.7) 47.8 (33.4–55.7)
Steatosis (%) 0 (0–2.0) 30.0 (15.0–70.0) 75 (70.0–85.0)
NAS 0.5 (0–1.0) 1.0 (1.0–3.0) 5.0 (5.0–5.5)
GSE89632 (n) 8 17 17
Gender (male: female) 4:4 12:5 9:8
Age (years) 42.5 (26.5–54.3) 45.0 (35–51.5) 44.0 (35.5–52.5)
BMI (kg/m2) 21.2 (19.9–23.1) 28.9 (27.5–31.3) 32.0 (29.65–33.6)
Steatosis (%) 0 (0–0.8) 40.0 (15.0–55.0) 40.0 (17.5–70.0)
NAS 0 (0–0) 2.0 (1.0–2.0) 5.0 (4.0–6.0)

The data are shown as mean and median (interquartile range, IQR). HC, healthy control; SS, simple steatosis; NASH, nonalcoholic steatohepatitis; BMI, body mass index; NAS, NAFLD
activity score.
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Gene Ontology Analysis and Kyoto
Encyclopedia of Genes and Genomes
Pathway Enrichment Analysis
GO is a commonly used bioinformatics tool that supply
comprehensive information on gene function of individual
genomic products based on defined features and is primarily
divided into three parts, molecular function (MF), biological
process (BP), and cellular component (CC). KEGG is a
database resource for understanding high-level biological
functions and utilities. To identify the function of DEGs, GO
and KEGG analysis were performed usingMetascape (metascape.
org) database with default settings. We determined that results
were statistically significant at a level of less than 0.05 using a
p-value. Then, histograms and bubble plots were generated with R
package “ggplot2”.

Weighted Gene Co-Expression Network
Analysis
WGCNA is a well-established method for studying biological
networks and diseases (Rasmussen et al., 2020). Considering that
GSE89632 had more comprehensive and complete data, we used
GSE89632 to detect modules highly correlated with NAFLD, and
WGCNAwas performed using R package “WGCNA” and carried
out on all genes. The scale-free topology of the networks was
assessed for various values of the β shrinkage parameter, and we
chose β � 5 based on scale-free topology criterion. Finally, the
dynamic tree cut algorithm was applied to the dendrogram for
module identification with the mini-size of module gene numbers
set as 50, and similar modules were merged following a height
cutoff of 0.05. In the module-trait analysis, gene-trait significance
(GS) value >0.3 and module membership (MM) value >0.55 were
defined as a threshold (Zeng et al., 2020).

Protein-Protein Interaction Network
Construction
Metascape (metascape.org) database was used to construct a
protein-protein interaction (PPI) network with default settings.
Disconnected nodes in the network were deleted. Then, the
Cytoscape software (v3.8.2) was utilized to visualize the PPI
network. We used CytoHubba plugin to identify the hub genes
through molecular complex detection (MCC) (Chin et al., 2014).

Relationship Between Hub Gens in NAFLD
and Hepatocellular Carcinoma Prognosis
The pathway activity was acquired fromGSCALite: AWeb Server
for Gene Set Cancer Analysis (http://bioinfo.life.hust.edu.cn/web/
GSCALite/), the survival analysis was collected from Gene
Expression Profiling Interactive Analysis (GEPIA, http://gepia.
cancer-pku.cn/), and the immunohistochemical pictures were
collected from the Human Protein Atlas (HPA, https://www.
proteinatlas.org/) database.

Statistical Analysis
Statistical analysis was performed using R software (Version
4.1.0). Statistical comparisons between groups of normalized
data were performed using the t-test or Mann-Whitney U-test
according to the test condition. A difference with p < 0.05 was
considered significant.

RESULTS

Identification of DEGs in the NAFLD
Patients
The DEGs among HC, SS, and NASH in GSE48452 and
GSE89632 datasets were identified, respectively (Figures 2A,B

FIGURE 1 | The overall research designs. The data were downloaded from GEO and TCGA databases. Then, the DEGs were explored among the groups using
GEO2R and were performed GO and KEGG analysis later, respectively. Subsequently, the GSE89632 dataset was used for WGCNA analysis to explore the trait-related
genes, which were intersected with the DEGs to find trait-expression-related genes. PPI network analysis was performed to detect hub genes. Then, the expression,
survival rate, and pathway of 10 hub genes were explored in the TCGA database.
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and Supplementary Tables S1–S2). Then, we sought for the
overlapping DEGs between the two datasets. We observed 6 up-
and 19 down-regulated genes in SS compared with HC
(Figure 2C). We also found 13 up- and 19 down-regulated
genes in NASH compared with HC (Figure 2D).

GO and KEGG Pathway Enrichment
Analysis
To explore the potential roles of DEGs among HC, SS, and
NASH, GO and KEGG pathway enrichment analysis were
performed. The up-regulated genes between HC and SS were

FIGURE 2 | Identification of differentially expressed genes (DEGs) among HC, SS, and NASH. (A) Heatmap of overlapping DEGs in GSE48452; (B) Heatmap of
overlapping DEGs in GSE89632; (C) Venn diagrams displayed the overlapping DEGs of up- and down-regulated genes between HC and SS; (D) Venn diagrams
displayed the overlapping DEGs of up- and down-regulated genes between HC and NASH.
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too few to allow identification of GO and KEGG pathway
enrichment analysis, and the up-regulated genes between HC
and NASH failed to enrich pathway in KEGG.

GO analysis showed that the down-regulated genes between
HC and SS were mainly involved in biological processes (BP)
associated with the mesenchyme morphogenesis, organic acid

FIGURE 3 | GO and KEGG pathway enrichment analysis. (A) GO analysis of DEGs among HC, SS, and NASH; (B) KEGG analysis of down-regulated DEGs
between HC and SS; (C) KEGG analysis of down-regulated DEGs between HC and NASH.
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transmembrane transport, smooth muscle cell proliferation,
response to wounding, and regulation of MAPK cascade
(Figure 3A and Supplementary Table S3). KEGG analysis
indicated that the down-regulated genes between HC and SS
primarily enriched in TGF-beta signaling pathway, MAPK
signaling pathway, MicroRNAs in cancer, PI3K-Akt signaling
pathway, and pathways in cancer (Figure 3B and Supplementary
Table S4).

The DEGs between HC and NASH were mainly involved in
biological processes (BP) associated with fatty acid biosynthetic
process, positive regulation of T cell proliferation, extracellular
matrix organization, cell-cell adhesion via plasma-membrane
adhesion molecules, mesenchyme development, and
transmembrane receptor protein tyrosine kinase signaling
pathway (Figure 3C and Supplementary Table S5). KEGG
analysis indicated that the DEGs between HC and NASH were
primarily enriched in Jak-STAT signaling pathway, PI3K-Akt
signaling pathway, and pathways in cancer (Figure 3D and
Supplementary Table S6).

Identification of Key Modules by WGCNA
WGCNA was performed to identify key modules related to
clinical traits by using GSE89632 dataset. The power of β � 5
(scale-free R2 � 0.89) was selected as the soft thresholding
parameter to construct a scale-free network (Figure 4A). A
total of 24 modules were identified (Figure 4B). Similar
module clustering was constructed by using dynamic hybrid

cutting (threshold � 0.05). The results in Figure 4C showed
that the greenyellow module was the highest positive module
correlated to NAFLD activity score (NAS, R2 � 0.79, p � 9e−10)
and steatosis (R2 � 0.63, p � 1e−5). In addition, the midnightblue
module was highly negative correlated to NAS (R2 � 0.64, p �
7e−6), and the brown module was highly negative correlated to
steatosis (R2 � 0.61, p � 2e−5). Figures 4D,E showed the positive
and negative modules.

In the module-trait analysis, we intersected the trait-related
genes highly associated with NAS and steatosis and 45 DEGs
generated from expression difference analysis, and finally
extracted 25 trait-expression-related genes for the following
analysis (Supplementary Table S7–S8).

Identification of Hub Genes and
Construction of Protein-Protein Interaction
Network
Subsequently, we construct a PPI network with 25 trait-
expression-related genes in the Metascape database. Then, 15
filtered genes were identified (Figure 5A) and later imported into
CytoHubba plugin to explore the hub genes by “MCC” methods.
The results showed that MYC, TGFB3, ADAMTS1, THBS1,
RASD1, PCDH20 (Down-regulated genes), MAMDC4,
CYP7A1, GINS2, and PDLIM3 (Up-regulated genes) were the
top 10 hub genes (Figure 5B).

FIGURE4 |WGCNA to identify trait-relatedmodules and genes. (A)Calculating soft-thresholding power; Left: scale-free fit indices using different soft-thresholding
powers;Right:mean connectivity using different soft-thresholding powers; (B) The dendrogram clustered by Dynamic Tree Cut algorithm; (C) The heatmap profiling the
correlations between module eigengenes and the clinical characteristics; (D) Scatter plot of gene significance for NAS and steatosis (Up-regulated); (E) Scatter plot of
gene significance for NAS and steatosis (Down-regulated).
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Hub Genes in NAFLD Were Associated With
Hepatocellular Carcinoma Prognosis
Afterwards, the possible relationship between hub genes and
hepatocellular carcinoma (HCC) was explored. We found that
CYP7A1, GINS2, and PDLIM3 were significantly up-regulated,
and MYC, MAMDC4, ADAMTS1, THBS1, and RASD1 were
significantly down-regulated in HCC tumor samples compared
with normal samples using the TCGA dataset (Figure 6A).
Moreover, we found that the 8 genes above were enriched in
tumor-related pathways, such as apoptosis, cell cycle, and
epithelial-mesenchymal transition (EMT) (Figure 6B).
Subsequently, we performed survival analysis in the genes
above. As demonstrated in Figure 6C, CYP7A1-high (using
quartile cutoff points) patients showed higher overall survival
(OS) rates compared to CYP7A1-low patients but had no effects
on disease free survival rate (DFS). What is more, compared to
GINS2- high (using quartile cutoff points) and PDLIM3-high
(using median cutoff points) patients, the OS rates were higher in
low expression patients. In addition, GINS2-low patients showed
a higher DFS rate compared to GINS2-high patients (Figures
6D,E). In the HPA database, the expression of CYP7A1/GINS2/
PDLIM3 was also abnormally elevated in HCC, but the
immunohistochemical picture of CYP7A1 was missing.
(Figure 6F).

DISCUSSION

Currently, the pathogenesis of NAFLD is still unclear, and the
therapeutic treatments are also limited. In the present study, we
identified 45 intersected DEGs between HC-SS group and HC-
NASH group, and respectively performed GO and KEGG
pathway enrichment analysis to explore the potential effects of
these DEGs in NAFLD. The results showed that the GO
enrichments were involved in fatty acid metabolism,

mesenchyme, extracellular matrix, cell adhesion, and
inflammatory and immune response, which also played
important roles in tumorigenesis. KEGG analysis showed that
the DEGs were primarily enriched in TGF-beta signaling
pathway, PI3K-Akt signaling pathway, pathways in cancer,
MicroRNAs in cancer, MAPK signaling pathway, and Jak-
STAT signaling pathway. Both the results of GO and KEGG
analysis all pointed to tumorigenesis. Meanwhile, the overlapping
pathways between SS and NASH were PI3K-Akt signaling
pathway and pathways in cancer, suggesting that the two
pathways could be an important therapeutic target for
NAFLD. The PI3K-AKT signaling pathway is known for
regulating metabolism, cell growth, and cell survival. The
active form of PI3K is an oncogene; thus, amplification and
mutations of PI3K are usually found in many kinds of cancers
(Matsuda et al., 2013). However, in this study, the PI3K-AKT
signaling pathway was down-regulated in NAFLD patients.
Previous studies had shown that the inhibition of PI3K-AKT
signaling pathway increased hepatic insulin resistance, which
exacerbated the accumulation of fat in the liver (Ntandja et al.,
2020); what’s more, a restoration of PI3K-AKT pathway
improved the liver injury and fat accumulation (Li et al.,
2013). Long-duration effects of lipotoxicity aggravated the
inflammatory reaction in the liver, leading to dysregulation of
the PI3K-AKT signaling pathway, which might finally result in
HCC (Asgharpour et al., 2016). Our findings were also consistent
with previous reports (Wang et al., 2019; Liu et al., 2020).

Due to NAS and steatosis were the two main pathologic
indicators in the estimation of NAFLD, we tried to find out
the DEGs related to the NAS and steatosis. We identified 25
DEGs related to the NAS and steatosis, and PPI network analysis
was performed to explore the hub genes in the pathogenesis and
progression of NAFLD. Eventually, we determined 10 hub genes
(Down-regulated genes: MYC, TGFB3, ADAMTS1, THBS1,
RASD1, PCDH20; Up-regulated genes: MAMDC4, CYP7A1,
GINS2, and PDLIM3) related to NAS and steatosis.

FIGURE 5 |Construction of protein-protein interaction (PPI) networks for 25 trait-expression-related genes in the Metascape database. (A) PPI network of 15 trait-
expression-related genes. Red node represented the Molecular Complex Detection (MCODE) algorithm applied to identify densely connected network components. (B)
Results of the CytoHubba plugin; the color changed from yellow to red was indicative of the rank of protein, and the deeper the red staining, the higher rank of
protein was.
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HCC is the fourth-leading cause of cancer death
worldwide, and the morbidity of NAFLD-related HCC is
predicted to increase dramatically by 2030, with increases
of 82, 117, and 122% from 2016 in China, France, and the
USA, respectively (Yang et al., 2019; Huang et al., 2021).
Therefore, we explore whether these ten hub genes were
associated with the progression in HCC in the TCGA
database. We found that CYP7A1, GINS2, and PDLIM3
were significantly up-regulated, and MYC, MAMDC4,
ADAMTS1, THBS1, and RASD1 were significantly down-
regulated in HCC tumor samples compared to normal
samples. Surprisingly, we also found that CYP7A1/GINS2/
PDLIM3 were correlated with HCC prognosis.

CYP7A1, catalyzing the first and rate-limiting step in the
classic bile acid synthesis pathway, has been shown to be
involved in lipid metabolism (Wang et al., 2020). Deficiency of
CYP7A1 caused by homozygous deletion mutations can inhibit
the production of bile acids, leading to the accumulation of
cholesterol in the liver, reducing LDL receptors and elevating
LDL cholesterol (Pullinger et al., 2002). However, CYP7A1 was

up-regulated in SS and NASH group compared with HC group in
our study. Previous studies have shown that CYP7A1 and its
associated cholesterol processes were adversely regulated in
NAFLD (Wruck and Adjaye, 2017), and glucose stimulates
CYP7A1 transcription in human hepatocytes (Chiang and
Ferrell, 2020). Therefore, up-regulating CYP7A1 in NAFLD
may be the consequence rather than the cause of disease (Jia
and Zhai, 2019). In addition, increased CYP7A1 expression and
bile acid synthesis ameliorated hepatic inflammation and fibrosis,
proving its anti-tumor effects (Liu et al., 2016).

GINS2, a member of the GINS family, plays a crucial role in
DNA duplication and is highly expressed in various types of
cancer (Kubota et al., 2003; Tian et al., 2020). However, very little
research can be found about GINS2 in the liver, especially in
NAFLD. Previous bioinformatics studies indicated that GINS2
might be the hub genes in the development of NASH to HCC and
predicted poor prognosis in HCC, but there was no further
experiment to verify its effects on NAFLD (Lian et al., 2018;
Zhang et al., 2020).

FIGURE 6 | Expression and survival analysis of the NAFLD’s hub genes in hepatocellular carcinoma (HCC). (A) Hub genes in NAFLD were dysregulated in
hepatocellular carcinoma (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001); (B) Enriched pathways of 10 hub genes in the TCGA database. (C–E) Survival plots of
CYP7A1, GINS2, and PDLIM3; (F) Protein expression of GINS2 and PDLIM3 between normal patients and HCC patients in the HPA database.
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PDLIM3, highly expressed in skeletal and cardiac muscle, has
been suggested to play a pivotal role in myocyte stability, signal
transduction, and mechanical signaling, especially in growth and
remodeling processes (Zheng et al., 2010). Interestingly, PDLIM3
was firstly screened out for a new hub gene in the pathogenesis of
NAFLD and was associated with the prognosis of HCC. PDLIM3
was highly related to EMT in the GSCALite database, which
might partially reveal its effects in the pathogenesis in NAFLD
and HCC. More future studies are needed to gain more insights
about PDLIM3.

In the present study, more attention was applied to the
pathogenesis of NAFLD in obesity, which was rare in other
studies. However, the present study had several limitations.
Firstly, further experiments were required to verify these
results. Secondly, it was hard to identify HCC patients caused
by NAFLD in the TCGA database, which might impact the
outcomes.

In conclusion, we analyzed two public datasets to identify
DEGs among HC, SS and NASH. GO and KEGG pathway
analysis revealed that the pathogenesis and progression of
NAFLD were highly associated with tumorigenesis. Finally, we
screened out 10 hub genes related to NAS and steatosis, and three
of them were correlated with HCC prognosis. Although further
validation is still needed, we provide useful and novel information
to explore the potential candidate genes for NAFLD prognosis
and therapeutic options.
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