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Abstract: The non-essential amino acid cysteine is used within cells for multiple processes that rely on
the chemistry of its thiol group. Under physiological conditions, many non-transformed tissues rely
on glutathione, circulating cysteine, and the de novo cysteine synthesis (transsulfuration) pathway
as sources of intracellular cysteine to support cellular processes. In contrast, many cancers require
exogeneous cystine for proliferation and viability. Herein, we review how the cystine transporter,
xCT, and exogenous cystine fuel cancer cell proliferation and the mechanisms that regulate xCT
expression and activity. Further, we discuss the potential contribution of additional sources of cysteine
to the cysteine pool and what is known about the essentiality of these processes in cancer cells.
Finally, we discuss whether cyst(e)ine dependency and associated metabolic alterations represent
therapeutically targetable metabolic vulnerabilities.
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1. Introduction

It was recognized early in the 20th century that neoplastic tissues exhibit a dysregulated form of
metabolism. Metabolic reprogramming is considered a hallmark of the oncogenic process [1], with
much of cancer cell metabolism being dedicated to support high rates of proliferation and to alleviate
associated cellular stress. It has long been hypothesized that this altered metabolism could be exploited
to treat cancers [2]. The many metabolic changes in cancer cells may represent potentially targetable
vulnerabilities [3].

Reliance on amino acids to fuel the high anabolic metabolism is a vulnerability of cancer cell
metabolism. Amino acids are essential for oncogenic proliferation and survival [4–7]. Of particular
interest are methionine and cysteine, the only proteinogenic amino acids among the many
sulfur-containing amino acids, with the former being essential and the latter considered semi-essential.
Both methionine and cysteine fulfill an important role as the main source of sulfur for a diverse set
of biochemical reactions within the cell [8]. Recent studies suggest that the manner by which cancer
cells obtain cysteine and how cysteine is used are key to cancer cell survival and more complex than
previously appreciated. In this review, we discuss how cancers obtain cysteine, how this promotes
cancer cell survival, and how this may ultimately represent an exploitable metabolic vulnerability.

2. Use of Cysteine

Cysteine is used widely throughout the cell for diverse roles including catalysis, trafficking, and
mediating the oxidative stress response [9,10]. For a more in-depth overview of the uses of cysteine,
please see Bak et al. and Stipanuk et al. [8,9]. The importance of cysteine within the cell lies within
its sulfur moiety, which exists as a nucleophilic thiol (-SH) that is readily oxidized. When cysteine is
incorporated into proteins, this reactivity helps to determine their form and function. Oxidation or
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electrophilic attack of the thiol by reactive molecules within the cell, such as reactive oxygen species
(ROS), is used to maintain redox balance and in signaling. Cysteines within the protein also react
to create disulfide bridges for proper protein folding. The reactivity of free thiols causes much of
the available cysteine to be bound to other molecules but especially other cysteines by disulfide
bonds. The oxidizing conditions of the extracellular environment promote cysteine oxidation, in which
cysteine forms a dipeptide through disulfide bonding with another cysteine to form cystine. Cystine is
the predominant form of cysteine extracellularly and a major form in which cysteine is acquired by
tissues [11]. Alternatively, cysteine is produced from methionine through the de novo transsulfuration
(TSS) pathway. Cysteine may also be salvaged from glutathione, taken up in its reduced form from
extracellular sources, or from protein catabolism [12–14].

Cysteine usage is important in maintaining cellular homeostasis and survival in cancer cells.
Although cysteine is incorporated into protein sparingly in a highly conserved manner due to its
reactivity, protein synthesis accounts for the majority of cellular cysteine usage [9]. Another major use
of cysteine within the cell is the production of the tripeptide antioxidant glutathione. Glutathione is
composed of glycine, glutamate, and cysteine, with cysteine being limiting for glutathione synthesis
in normal tissues. Glutathione is a key component in the cellular oxidative stress response through
its direct oxidation of its thiol to produce oxidized glutathione (GSSG) and also through its use by
enzymes such as glutathione peroxidases (GPx) [15]. Cancer cells contain high concentrations of
glutathione for mitigating ROS generation and the detoxification of xenobiotics [16]. High glutathione
levels buffer oxidative stress in cancer cells that would otherwise cause cell death. Cysteine is also
used to produce the amino acid taurine which is used in mitochondrial function and control of cellular
osmolarity, the gasotransmitter hydrogen sulfide (H2S), and iron-sulfur clusters for respiration and as a
co-factor for various enzymes, including aconitase [17,18]. Use of cysteine to produce these compounds
is dependent on cancer and microenvironmental context. For instance, taurine production is inhibited
in some lung cancer cell lines allowing for a dramatic increase in intracellular cysteine [19]. Hydrogen
sulfide production is increased in lung cancer cell lines to promote mitochondrial bioenergetics and for
the control of mitochondrial DNA repair [20].

3. Regulation of Cysteine Metabolism

Cysteine is necessary to promote cancer cell proliferation and survival, and can be acquired
through multiple pathways depending upon extracellular and intracellular conditions. The metabolic
demands placed upon a cell from the stresses associated with proliferation caused by oncogenic
transformation produce unique needs that must be met through extracellular sources of cysteine and
de novo cysteine generation [5,21,22].

3.1. xCT Uptake of Cystine

Extracellular cystine is readily abundant (approximately 50 µM) within the body, as the liver
produces and exports a great amount of cysteine that is quickly oxidized [11,23–25]. This glut of cystine
is utilized by cancer cells to elevate intracellular cysteine levels for catabolic usage. Many cancer cell
lines highly express the Na+-independent cystine/glutamate antiporter xCT, which is encoded by the
SLC7A11 gene [26–29] (Figure 1). The activity of this antiporter is attributed to system xc-. System xc-
is composed of xCT and a separate protein, known as solute carrier family 3 member 2 (SLC3A2 or
4F2), that localizes xCT to the cell membrane [30]. For the purposes of this review, xCT will be used to
refer to the activity and protein interaction ascribed to system xc-.

The brain and immune system are the two major sites of xCT expression; however, xCT is
dispensable for development [31]. However, the expression of xCT is highly inducible in normal cells
and is likely a major component in dealing with stressors such as inflammation or infection that induce
oxidative stress [27,31–33]. The import of cystine by xCT has been at the forefront of many cysteine
metabolism studies in cancer cells as many cancers, including glioblastoma, triple-negative breast
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cancer, and non-small cell lung cancer, overexpress and use xCT for cystine uptake [22,26–29,34]. xCT
expression drives increased uptake of cystine to produce cysteine for use by the cell [22,26,35].
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Figure 1. Acquisition of cysteine from extracellular cystine through xCT and de novo production
of cysteine through the transsulfuration pathway. (Left) Extracellular cystine is transported into the
cell through xCT while glutamate is exported. Thioredoxin or glutathione reduce cystine to cysteine,
which is subsequently used for the synthesis of proteins, glutathione, and other sulfur-containing
molecules. (Right) The de novo cysteine synthesis pathway (transsulfuration) requires the sulfur
group from methionine. In the methionine cycle, methionine is adenosylated to produce SAM. SAM
donates a methyl group to a methyl acceptor (protein, RNA, or DNA) to generate SAH. SAH hydrolase
(not shown) generates Hcy from SAH. Hcy can regenerate methionine by accepting a methyl group
from betaine or 5-MTHF from the folate cycle. Hcy can alternatively exit the methionine cycle via its
condensation with serine by CBS in the first step of the transsulfuration pathway to produce Cth. Cth is
subsequently hydrolyzed by CSE to ammonia (not shown), α-ketobutyrate (not shown), and cysteine.
5-MTHF: 5-tetramethylhydrofolate, 5-THF: 5-tetrahydrofolate, Cth: cystathionine, CBS: cystathionine
β-synthase, CSE: cystathionine γ-lyase, CysSH: cysteine, CysSSCys: cystine, DMG: dimethylglycine,
GSH: glutathione, Hcy: homocysteine, Met: methionine, SAH: S-adenosylhomocysteine, SAM:
S-adenosylmethionine, TXN: thioredoxin.

The expression and activity of xCT are controlled by multiple factors, many of which are aberrantly
active in cancer cells. Stress induced by starvation of key nutrients such as glucose or cysteine
upregulates the transcription factors nuclear factor (erythroid-derived 2)-like 2 (NRF2) and activating
transcription factor 4 (ATF4) to jointly or independently control xCT expression [36–40]. NRF2 is
activated following exposure of cells to oxidative insult. Oxidization of cysteines on Kelch-like
ECH-associated protein 1 (KEAP1) prevents NRF2 polyubiquitination and degradation [41]. NRF2
is subsequently stabilized to transcriptionally upregulate antioxidant response genes including xCT,
the rate-limiting enzyme in glutathione synthesis, glutamate cysteine ligase (GCL), and enzymes
used in detoxification of ROS, such as GPx [42], to attenuate ROS damage. Cystine uptake via
xCT facilitates glutathione synthesis for ROS detoxification, thereby allowing restoration of KEAP1
function and redox homeostasis. Similar to NRF2, ATF4 is key in sensing and responding to cysteine
availability. ATF4 is part of the integrated stress response (ISR) and responds to various stimuli such
as endoplasmic reticulum (ER) stress or amino acid starvation. Under basal conditions, the interaction
of eIF2 ternary complex and the start codon of the second upstream open reading frame (µORF2)
in the 5’-untranslated region of ATF4 inhibits ATF4 translation [43,44]. Amino acid starvation
promotes the accumulation of uncharged tRNAs that activate general control nonderepressible
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2 (GCN2), which phosphorylates eukaryotic initiation factor 2α (eIF2α). Phosphorylated eIF2α
represses global cap-dependent translation but allows cap-independent translation [44,45], resulting
in translation of ATF4 and induction of ATF4 target genes. ATF4 and NRF2 target genes, including
xCT, are essential in maintaining cellular homeostasis during amino acid deprivation by increasing
mediators of amino acid uptake and stress response such as asparagine synthetase (ASNS), cationic
amino acid transporter 1 (CAT1), NAD(P)H:quinone oxidoreductase (NQO1) and glutathione specific
γ-glutamylcyclotransferase 1 (CHAC1) [38,46–49]. Amino acid starvation is not the only stressor
capable of inducing xCT expression and activity. Stress induced through proteasomal inhibition,
glucose starvation, glutamate toxicity, ER stress, or ROS generation activate NRF2 and ATF4 activity
and upregulate xCT [36,37,39,50,51]. Transcription factors can also suppress xCT expression and
oxidative stress responses. The tumor suppressor p53 negatively regulates xCT expression under stress
conditions to promote ferroptotic cell death [52]. p53 is the most commonly mutated tumor suppressor,
which may explain in part the frequent overexpression of xCT in human cancers. In addition, the
tumor suppressor breast cancer 1 gene (BRCA1) associated protein-1 (BAP1), a deubiquitinase that
is commonly silenced or lost in many cancers, also represses xCT expression [53]. Thus, there are
multiple transcriptional inputs that control xCT expression that are commonly deregulated in cancer.

xCT activity is also regulated through posttranslational modification. While some cancer cells
are dependent on xCT for survival [15], a subset can limit xCT activity downstream of growth factor
pathway signaling. Oncogenic phosphatidylinositol 3-kinase (PI3KCA) mutations activate protein
kinase B (AKT), which phosphorylates xCT at serine 26 to suppress cystine/glutamate antiport [5].
Suppression of xCT activity induces a methionine dependency rather than a cystine dependency.
This modulation of xCT activity by aberrantly active AKT may be specific to breast cancer cell lines
and/or only present in cancer cells with oncogenic PI3KCA mutations as many cancer cells are cystine
dependent. This site has also been shown to be a site of mechanistic target of rapamycin complex
2 (mTORC2) phosphorylation [22]. Oncogenic activation of AKT by mutant PI3KCA and mTORC2
signaling are common in cancers, and consequently xCT activity may be influenced by multiple
posttranslational and metabolic inputs. Indeed, xCT is also regulated by substrate availability in the
tumor microenvironment. Glutamate released by xCT into extracellular space accumulates and inhibits
glutamate/cystine exchange. In triple negative breast cancer (TNBC) and non-small cell lung cancer
(NSCLC) cells, inhibition of xCT by glutamate leads to a reduction in intracellular concentrations
of free cysteine [34]. Free intracellular cysteine normally prevents auto-oxidation and inhibition of
hypoxia-inducible factor prolyl hydroxylase 2 (EgIN1), which targets hypoxia inducible factor 1α
(HIF1α) for degradation. Inhibition of xCT suppresses intracellular cysteine and stabilizes HIF1α [34].
In these cells, modulation of xCT is exploited to shape a tumor microenvironment conducive to
increased aggressiveness. xCT activity is exploited to mediate both cell stress response and promote
proliferation in many cancers.

As a consequence of their dependency on xCT to acquire cysteine, cancer cells become vulnerable to
modulation of xCT activity and metabolic processes related to xCT. As described previously, xCT activity
requires obligatory export of glutamate for the import of extracellular cystine. Glutamate is produced
intracellularly from glutamine via glutaminase, which supplies glutamate for both xCT activity and
for tricarboxylic (TCA) cycle anaplerosis. High xCT activity in cells creates a glutamine/glutamate
dependency that sensitizes cells to glutaminase inhibition [25,26,54]. This glutamine dependency
relies on extracellular cystine content and xCT activity [25]. As noted previously, NRF2 regulates xCT
expression. Tumors bearing a mutant form of KEAP1 unable to bind and degrade NRF2 are sensitive
to glutaminase inhibition as a consequence of xCT activity [55]. KEAP1 mutant cells are glutamate
deficient due to a high demand for glutamate for both glutathione synthesis and glutamate/cystine
exchange, leading to inadequate glutamine entry into the TCA cycle [26]. Similarly, xCT expression
induces glucose dependency via a similar TCA anaplerosis mechanism. Further, cystine reduction
requires NADPH, which is primarily supplied via the pentose phosphate pathway (PPP) from
glucose. With high rates of cystine uptake by xCT, NADPH quickly becomes limiting [19,37,54,56,57].
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Thus, cystine-dependency rewires cellular metabolism to confer sensitivity to both glutamine and
glucose starvation.

Furthermore, xCT expression is an indication of extracellular cystine dependency in cancers.
Inhibition, knockdown, or knockout of xCT remains a prime strategy to induce cancer cell death
for therapeutic treatment [28,29]. Inhibitors of xCT have been used to exploit cancer cell reliance on
exogenous cystine. Sulfasalazine (SAS) and erastin are two of the best characterized inhibitors of xCT
activity [15,27,34,58,59]. Cell death induced by cystine starvation or blockade of xCT is mediated by
the non-apoptotic cell death mechanism, ferroptosis [15,58–60]. For a comprehensive discussion of
this topic, please see Stockwell et al. [59]. SAS is widely used because it is already in use in the clinic
to treat rheumatoid arthritis [27]. Despite this, erastin is a more potent inducer of ferroptosis [15,58].
Ferroptosis by these small molecules is attributed to inhibition of both xCT activity and glutathione
synthesis. Although glutathione depletion is essential for ferroptosis, inhibition of glutathione synthesis
with buthionine sulfoximine (BSO) does not induce ferroptosis. The rate of glutathione depletion may
play a role in this discrepancy, as active mitochondria deplete glutathione and lead to ferroptosis but
inhibition of mitochondrial respiration spares glutathione and promotes cell survival [61]. A similar
effect is seen by activation of wild-type p53. This downregulates xCT expression and activity but
spares glutathione and leads to insensitivity to erastin treatment [62].

Although promising, xCT inhibition proved ineffective in a clinical trial for glioma therapy. SAS
treatment was actively detrimental for patient survival and the trial was terminated early. Poor outcome
possibly occurred because off-target effects of SAS exacerbated pre-existing conditions generated by
the glioma [63]. An alternative to xCT inhibition is removal of its substrate, cystine. Cystine restriction
would not be easy to achieve through dietary intervention in human patients. To address this challenge,
Cramer et al. generated an engineered, stable form of cystathionine γ-lyase (CSE), called cyst(e)inase,
capable of depleting cystine/cysteine from the circulation in vivo. Cyst(e)inase treatment effectively
starved tumors, including NSCLC and prostate cancer, of extracellular cystine [6]. Unlike the observed
toxicity of SAS in the clinic, cyst(e)inase treatment produced no toxic side effects following long term
treatment in mice [6]. This study showed that many cancers are reliant on cyst(e)ine for survival.
It argues that compensatory mechanisms of acquiring cysteine are not capable of sustaining survival in
the tested cancers and indicates that xCT or other cyst(e)ine importers are relevant therapeutic targets.
Given the importance of xCT in maintaining cancer cell survival, more studies are likely to follow
targeting cystine and xCT. A current barrier for these studies is the lack of specificity of the drugs
available to target xCT. Additionally, cystine starvation induces ferroptosis in many tested cancers;
however, a subset of cancers is resistant. It remains to be seen whether use of compensatory pathways
may explain how this resistance is achieved.

Other Cystine Transporters

While solute carrier family 3 member 1 (SLC3A1) is proposed to be a cysteine transporter,
mutations in SLC3A1 lead to cystinuria [64,65], suggesting it instead transports cystine. SLC3A1
is regulated in a NRF2-dependent manner and is associated with cancer stem cells in liver cancer
cell populations [66,67]. SLC3A1 upregulation also promotes breast cancer growth by the uptake of
cyst(e)ine. The SLC3A1-mediated increase in intracellular cysteine ameliorates ROS and inhibits protein
phosphatase 2A (PP2A) activity allowing AKT signaling to induce the activity of the transcription
factor β-catenin [65]. Whether this same signaling cascade occurs through other cyst(e)ine importers or
in other cell lines is unknown. SLC3A1 exit from the endoplasmic reticulum is facilitated by SLC7A9,
and mutations in SLC7A9 also result in cystinuria [68]. Nothing is known of the importance of other
cystine transporters in cancer cells.

3.2. The Transsulfuration Pathway and de Novo Cysteine Synthesis

An alternative source of cysteine to exogenous cystine is the TSS pathway. As detailed previously,
cysteine produced by the TSS pathway is derived from methionine and serine. Methionine is obtained
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from the extracellular environment and converted into S-adenosylmethionine (SAM) by methionine
adenosyltransferases (MAT) through the transfer of the adenosyl group from a molecule of adenosine
triphosphate (ATP). SAM is the major source of methyl groups for methylation of biomolecules within
the cell. These methylation reactions produce S-adenosylhomocysteine (SAH), which is subsequently
metabolized to homocysteine (Hcy) by SAH hydrolase (SAHH). Hcy metabolism is the key branchpoint
between the methionine cycle and the TSS pathway. Hcy may be remethylated to methionine by
methionine synthase (MS), with 5-methyltetrahydrofolate donating the methyl group. Alternatively,
Hcy methylation can be catalyzed by betaine homocysteine methyltransferase (BHMT), using betaine
as the methyl donor. This reaction is tissue specific as BHMT is expressed primarily in the liver and
kidneys and at low levels in the brain, testis, and lung [69]. Hcy may also irreversibly enter the TSS
pathway through the condensation of serine and Hcy by cystathionine β-synthase (CBS) to produce
cystathionine (Cth). Cth is subsequently hydrolyzed to cysteine, ammonia, and α-ketobutyrate by
CSE [70] (Figure 1).

Because methionine donates the sulfur, cysteine produced by the TSS pathway is derived from
the methionine cycle. However, it is important to note that the methionine cycle contributes to other
essential biological functions, including methylation of biological substrates. Because of this, only a
fraction of cellular methionine is available for transsulfuration [71]. Regulation of methionine usage is
tightly regulated via the levels of methionine cycle intermediates, which control the activity of the TSS
pathway. CBS is a key point of regulation because of its position at the methionine cycle/TSS pathway
branchpoint. Acting as an allosteric activator, SAM interacts with the C-terminal portion of CBS and
promotes entry of Hcy into the TSS pathway, thereby irreversibly committing methionine sulfur to
the synthesis of cysteine [8,70–73]. The SAM/SAH ratio approximately represents the methylation
capacity of cells and CBS activity maintains this balance [8,74]. The C-terminal portion of CBS can
also be cleaved to produce a 45 kDa constitutively and highly active form of CBS unresponsive to
SAM regulation [8,39,75]. CBS cleavage has been observed following TNFα stimulation, and results in
increased TSS pathway activity to promote glutathione synthesis to deal with ROS generation [76].
The presence of a SAM-independent form of CBS suggests that a metabolically uncoupled TSS pathway
facilitates the rapid removal of Hcy or increased cysteine synthesis capacity, which promotes survival
under oxidizing conditions.

CBS and CSE are also regulated by multiple post-translational modifications and transcriptional
control. Reviewed in depth by Sbodio et al., CBS activity is increased by glutathionylation, decreased
by sumoylation, and altered by phosphorylation at serine 227 to produce more H2S than it would
by canonical TSS pathway activity. CSE is activated by phosphorylation by AKT and expression
is upregulated by farnesoid X receptor (FXR) and specificity protein 1 (Sp1) [39]. ATF4 and NRF2
regulate CBS and CSE transcriptionally, although CBS is upregulated and CSE is downregulated in
ATF4-deficient mouse embryonic fibroblasts (MEF) suggesting that ATF4 control of the TSS pathway
is dependent upon cellular and stimulus contexts [39,77]. Both CBS and CSE require the co-factor
pyridoxal 5′-phosphate (PLP), the active form of vitamin B6, and CBS requires a heme group to function.
CBS activity is induced following ER or oxidative stress conditions and exhibits a cytoprotective
effect [10,78,79]. Functional CSE is crucial for ATF4-mediated cytoprotection by increasing the
production of cysteine for glutathione synthesis [77].

Unlike xCT, almost all non-neoplastic tissues within humans and mice express CBS, CSE, or both
of these proteins. The liver and pancreas express both CBS and CSE while the brain expresses
CBS with little or no CSE expression or activity [80,81]. It is estimated that between 20–50% of the
cysteine (available predominantly as cystine) within the body is produced in the liver through the TSS
pathway [10,82]. Phenotypically, individuals harboring mutations in CBS all share elevated levels of
methionine and homocysteine. Disease resulting from CBS mutations range from pneumothorax to
mental retardation, thrombosis, ectopia lentis, and skeletal issues similar to Marfan syndrome [83,84].
This suggests that CBS activity is crucial in the cardiovascular tissues, brain, eye, skeletal muscle,
and in bone growth. CBS complete knockout (KO) mice die post-natally within five weeks, while CSE
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KO mice are viable [85,86]. CSE KO mice do not have a notable phenotype in the presence of dietary
cysteine. However, following cysteine starvation, these mice present with symptoms similar to CBS
KO mice [86]. Like CBS mutations, CSE mutations result in elevated methionine and homocysteine
as well as cystathionine [87]. The exact mechanism by which increased methionine, homocysteine,
or cystathionine is of direct etiological significance in correlated disease states is controversial [88].
Treatment of humanized CBS mice, a model mimicking the reduced level of CBS activity caused by
mutations in humans, with betaine reduces Hcy levels and ameliorates much of the toxicity induced
by Hcy [79]. One potential mechanism of Hcy toxicity is a decrease in the SAM/SAH ratio that leads
to hypomethylation and aberrant upregulation of genes within the cell [89,90]. The difference in
severity of CBS and CSE KO mice phenotypes suggests that production of cysteine may not be the only
important functions of CBS and CSE.

The inability to acquire cysteine through xCT may force cancer cells to use the TSS pathway, less
common extracellular dipeptides, or extracellular glutathione to produce cysteine for proliferation [5,30,50,91].
A select group of cancer cells are capable of modulating xCT activity while relying on the TSS pathway
for survival. Breast cancer cells harboring oncogenic PI3KCA mutations (E545K or H1047R) are
dependent on extracellular methionine and cannot regenerate methionine from Hcy. These PI3KCA
mutations activate AKT to phosphorylate xCT and suppress cystine/glutamate antiport activity [5].
The methionine dependency occurs at the branch point, Hcy, of the methionine cycle and the TSS
pathway. The decreased cystine uptake leads to a dependency on the TSS pathway to produce
intracellular cysteine. If methionine is removed and substituted with Hcy, Hcy is still committed to
producing cysteine rather than being remethylated to produce methionine. As such, the cells become
reliant on extracellular methionine for survival. As described previously, mTORC2 similarly regulates
xCT activity, and suppresses cystine in glioblastoma, TNBC and NSCLC cell lines [22]. It is posited
that mTORC2 regulation of xCT acts as a form of metabolic control. When cells are in replete or
plentiful nutrient circumstances, xCT activity is suppressed by active mTORC2 allowing for anaplerotic
glutamine usage and enhanced cellular growth. Inhibition of mTORC2 activity by nutrient deprivation
causes export of glutamate by xCT to facilitate the uptake of extracellular cystine and the promotion of
cellular survival in times of nutrient scarcity and cellular stress [22]. Additionally, by activating the
TSS pathway and suppressing xCT, the susceptibility of cells to ferroptosis through xCT inhibition is
decreased [5]. This may be accomplished by using other cellular mechanisms to acquire cysteine as
well as slowing the depletion of glutathione. For example, wild-type p53 activation in fibrosarcoma
cells slows the depletion of glutathione and inhibits xCT activity to prevent ferroptosis induction.
This may be in response to stressors that preferentially induce ferroptosis rather than another cell death
mechanism [62].

As aforementioned, many studied cancer cells are incapable of relying solely on the TSS pathway
for survival. It is unknown why the TSS pathway is insufficient for the cysteine needs of these cells,
but recent studies indicate that downstream use of the produced cysteine plays a role. Cysteinyl-tRNA
synthetase (CARS) aminoacylates tRNAs with cysteine and its activity in fibrosarcoma cells is essential
for xCT inhibition-induced ferroptosis. When CARS is knocked out, fibrosarcoma cells upregulate the
TSS pathway and consequently become insensitive to xCT inhibition-induced ferroptosis. Ferroptosis
sensitivity is reestablished by inhibiting CSE with propargylglycine (PPG) [91]. Other downstream
processes that can rapidly use cysteine or cysteine products, like glutathione synthesis, cause stress
in cysteine starved cells and mediate ferroptosis sensitivity [21,61,91]. Alternatively, many cancer
cells may simply be unable to use the TSS pathway. For example, in hepatocellular carcinoma (HCC),
downregulation of CBS is associated with disease severity and the CBS promoter is methylated in
HCC, gastric, and colorectal carcinoma preventing expression [70,73,81,92]. This marks cancers like
HCC as prime targets for xCT inhibition therapy as the TSS pathway may not be functional and able to
compensate for loss of cystine import.

The TSS pathway and xCT both play integral roles in the ISR through ATF4 and the oxidative stress
response through NRF2, suggesting that induction of cellular stress by traditional chemotherapeutics
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could open the possibility of targeting stressed cells through metabolic intervention [30,38,77]. It is
unknown why some cancers are able to use the TSS pathway and are not reliant on xCT for cysteine.
More work is needed to understand what distinct metabolic or signaling pathways separate the
xCT-inhibition sensitive and insensitive cancers. Whether CBS and CSE have functional roles in cancer
cell survival independent of their ability to produce cysteine from Hcy is unexplored. It remains to be
seen whether the TSS pathway plays a role in tumorigenesis and cancer cell survival and whether it
represents a viable therapeutic target.

3.3. Cysteine-Specific Transporters

The majority of extracellular cysteine is oxidized to cystine, but cancers such as leukemia are
capable of uptaking cysteine preferentially [12]. There is accumulating evidence for the presence
of specific transporters for cysteine. Growth of ATF4 knockout MEFs requires the addition of the
reducing agent β-mercaptoethanol, which reduces media cystine to cysteine, or excess cystine in the
media to support their proliferation, viability and glutathione synthesis. Similarly, β-mercaptoethanol
rescues cysteine starvation induced by xCT inhibition [52,91]. Additionally, extracellular breakdown
of glutathione produces glutamate, glycine, and cysteine separately that are transported into the cell.
These findings suggest that transporters capable of cysteine-specific uptake exist [13,93].

Little is known about cysteine-specific transporters, including their expression, mechanism of
regulation, and whether they play important roles in cancer cell cysteine metabolism. A candidate
cysteine-specific transporter is the excitatory amino acid transporter 3 (EAAT3), also referred to as
SLC1A1 (Figure 2). EAAT3 is a member of a class of amino acid transporters notable for being expressed
highly in the brain [94] and expressed in the lung, liver, kidneys, heart, and skeletal muscle [95]. EAAT3
can transport glutamate, aspartate, cysteine, and selenocysteine into the cell [94,96–98]. However,
whether EAAT3 plays a role in cysteine metabolism in cancer cells is unknown.

Despite evidence for its existence, a transporter that can specifically take up cysteine and not
cystine has not been positively identified in cancer cells. At approximately 10% of the concentration of
cystine, the extracellular concentration of cysteine is low in comparison [99,100]. However, this is still
a substantial amount of cysteine available for exploitation by cancer cells, and extracellular cysteine
transport may play an unrecognized role in cancer cell survival. Given that a subset of cancers do
not express xCT, more studies are necessary to determine whether a cysteine-specific transporter is
necessary for the proliferation of these cancers.

3.4. Glutathione Degradation and Cysteine Salvage

Much like cystine, glutathione is produced in the liver and exported into the extracellular
space [101]. The extracellular concentration of total glutathione ranges, depending on tissue and
extracellular fluid analyzed, from approximately 3 µM to 400 µM in healthy adults [102–104].
Glutathione is critical in protecting tissues from oxidative stress and balancing the redox state
of the extracellular environment but it can also serve as a source of cysteine for cells [13,105]. As
the cysteine in glutathione is bound to glutamate and glycine as a tripeptide, glutathione must be
degraded to make the cysteine freely available. The breakdown of glutathione to produce cysteine
is achieved by the γ-glutamyl cycle. First, the extracellular facing γ-glutamyl transpeptidase (GGT)
protein cleaves the γ-glutamyl bond of glutathione and liberates the γ-glutamyl amino acid from the
cysteinylglycine dipeptide. The extracellular facing aminodipeptidase N then cleaves glycine from
cysteine and allows cysteine to be taken up by cysteine transporters or oxidized and taken up by
cystine transporters [13,93,106]. Alternatively, human peptide transporter 2 (PEPT2) can transport
cysteinylglycine into the cell where it is cleaved by non-specific dipeptidases to free the cysteine [107]
(Figure 2).
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Figure 2. Cells acquire cysteine from extracellular glutathione through the γ-glutamyl cycle, cysteine
uptake, and lysosomal protein scavenging by macropinocytosis with cystine export. (Left) Extracellular
cysteine is transported into the cell through unidentified cysteine transporters, possibly EAAT3. (Center)
The γ-glutamyl bond in extracellular glutathione is cleaved by GGT to create 5-oxoproline and the
dipeptide cysteinylglycine. Cysteinylglycine can be taken up by the cell through PEPT2 and cleaved
intracellularly by non-specific dipeptidases to cysteine and glycine. Cysteinylglycine may also be
cleaved to cysteine and glycine extracellularly by ApN, followed by the cellular uptake of cysteine by
cysteine transporters or cystine via xCT (not shown). (Right) Soluble proteins in the extracellular fluid
are engulfed by the cell through macropinocytosis. The macropinosome containing proteins travels
to and fuses with the lysosome. The disulfide bridges of the proteins are broken, and the protein is
linearized by interaction with cysteine imported into the lysosome. The protein is hydrolyzed into
its constituent amino acids, including cystine. Lysosomal cystine is subsequently exported to the
cytosol by the lysosomal cystine transporter, cystinosin, and reduced by thioredoxin or glutathione to
cysteine. ApN: Aminopeptidase N, CysSH: cysteine, CysSSCys: cystine, EAAT3: excitatory amino
acid transporter 3, GGT: γ-glutamyltransferase, GSH: glutathione, GSSG: oxidized glutathione, PEPT2:
peptide transporter 2, TXN: thioredoxin.

Glutathione represents a small fraction of available extracellular cysteine but the γ-glutamyl cycle
and GGT are essential for organismal development. GGT KO mice fail to thrive and die within 10–12
post-natal weeks. Their plasma contains 20% of the cysteine content of their wild-type counterparts.
Supplementation with N-acetylcysteine reverses the phenotype of knockout suggesting that the lack of
availability of cysteine from glutathione plays a major role in this phenotype [101]. In normal epithelial
tissues, expression of GGT is localized to the ductal lumen where it breaks down glutathione for amino
acid salvage [105]. However, the role of GGT in cancer cell cysteine metabolism is under-investigated.
GGT is exploited in tumors as protein localization is lost, which allows for GGT to access glutathione
in both the ductal space and in the interstitial fluid. Although cancers deriving from cells of ductal
origin tend to express GGT, GGT expression closely correlates with the severity of the tumor regardless
of tissue of origin [105]. Indeed, increased GGT expression is present in multiple types of cancers
including nasopharyngeal, ovarian, and HCC. Further, overexpression of GGT in prostate cancer cells
promotes proliferation in vivo [108–110]. The cysteine derived from glutathione is used intracellularly
for the diverse roles previously discussed and as a means to reassemble glutathione intracellularly for
oxidative regulation [13].



Cancers 2019, 11, 678 10 of 19

Similar to the extracellular use of glutathione to produce cysteine, cells are capable of
degrading intracellular glutathione stores to produce cysteinylglycine through glutathione specific
γ-glutamylcyclotransferase 1 (CHAC1) [38,111]. Expression of CHAC1 is mediated by the ISR.
Amino acid starvation activates GCN2 subsequently inducing ATF4 expression which upregulates
expression of CHAC1 [38,112,113]. As a counterbalance to CHAC1 activity, glutathione specific
γ-glutamylcyclotransferase 2 (CHAC2) antagonizes the degradative activity of CHAC1 [114]. Depletion
of intracellular glutathione by CHAC1 was initially considered pro-apoptotic but, in opposition to
this, expression of CHAC1 in breast and ovarian cancers positively correlates with cancer grade
and severity. CHAC1 overexpression in breast and ovarian cancer cells promotes proliferation
and migration [38,111,115]. The shared ability of GGT and CHAC1 to degrade glutathione to
cysteinylglycine suggests that CHAC1 may act as an intracellular cysteine scavenging mechanism
when cells experience cysteine depletion. High concentrations of intracellular glutathione act as
a cysteine reservoir. While possible that CHAC1 acts in a manner to scavenge cysteine from
intracellular glutathione, knockdown of CHAC1 does not significantly alter cell death induced by
erastin treatment [113]. Studies in GGT KO animals have demonstrated the importance of glutathione
as a source of cysteine in the extracellular space [101]. It remains to be seen whether glutathione
degradation and cysteine scavenging play a major metabolic role in cancers. These studies raise
questions regarding the importance of glutathione as a cysteine source in cancers.

3.5. Macropinocytosis, Protein Scavenging, and Lysosomal Cyst(e)ine Transport

Proteins account for 70% of soluble substances in plasma with low molecular weight organic
compounds, such as free amino acids, accounting for only 20% [116]. In standard in vitro tissue culture
media, free amino acids are present in artificially high concentrations with added fetal bovine serum
(FBS) providing only 5–10% of the free extracellular protein found in in vivo serum concentrations [117].
These conditions are reversed in vivo as extracellular protein concentration is roughly 200-fold greater
than free amino acids [117]. Proteins in the extracellular space represent a large store of cysteine
available for cells to use for proliferation and survival. The process of scavenging proteins from
the extracellular space is accomplished through macropinocytosis. Macropinocytosis is the process
by which a cell’s membrane protrudes to form cup-shaped ruffles and engulfs large amounts of
extracellular fluid non-selectively [118,119]. Internalized macropinosomes containing proteins are
shuttled to and fuse with lysosomes and the proteins are degraded into their constituent amino acids.
These amino acids are then transported out of the lysosomes into the cytosol for use by the cell [119]
(Figure 2).

Macropinocytosis is promoted by onocogenic mutations in the RAS protein subfamily to
promote the scavenging of protein as a supply of amino acids. This was first noted in bladder
and pancreatic cancer cell lines both in vitro and in vivo [119]. Protein scavenging to resupply
amino acids is also controlled by the mTOR and PI3K signaling pathways and transcriptional
control of lysosomal/autophagic processes by the microphthalmia family (MiT/TFE) of transcription
factors [120–123]. Under replete conditions, active mTORC1 and PI3K signaling through AKT provide
a growth advantage to cancer cells by upregulation of free amino acid transporters and suppression of
protein catabolism for amino acids [120,121]. However, even in replete conditions, macropinocytosed
proteins provide a substantial amount of amino acids to the intracellular amino acid pools [117].
Protein catabolism for amino acids is aided by constitutive activity of MiT/TFE transcription factors in
pancreatic cancer cells. Uncontrolled nuclear localization of MiT/TFE transcription factors increases
the basal presence of lysosomes. Pancreatic cancer cells exploit constitutive MiT/TFE activity to buffer
the stress of amino acid starvation through lysosomal protein catabolism [122].

Cysteine is found sparingly in proteins because of its reactivity, which would suggest that protein
catabolism could be a relatively poor method to acquire cysteine [9]. However, intracellular cysteine
levels are increased along with the other amino acids in pancreatic tumors in vivo from catabolism
of labeled albumin [14]. Circumstantial evidence suggests that lysosomal degradation of protein
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is a possible source of intracellular cysteine. The disulfide bridges in proteins must be broken to
permit peptidases to cleave proteins into amino acids. This is achieved by the import of intracellular
cysteine into the lysosome via specific transporters [124]. Imported cysteine generates free cystine
once the protein is broken down and must be exported from the lysosome and reduced in the cytosol
to regenerate cysteine. This is achieved by the lysosomal cystine transport, cystinosin [125]. Mutations
in the human cystinosin gene CTNS lead to cystinosis, a disease characterized by rickets, renal
failure, growth retardation, and eventually death. Cystinosis is caused by an increased intracellular
cystine concentration as cystine from protein catabolism in the lysosome is unable to exit and instead
accumulates [126]. The mutations in cystinosin associated with the most severe form of cystinosis also
poorly recruit mTOR to the lysosome [127]. Mutant cystinosin leading to deregulated mTOR signaling
could play an unappreciated role in amino acid response. As cyst(e)inase should leave extracellular
proteins untouched, the effectiveness of cyst(e)inase treatment against several cancers in vivo suggests
that either macropinocytosis is not active in these cancers or that cysteine is not derived from protein
catabolism at high enough rates to support cell survival [6]. Whether protein catabolism through
macropinocytosis is a viable source of intracellular cysteine is currently unknown. Future studies may
shed light on the importance of cysteine from macropinocytosis and protein catabolism as cystinosin is
integral in the survival and function of normal tissue [125,126].

4. Conclusions and Remaining Questions

Cysteine metabolism in cancer cells is far more complex than once appreciated. The ability of
cancers to modulate the manner in which they acquire cysteine to promote proliferation may involve
key selective events during oncogenesis. Why some cancers are able to rely on both xCT mediated
cysteine accumulation and the TSS pathway has been only somewhat explored [128]. Whether the TSS
pathway, GGT, cysteine transporters, or macropinocytosis play important roles in tumorigenesis and
cell survival in cancers with xCT activity is an open question. The TSS pathway has received relatively
minor attention in the study of cancer biology as compared to xCT. The importance of the TSS pathway
even in normal extrahepatic tissues is not well understood and studied [6,39,70,128,129]. GGT and
cysteine-specific transporters have received even less attention.

An important aspect of future in vitro studies is determining the proper in vivo nutrient levels of
the tumor microenvironment and growing cells in media mimicking this [130,131]. Current in vitro
tissue culture media contains extremely high levels of almost exclusively cystine. The concentrations
of thiols in vivo are likely to contain a variable mixture of oxidized and reduced glutathione, cysteine,
cystine, and proteins. Culture of cancer cells in media mimicking human plasma substantially alters
cancer cell metabolism, and, to complicate the matter, nutrient levels in tumor interstitial fluid are
different than the nutrient levels found in plasma due to poor vascular architecture and heterogeneity
in the tumors [130,131]. Cystine dependency has been extensively studied using non-physiological
tissue culture media, so whether media more closely matching conditions experienced by tumors
in vivo would provide greater insight to cystine dependency in cancer cells is an unknown but
intriguing question.

Nevertheless, xCT expression is quite common in cancers and the results of the cyst(e)inase study
by Cramer et al. argue that in many cancers extracellular cyst(e)ine is necessary and the TSS pathway is
inadequate for survival [6]. Failure of clinical trials to show benefit in targeting xCT in gliomas with SAS
argue that better drugs are required before this metabolic vulnerability is exploited therapeutically [63].
Another limitation in our understanding of xCT necessity in cancers is a lack of a conditional mouse
SLC7A11 knockout allele to study tumor specific deletion of xCT in vivo. This model would enable
studies to determine whether compensatory methods, such as glutathione degradation or the TSS
pathway, play any role in cancer survival. It could also help to determine whether a potent and specific
pharmacological inhibitor of xCT is a practical therapeutic option against this vulnerability.

Given that different cancers experience different stressors, and that even within tumors different
cell populations experience varied stressors, it is likely that control of where and how these cells obtain
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cysteine is controlled for survival and proliferation. This is further complicated when considering
interaction of the tumor with the tumor microenvironment. For example, Burkitt lymphoma and
lymphocytic leukemia derive their cysteine almost exclusively from their surrounding stromal
tissue [12,132]. Tumor microenvironment and cancer cell crosstalk may determine usage and generation
of cysteine in an as yet undiscovered manner and further highlight the need for genetically engineered
mouse models (GEMM). Metabolomics studies have the ability to combine new techniques to stabilize
cysteine and interrogate metabolic states within cancer cells. Cysteine is highly reactive, making
in vivo determination of cysteine metabolism difficult but new and adapted techniques are available
to explore whether in vitro observations hold true in vivo [129]. With a growing understanding of the
importance of cysteine in cellular processes, future studies will provide insights into whether cysteine
metabolism represents a therapeutically targetable cancer metabolic vulnerability.
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