
viruses

Article

Comparable Infection Level and Tropism of Measles Virus and
Canine Distemper Virus in Organotypic Brain Slice Cultures
Obtained from Natural Host Species

Brigitta M. Laksono 1,†, Diana N. Tran 1,†, Ivanela Kondova 2, Harry G. H. van Engelen 3, Samira Michels 1,
Sham Nambulli 4, Rory D. de Vries 1 , W. Paul Duprex 4, Georges M. G. M. Verjans 1 and Rik L. de Swart 1,*

����������
�������

Citation: Laksono, B.M.; Tran, D.N.;

Kondova, I.; van Engelen, H.G.H.;

Michels, S.; Nambulli, S.; de Vries,

R.D.; Duprex, W.P.; Verjans,

G.M.G.M.; de Swart, R.L. Comparable

Infection Level and Tropism of

Measles Virus and Canine Distemper

Virus in Organotypic Brain Slice

Cultures Obtained from Natural Host

Species. Viruses 2021, 13, 1582.

https://doi.org/10.3390/v13081582

Academic Editors: Niklas Arnberg

and Christopher C. Broder

Received: 13 June 2021

Accepted: 6 August 2021

Published: 10 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
b.laksono@erasmusmc.nl (B.M.L.); d.tran@erasmusmc.nl (D.N.T.); s.michels@erasmusmc.nl (S.M.);
r.d.devries@erasmusmc.nl (R.D.d.V.); g.verjans@erasmusmc.nl (G.M.G.M.V.)

2 Division of Pathology, Animal Science Department, Biomedical Primate Research Centre,
2280 GH Rijswijk, The Netherlands; kondova@bprc.nl

3 Department of Clinical Sciences of Companion Animals, Veterinary Medicine, Universiteit Utrecht,
3584 CM Utrecht, The Netherlands; h.g.h.vanengelen@uu.nl

4 Centre for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
nambulli@pitt.edu (S.N.); pduprex@pitt.edu (W.P.D.)

* Correspondence: r.deswart@erasmusmc.nl; Tel.: +31-10-704-4280
† Authors contributed equally.

Abstract: Measles virus (MV) and canine distemper virus (CDV) are closely related members of
the family Paramyxoviridae, genus Morbillivirus. MV infection of humans and non-human primates
(NHPs) results in a self-limiting disease, which rarely involves central nervous system (CNS) compli-
cations. In contrast, infection of carnivores with CDV usually results in severe disease, in which CNS
complications are common and the case-fatality rate is high. To compare the neurovirulence and neu-
rotropism of MV and CDV, we established a short-term organotypic brain slice culture system of the
olfactory bulb, hippocampus, or cortex obtained from NHPs, dogs, and ferrets. Slices were inoculated
ex vivo with wild-type-based recombinant CDV or MV expressing a fluorescent reporter protein. The
infection level of both morbilliviruses was determined at different times post-infection. We observed
equivalent infection levels and identified microglia as main target cells in CDV-inoculated carnivore
and MV-inoculated NHP brain tissue slices. Neurons were also susceptible to MV infection in NHP
brain slice cultures. Our findings suggest that MV and CDV have comparable neurotropism and
intrinsic capacity to infect CNS-resident cells of their natural host species.

Keywords: measles virus; canine distemper virus; morbillivirus; organotypic brain slice culture;
central nervous system; pathogenesis; tropism

1. Introduction

Measles virus (MV) and canine distemper virus (CDV) are enveloped viruses with
an unsegmented negative sense single-stranded RNA genome that belong to the family
Paramyxoviridae, genus Morbillivirus [1]. MV causes disease in humans and non-human
primates (NHPs), while CDV infects a broad range of species, including dogs, raccoons,
mustelids, lions, and even macaques [2–7]. Acute measles is characterised by fever, cough,
and maculopapular rash, which are usually resolved within a week. Case-fatality rates
are low, and morbidity and mortality most often result from measles-associated immune
suppression [8]. CDV infection in their natural hosts, in contrast, often leads to severe
disease, associated with high case-fatality rates [9]. Both viruses are also known to cause
neurological complications, but CNS infection is strikingly much more frequent in canine
distemper than in measles.
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Morbillivirus-associated neurological complications vary in their disease progressions
and presentations. Measles inclusion body encephalitis (MIBE) can develop early after
acute measles in patients with pre-existing immune deficiencies [10,11]. Long-term MV
persistence and host inability to clear the virus may lead to subacute sclerosing panen-
cephalitis (SSPE). SSPE is rare with an estimated incidence rate of 1 in 10,000 cases, which
increases to 1 in 600 in children who had measles under the age of 12 months [12,13]. Onset
of SSPE symptoms usually occurs five to ten years after measles [14]. SSPE symptoms
include behavioural problems and personality changes, seizure, cognitive dysfunction, and
ultimately coma [15]. To date, there is no effective treatment for SSPE, and the disease is
always fatal. The case-fatality rate of CDV infection depends on the species infected, from
50% in dogs to close to 100% in ferrets, regardless of the age of the animals [9]. CDV often
causes acute or subacute meningoencephalitis in its natural host species [16,17], which
may be considered a counterpart of MIBE in humans. In addition, CDV can cause old
dog encephalitis, which is considered the closest counterpart to SSPE—the neurological
symptoms can appear years after infection [18].

Various animal models have been developed to study the pathogenesis of morbillivirus
brain infection, but most rely on unnatural inoculation routes with laboratory-adapted
virus strains in animal species that are not naturally susceptible to morbillivirus infec-
tion [10,19,20]. In the last decade, ex vivo organotypic brain slice culture has become a
promising tool to study CNS infection. Unlike immortalised cell lines, brain slices main-
tain cell–cell interactions and tissue structure that closely resemble the in vivo situation.
Organotypic brain slice cultures were initially developed to study human neurological and
psychiatric diseases [21,22]. The cultures have also been used in morbillivirus infection
studies, but exclusively using rodent tissues [23–26]. Rodents are not naturally susceptible
to wild-type MV infection and hence these models poorly represent MV-associated CNS in-
fection in humans [10,19,20]. The organotypic brain slice culture offers a new way to study
the tropism of morbilliviruses in the CNS, especially in the early stage of the infection [27].
Brain endothelial cells, neurons, and glial cells, for example, have been suggested to be the
target cells of morbillivirus infection in the brain [27–30].

To study the neurovirulence and neurotropism in the early stage of MV and CDV
infection, we have used organotypic brain slice cultures of naturally susceptible NHPs,
dogs, and ferrets. We selected olfactory bulb, hippocampal, and cortical tissues to be
included in this study, based on where infected cells have been detected in CDV- and
MV-infected brains [31–33]. The use of recombinant CDV and MV, based on wild-type
strains and expressing fluorescent reporter proteins, allowed us to sensitively monitor the
progression of infection and characterise the phenotypes of the infected cells. We included
the highly neurotropic CDV strain Snyder Hill (SH), which was passaged in dog brains [17];
the wild-type CDV strain Rhode Island, which was isolated from a raccoon [34]; two MV
strains IC323 and Khartoum-Sudan (KS) which were based on wild-type MV strains [35,36].
We demonstrate comparable infection levels and tropism of these morbilliviruses in their
natural host species’ brain slice cultures.

2. Materials and Methods
2.1. Ethical Statement

This study exclusively used surplus tissues from animal experiments unrelated to this
study, and no animals were euthanised specifically for this study. Post-mortem dog (Canis
lupus familiaris; n = 3; 1 year old) brain tissues were donated by the Faculty of Veterinary
Medicine in Utrecht University, Utrecht, the Netherlands. Post-mortem rhesus macaque
(Macaca mulatta; n = 6; 10–18 years old) brain tissues were dissected and obtained from
the Biomedical Primate Research Centre, Rijswijk, the Netherlands. Post-mortem ferret
(Mustela putorius furo; n = 3; approximately 1 year old) brain tissues were donated by the
Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands.
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2.2. Tissue Collection and Transport

Brain was dissected in ice-cold Hank’s balanced salt solution (HBSS) supplemented
with sucrose [37]. A piece of the frontal cortex, hippocampi, and olfactory bulbs were
stored in Hibernate-A medium (Gibco, Paisley, UK; A12475–01) during transport at room
temperature [21,22]. Tissues were processed within 2 to 4 h after euthanasia.

2.3. Viruses and Cells

All viruses were recombinant (r) viruses expressing enhanced green fluorescent protein
(EGFP) or Venus as reporter protein from an additional transcription unit within different
positions (position 1, 3, or 6) of the genome. Two different strains of CDV were included
in this study: CDV strain Rhode Island expressing reporter protein Venus at position
6 of the viral genome (rCDVRIVenus(6); TCID50: 1.7 × 106/mL) [34] and CDV strain
Snyder Hill expressing EGFP at position 6 of the viral genome (rCDVSHEGFP(6); TCID50:
2.6 × 106/mL) [17]. The rCDVRIVenus(6) is a recombinant virus based on a wild-type virus
isolated from a raccoon in Rhode Island, while rCDVSHEGFP(6) is a laboratory-adapted,
highly neurovirulent strain based on a natural CDV isolated from dogs passaged in vivo in
dog brains. Two strains of MV were included in this study: MV strain Khartoum-Sudan
expressing the reporter EGFP at position 3 of the viral genome (rMVKSEGFP(3); TCID50:
3.7 × 106/mL), and MV strain IC323 expressing EGFP at position 1 of the viral genome
(rMVIC323EGFP(1); TCID50: 2.7 × 106/mL). CDV stocks were grown on Vero-dogSLAM
(VDS) cells, a kind gift from Dr Y. Yanagi (Kyushu University, Fukuoka, Japan) [38]. The
rMVKSEGFP(3) and rMVIC323EGFP(1) were grown on Epstein–Barr virus-transformed B
lymphoblastoid cell line (BLCL) [36] and Vero-humanSLAM (VHS) cells [35], respectively.
BLCL were grown in RPMI-1640 [39] and the VHS cells were grown in Dulbecco’s modified
Eagle medium. All culture media were supplemented with 10% foetal bovine serum,
100 IU/mL of penicillin, 100 µg/mL of streptomycin, and 2 mM glutamine. VDS and VHS
cells are Vero cells expressing the dog or human SLAMF1 (signalling lymphocyte activation
marker family member 1; also known as CD150) receptor.

2.4. Brain Slice Culture

The frontal cortex (approximate dimension of 2 × 2 × 2 cm3), olfactory bulb, and
hippocampus tissues were cut into 300 µm thick slices with a McIlwain tissue slicer (Oss
Life Science Park, Oss, the Netherlands). To allow tissues to recover from the mechanical
damage, the slices were incubated in non-supplemented Hibernate-A medium with 5%
CO2 for 2 h at 37 ◦C. To assess how long ex vivo brain slices can remain viable upon
slicing and culturing, uninfected dog, ferret, or rhesus macaque brain slices were kept free-
floating in culture for 8 days in a 48-well plate in Neurobasal-A medium, which contains
D-glucose, (Gibco, New York, NY, USA; 10888-022) supplemented with 20 µL/mL B27
(Gibco, New York, NY, USA, 17504-044), 10 µL/mL glutaMAX, 1 µL/mL gentamycin, and
2 µL/mL HEPES buffer. The brain tissues were placed in a mixture of propidium iodide (PI)
(0.22 mg/L) and phosphate buffered saline (PBS) for 2 min and immediately washed 3 times
with PBS prior to detection of fluorescent signal using an inverted confocal laser scanning
microscope (Zeiss LSM700, Carl Zeiss, Jena, Germany). The staining was performed at
day 0, 1, 2, 3, and 8 post-slicing and based on observation on the number of cell deaths,
the subsequent brain slices were cultured for no longer than 3 days. The remaining tissues
were inoculated with cell-free viruses (200 µL/well) in a 24-well plate at 37 ◦C with 5% CO2
for 2 h. Carnivore tissues slices were inoculated with rCDVRIVenus(6), rCDVSHEGFP(6), or
rMVKSEGFP(3). NHP tissue slices were inoculated with rMVIC323EGFP(1), rMVKSEGFP(3),
or rCDVRIVenus(6). After inoculation, the slices were incubated in a 48-well plate (1 slice
per well) with the aforementioned Neurobasal-A medium (the slices floated freely in the
medium) at 37 ◦C with 5% CO2 for 3 days. All inoculated tissues were monitored and
scored daily under an inverted laser scanning microscope for fluorescent cells. Tissues with
Venus+ or EGFP+ cells were fixed in freshly prepared, methanol-free 4% PFA for further
analysis. Grading of the degree of morbillivirus infection in ex vivo brain slice cultures
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was performed semi-quantitatively. Low level of infection (+) was defined when a single
infected cell was observed in one brain slice; moderate level (++) when up to 10 infected
cells were observed, and high level (+++) when >10 infected cells were observed.

2.5. Indirect Immunofluorescence Labelling on Whole Mount Brain Tissue Slices

Phenotypes of infected cells in the brain tissue slices were determined by immunofluo-
rescent labelling for neuron-specific marker NeuN, astrocyte-specific marker glial fibrillary
acidic protein (GFAP), microglia-specific marker ionised calcium binding adaptor molecule
1 (Iba1), or oligodendrocyte-specific marker 2′,3′-cyclic-nucleotide 3′-phosphodiestrase
(CNPase). We also stained for β-3 tubulin (tubIII) to identify neurons, but were unable
reproducibly stain neurons in all species. Cortex, olfactory bulb, and hippocampus slices
were washed with PBS and, except for NeuN and CNPase stainings, antigen retrieval was
conducted by heating the slices at 95 ◦C in citrate buffer for 20 min. Blocking was performed
in PBS with 10% donkey serum, 0.5% TritonX-100, and 0.2% gelatine solution. Tissues were
first incubated with mouse monoclonal anti-human NeuN (Sigma Aldrich, Amsterdam, the
Netherlands, MAB377, 1:250), mouse monoclonal anti-human GFAP (Sigma Aldrich, Ams-
terdam, the Netherlands, G3893, 1:400), or rabbit anti-human Iba1 (Wako, Neuss, Germany,
LKG5732, 1:250). The slices were incubated with primary antibodies overnight at 4 ◦C in
PBS with 10% of donkey serum, 0.1% of Tween-20 and 0.2% of gelatine solution. After a
wash with PBS with 0.1% of Tween-20, the slices were incubated overnight at 4 ◦C with
goat anti-rabbit Alexa Fluor 555 (Invitrogen, Landsmeer, the Netherlands, A32732, 1:250)
or polyclonal goat anti-mouse RPE (Dako, Santa Clara, USA, R0480, 1:250) in combination
with goat anti-GFP FITC (Abcam, Amsterdam, the Netherlands, ab6662, 1:250). Unbound
antibodies were washed away with PBS with 0.1% of Tween-20. The tissues were incubated
with Hoechst 33342 (1:600,000) for 10 min prior to detection of fluorescent signals using an
inverted confocal laser scanning microscope. The anti-human NeuN antibody successfully
cross-reacted with NHP tissues, but not carnivore ones.

3. Results
3.1. Establishment of an Organotypic Brain Slice Culture System from Adult Ferrets, Dogs, and
NHPs

We established an organotypic brain slice culture from adult ferrets, dogs, and NHPs,
based on protocols described in previous studies [21,22]. Olfactory bulb, hippocampus,
and frontal cortex were collected during necropsy immediately after euthanasia, placed in
medium, and cut into 300 µm thick slices. To optimise culture conditions, we cultured the
free-floating slices up to 8 days. One slice was harvested each day and treated with PI to
monitor the tissue viability. Under our current protocol, the brain slice cultures remained
viable for at least 3 days after processing. Based on this observation, we performed the
subsequent morbillivirus infection experiment up to 3 days post-inoculation (dpi).

3.2. Organotypic Brain Slices of Ferrets, Dogs, and NHPs Are Susceptible and Permissive to Ex
Vivo Morbillivirus Infection

To assess whether carnivore brain slices are susceptible to CDV infection, we inoc-
ulated olfactory bulb, cortex, and hippocampal slices (n = 4 per tissue per time point)
obtained from ferrets (n = 3) or dogs (n = 3) with cell-free recombinant CDV strain RI or
SH expressing the fluorescent reporter protein Venus (rCDVRIVenus(6)) or enhanced green
fluorescent protein (rCDVSHEGFP(6)). rMVKSEGFP(3) was included as a control virus
in these experiments. CDV-infected cells were observed in all brain tissues from 2 dpi
onwards, a time span which was in accordance with previous observations in CDV-infected
primary tissues [40]. Inoculation with rMVKSEGFP(3) resulted in no or limited infection
in ferret and dog brain slices. Since viral infection in the brain slices was focal and varied
between tissues and species, we developed a scoring system to assess the infection levels.
In ferret and, to a lesser degree, dog brain slice cultures, CDV-infected cells were present
in highest numbers in the olfactory bulb slices (Table 1). Interestingly, we found more
rCDVSHEGFP(6)-infected cells in ferret brain tissues, especially the olfactory bulb, than in
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dog tissues, despite its high neurovirulence in both ferrets and dogs in vivo [17]. Based
on these observations, we concluded that the carnivore brain slices were susceptible and
permissive to ex vivo CDV infection.

Table 1. Semi-quantitative grading of infection levels in ferret and dog tissue slices inoculated
with morbilliviruses. Relative morbillivirus infection levels in the olfactory bulb, hippocampal
and cortex tissue slices from ferrets (n = 3) and dogs (n = 3). -: no infected cells; +: low infection
level; ++: moderate infection level; +++: high infection level. dpi: days post-inoculation. CDV-RI:
rCDVRIVenus(6); CDV-SH: rCDVSHEGFP(6); MV-KS: rMVKSEGFP(3).

Host
Species Virus

Olfactory Bulb Hippocampus Cortex

1 dpi 2 dpi 3 dpi 1 dpi 2 dpi 3 dpi 1 dpi 2 dpi 3 dpi

Ferret

CDV-RI - + ++ - ++ + - + ++

CDV-SH - +++ +++ - + + - ++ ++

MV-KS - + + - + + - - +

Dog

CDV-RI - ++ ++ - - - - + +

CDV-SH - - - - - - - - +

MV-KS - ++ ++ - - + - + +

To assess whether NHP brain slices are susceptible to MV infection, we inoculated
olfactory bulb, cortex, and hippocampal slices (n = 4 per tissue per time point) obtained
from rhesus macaques (n = 6) with rMVKSEGFP(3) or rMVIC323EGFP(1) and recorded the
progression of infection up to 3 dpi. rCDVRIVenus(6) was included as a control virus in
these experiments. Similar to the observations in CDV-inoculated carnivore brain slices,
we observed MV-infected cells in primate brain slices from 2 dpi onwards, a time span
which was in accordance with previous observations of MV infection on primary cells or
tissues [40,41] (Table 2). However, in NHP brain slice cultures, the highest numbers of
infected cells were detected in the cortex. Inoculation with rCDVRIVenus(6) resulted in no
or limited infection in NHP brain slices.

Table 2. Semi-quantitative grading of infection levels in NHP brain slice tissues inoculated with
morbilliviruses. Relative morbillivirus infection levels in olfactory bulb, hippocampal and cortex
tissue slices from rhesus macaques (n = 6) -: no cells infected; +: low infection level; ++: moderate
infection level; +++: high infection level. dpi: days post-inoculation. MV-KS: rMVKSEGFP(3);
MV-IC323: rMVIC323EGFP(1); CDV-RI: rCDVRIVenus(6).

Host
Species Virus

Olfactory Bulb Hippocampus Cortex

1 dpi 2 dpi 3 dpi 1 dpi 2 dpi 3 dpi 1 dpi 2 dpi 3 dpi

NHP

MV-KS - ++ ++ - + ++ - ++ +++

MV-
IC323 - ++ ++ - + ++ - ++ +++

CDV-RI - + - - + - - + -

3.3. Different Morphology of Morbillivirus-Infected Cells in Organotypic Brain Slice Cultures of
Ferrets, Dogs, and NHPs

We observed different morphologies of CDV- and MV-infected cells in their respective
natural host brain slice cultures. Most CDV- and MV-infected cells appeared to be in
majority round single cells, while some infected cells showed dendrite-like protrusions
(Figure 1). Interestingly, there was no evidence of disseminated infection in the surrounding
neuropil of the brain slices, even in tissues inoculated with the highly neurovirulent
rCDVSHEGFP(6). Rather, some of the infected cells that were detectable at 2 dpi could no
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longer be found at 3 dpi. The disappearance of the infected cells was most often observed
on slices with only few infected cells per slice.

Figure 1. Different morphology of morbillivirus-infected cells. Whereas most virus-infected cells (green) were round single
cells (left column), cells with different morphology were also observed in CDV-infected dog and ferret, and MV-infected
NHP brain slices (middle and right columns).

3.4. Microglia, Neurons, and Oligodendrocytes Are the Main Susceptible Cell Types to
Morbillivirus Infection

To determine the phenotypes of the CDV- or MV-infected cells, we performed dual-
immunofluorescent (IF) staining on the CDV- or MV-inoculated carnivore or primate brain
slices, respectively. We identified astrocytes, microglia, and neurons in carnivore and NHP
brain slices based on their cellular markers: glial fibrillic acidic protein (GFAP), ionised
calcium binding adaptor molecule 1 (Iba1), and NeuN proteins, respectively. In carnivore
brain slices, we only succeeded in identifying GFAP+ astrocytes and Iba1+ microglia, due
to lack of cross-reactivity of the antibody to carnivore NeuN proteins. Venus or EGFP
expression co-localised with Iba1 staining in carnivore and NHP brain slices (Figure 2),
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indicating that microglia were infected by CDV and MV. Astrocytes were observed in
close proximity to virus-infected cells, but were never infected. In NHP brain slices, we
observed co-localisation of Venus or EGFP with NeuN staining, signifying MV-infected
neurons (Figure 3). Oligodendrocytes were also infected by MV in these NHP brain slices
in all observed tissues (Figure 4). Altogether, our findings show that MV and CDV display
equivalent intrinsic neurotropism and neurovirulence.

Figure 2. Microglia, but not astrocytes, in brain slice cultures were susceptible to morbillivirus infection. (A) Representative
CDV-infected ferret hippocampal slices at 2 days post-infection (dpi). Some CDV-infected cells (green, arrows) were
microglia (Iba1+ cells; yellow), but not astrocytes (GFAP+ cells, red). An Iba1− GFAP− CDV-infected cell (green, arrowhead)
was also present. (B,C) Representative ex vivo NHP cortex slices. MV-infected cells (green, arrows) were mainly microglia
(yellow), but not astrocytes (red).
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Figure 3. Neurons in NHP brain slice cultures were susceptible to MV infection. Representative MV-infected (green) NHP
neurons (NeuN+; red) in the olfactory bulb, hippocampal, and cortex slices collected at 3 days post-inoculation.

Figure 4. Oligodendrocytes in NHP brain slice cultures were susceptible to MV infection. Representative MV-infected
(GFP+; green) NHP oligodendrocytes (CNPase+; red) in the olfactory bulb, hippocampal, and cortex slices. Olfactory bulb
and cortex slices were collected at 3 days post-inoculation (dpi) and hippocampal slice was collected at 4 dpi. In some slices,
infected cells that were CNPase− were also present, as represented in the cortex slice (arrowhead).



Viruses 2021, 13, 1582 9 of 14

4. Discussion

In this study, we inoculated organotypic brain slice cultures with wild-type-based
recombinant CDV or MV expressing fluorescent reporter proteins to study morbillivirus
brain infection. Surprisingly, we observed comparable levels of MV and CDV infection
in brain slices of primates and carnivores, respectively. Moreover, we found that both
morbilliviruses predominantly infected microglia. Although we could not assess if CDV-
infected carnivore neurons due to the lack of cross-reactive antibodies, we observed MV-
infected neurons in NHP brain slices. We also detected MV-infected oligodendrocytes in
these NHP brain slices. These cells may also be infected by CDV in dog and ferret brain
slices, since we also observed the presence of CDV-infected Iba1− GFAP− cells in ferret
brain slices. The infection of microglia, neurons, and oligodendrocytes was in accordance
with previous observations in in vivo MV and CDV CNS infection [27,30]. Interestingly,
astrocytes were not susceptible to morbillivirus infection, suggesting that at the early stage
of morbillivirus CNS infection, these cells are not the primary target cells. Altogether, these
findings suggest that the intrinsic neurovirulence and neurotropism of MV and CDV may
be comparable.

We observed differences in the susceptibility of tissues collected from different parts
of the brain to ex vivo morbillivirus infection. In carnivores, more CDV-infected cells were
found in the olfactory bulb relative to other tissues. In NHPs, the cortex slice cultures
tended to harbour higher numbers of MV-infected cells. These tissue-related differences
may partly be influenced by different distribution and density of susceptible cells, especially
microglia. In humans, the ratio of glia-to-neuron is higher in cerebral cortex than in the
cerebellum [42]. This high density of microglia in human cortex could be similar in NHPs.
Whether there is a high density of microglia in the olfactory bulbs of carnivores remains to
be determined. It is not known if microglia, like macrophages, express CD150, although
a recent study has reported that the expression of CD150 on microglia is inducible [43].
CD150, expressed by immune cells and nectin-4, expressed on the basolateral side of
epithelial cells, are the entry receptors of wild-type MV and CDV [44–46]. Myeloid cells
are considered primary target cells during the early stage of morbillivirus infections [47].
Microglia arise from the progenitor cells in the embryonic yolk sac. They are in close vicinity
to neurons and share similar features with cells of myeloid origin, which are susceptible
to morbillivirus infection. Viremia after morbillivirus infection is mostly cell-associated
and the infection is predominantly disseminated by circulating or migrating infected T
and B cells [48,49]. Ferrets infected with highly neurovirulent CDV showed that the virus
invaded through two distinct pathways: via the cribriform plate (by direct infection of the
olfactory nerves) or via the haematogenous route (the choroid plexus and cerebral blood
vessels) [17,50]. The haematogenous infection spreads into the CNS through CDV-infected
lymphocytes and myeloid cells, consistent with the high level of viremia during canine
distemper. The same route of dissemination into the CNS may be applicable to but less
efficient for MV, since the number of MV-infected cells in the circulation is lower than that
of CDV [51]. Based on these observations, in combination with the fact that these immune
cells can pass the blood–brain barrier [52,53], we hypothesise that morbillivirus-infected
lymphocytes bring the virus into the CNS and can transmit it to microglia. In the majority
of the cases, the infection is likely controlled by the host immune system. In some cases
the virus can obtain hyperfusogenic mutations allowing it to spread from microglia to
neuron and subsequently from neuron to neuron. Spread into neurons can be facilitated
independent of CD150 or nectin-4 by cis-interaction of CADM1 and CADM2 on infected
neurons, allowing virus transmission to interacting neurons [54]. Alternatively, spread into
neurons can be dependent of nectin-4 through transfers of cytoplasmic cargo from infected
epithelial cells to nectin-1-expressing neurons [55].

We demonstrate that CDV and MV infection were most prominent in carnivore and
primate brain slices, respectively. However, we also noticed low levels of infected cells
in the heterologous brain slices. It has been well documented that MV can use dog
CD150 [56], which could potentially explain the observed MV infection of dog and, to
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a lesser extent, ferret brain slices. CDV cannot use human CD150 as a cellular receptor
in vitro, but has caused outbreaks in NHPs [6,57] and was shown to be able to use NHP
CD150 in vitro [58]. In vivo inoculation of NHPs with CDV also resulted in productive
but self-limiting infection, thus showing that CDV in NHPs behaves more similarly to MV
in NHPs than CDV in carnivores [59]. Nevertheless, we observed only low level CDV
infection in NHP brain slices.

SSPE can take years to develop after recovery from measles, but it is not known exactly
when MV reaches the brain. In a study of 717 measles cases in children, 95% did not show
any clinical evidence of encephalitis. However, 344 patients showed abnormally slow
electroencephalograms during or immediately after the acute phase of the disease [60].
CNS infection in measles thus may be a more common feature than expected and likely
is contained before developing or presenting clinical evidence of encephalitis. MV RNA
has also been detected in the brains of autopsied individuals with no SSPE-like CNS
complication or history [61,62]. Altogether, these findings indicate that MV can potentially
invade the CNS more often than previously thought and persist long after the acute phase of
disease. However, our current organotypic brain slice culture model, although permissive,
could not sustain MV or CDV infection, thus not allowing us to observe the persistence
of these viruses in our model. Persistence of MV may lead to accumulation of mutations
in the matrix (M) or the fusion (F) gene. Hypermutation in the M gene results in the lack
of virus particle formation while mutations in the F gene lead to hyperfusogenicity. In
our study, neurons of NHPs were susceptible to ex vivo MV infection, but the infection
did not spread and, at times, could even not be detected the following day, suggesting
lytic infection or rapid local innate immune clearance. We also did not observe cell-to-cell
spread in carnivore brain slice culture inoculated with rCDVSHEGFP(6), despite the virus
possessing the necessary mutations. Morbillivirus ribonucleoprotein (RNP) complex is
transmitted at the synapses, allowing membrane fusion to happen only in such area [63].
We speculate that synaptic transmission between neurons in our ex vivo brain model may
be disrupted after slicing, hence preventing transneuronal spread of viral RNP complex.
The regulation of synaptic functions in the CNS is also supported by endocrine hormones,
which was absent in our organotypic brain slice culture. This may explain the unexpected
observation that ex vivo infection with the highly neurotropic CDV strain SH was less
efficient than infection with the wild-type CDV strain RI.

The organotypic brain slice culture model based on tissues from natural host species
offers a new approach to study the virus entry to the brain. However, the protocol does
not rule out mechanical trauma and therefore can lead to activation of innate immune
and repair responses upon handling. We also observed the disappearance of infected cells
over time, but we did not have the means to find out how many non-infected disappeared
upon culturing and whether the disappearance of cells is caused by the infection, the
culturing condition, or normal cell death. In recent years, improved organotypic brain
culture systems have been developed to ensure prolonged survival of the tissues, with
significant changes to the classical protocol, which often relies on culturing the slices in
medium. This classical protocol results in a metabolic switch from respiration to glycolysis
that consequently can play a role in the long-term viability of the tissues. Improvements
include the use of low temperature, different culture media, reduced slice thickness, and
CSF-like liquid rather than medium [64]. These new methods could improve the study of
morbillivirus entry and spread in brain slice cultures.

In conclusion, our study offers a new perspective on the neurotropism and neuroviru-
lence of CDV and MV using organotypic brain cultures obtained from natural host species.
We found that microglia and neurons are the potential target cells in morbillivirus virus
CNS invasion and despite the differences in neurovirulence in vivo, MV exhibited a sur-
prisingly equivalent level of infection to CDV in the relevant host species. We speculate
that the higher level of viraemia during CDV infection as compared to MV infection leads
to a higher chance of viral CNS entry and subsequent complications as observed in vivo.
Our study also highlights the importance of organotypic brain slice culture in obtaining
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insights into cellular processes during infection in the CNS and as a useful supplement to
in vivo models.
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