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Abstract: Salivary levels of interleukin-8 (IL-8) are elevated in patients with periodontitis. Caffeic
acid phenethyl ester (CAPE) improves the periodontal status in subjects. However, whether CAPE
can reduce IL-8 expression is unclear. We collected saliva to determine proinflammatory cytokine
levels and used subgingival calculus and surrounding tissues from patients with periodontitis for
oral microbiota analysis via 16s ribosomal RNA gene sequencing. THP-1 cells were stimulated
with sterile-filtered saliva from patients, and target gene/protein expression was assessed. IL-8
mRNA expression was analyzed in saliva-stimulated THP-1 cells treated with CAPE and the heme
oxygenase-1 (HO-1) inhibitor tin-protoporphyrin (SnPP). In 72 symptomatic individuals, IL-8 was
correlated with periodontal inflammation (bleeding on probing, r = 0.45; p < 0.001) and disease
severity (bleeding on probing, r = 0.45; p < 0.001) but not with the four oral microbiota species
tested. Reduced salivary IL-8 secretion was correlated with effective periodontitis treatment (r = 0.37,
p = 0.0013). In THP-1 cells, saliva treatment induced high IL-8 expression and IKK2 and nuclear
factor-κB (NF-κB) phosphorylation. However, the IKK inhibitor BMS-345541, NF-κB inhibitor BAY
11-7082, and CAPE attenuated saliva-induced IL-8 expression. CAPE induced HO-1 expression and
inhibited IKK2, IκBα, and NF-κB phosphorylation. Blocking HO-1 decreased the anti-inflammatory
activity of CAPE. The targeted suppression of IL-8 production using CAPE reduces inflammation
and periodontitis.

Keywords: interleukin-8; oral microbiota; caffeic acid phenethyl ester; periodontitis; THP-1 cell

1. Introduction

Nearly 50% of the world’s population suffers from periodontal disease. Studies have
shown that periodontitis is correlated with systemic disorders, including diabetes, cardio-
vascular disease, endocrine disorders, and rheumatoid arthritis. The high prevalence of
periodontal disease has made it a worldwide burden [1–3]. Periodontitis is an inflammatory
disease primarily characterized by a periodontal infection-induced immune imbalance,
which leads to inflammation of the periodontal soft tissue, eventually resulting in symp-
toms such as periodontal ligament damage and alveolar bone loss [4]. Upon damage to the
alveolar bone and periodontal tissue, which are surrounded by the gums, gap formation
begins between the teeth and gums. These gaps lead to formation of periodontal pockets,
exacerbating periodontal ligament damage and alveolar bone loss. Consequently, the
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probing depth of periodontal pockets increases with bone loss. Clinically, the plaque index
(PI), bleeding on probing (BOP), and probing pocket depth (PPD) are used as parameters
to reflect disease activity. A decrease in or recovery of the pocket depth can be used as
an indicator of treatment efficacy. The dynamic development of disease activity can be
measured based on tissue degradation and bone resorption, as well as by using biomarkers,
such as inflammatory and antioxidant markers present in the patients’ blood, saliva, and
gingival crevicular fluid [5]. Effective biomarkers can be used as early predictive indicators
of clinical disease, facilitating the assessment of disease onset or recovery in individuals [6].

Nuclear factor-κB (NF-κB) is an important transcription factor involved in the inflam-
mation process. After activation, NF-κB translocates into the nucleus, where it binds to
proinflammatory genes and induces the formation of proinflammatory cytokines such
as interleukin (IL)-1α, IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) [7]. When
periodontal tissue becomes inflamed, an increase in the concentrations of proinflammatory
cytokines, IL-1, IL-6, and TNF-α, which are the markers of systemic inflammation, is
observed. Subsequently, lymphatic and myeloid cells are induced to secrete matrix metallo-
proteinases, which are involved in the metabolism of periodontal tissue and decomposition
of the extracellular matrix. When IL-8 and TNF-α are activated, the number and activity of
polymorphonucleocytes simultaneously increase. Phagocytosis leads to intracellular toxic-
ity and the subsequent release of oxygen radicals; moreover, lipid peroxides and oxidized
proteins produced by the periodontal tissue further damage the activated macrophages and
generate more reactive oxygen species [8,9]. In addition, heme oxygenase-1 (HO-1), which
plays a role in orthodontic tooth movement and inflammation in periodontitis models [10],
might activate cellular defense mechanisms against oxidative stress [11].

Proinflammatory factors present in the saliva, such as IL-1, IL-6, IL-8, TNF-α, as well
as the inflammation marker matrix metalloproteinase-8, have been confirmed to reflect
systemic inflammation [12]. In addition to their use in disease prevention, biomarkers can
be used to predict treatment efficacy. Streptococcus salivarius induces the gene expression of
IL-6 and IL-8 in oral mucosa cells [13], whereas Porphyromonas gingivalis stimulates IL-8
gene expression in gingival fibroblasts and periodontal ligament fibroblasts [14,15]. A
recent study revealed a significant reduction in the salivary levels of proinflammatory
cytokines such as IL-1β, IL-6, and IL-8 in patients who underwent non-surgical periodontal
therapy [16]. However, few studies have explored the correlations between salivary
cytokine biomarkers, including IL-1β, IL-6, and IL-8, and clinical disease indicators of
periodontitis before and after non-surgical periodontal therapy.

Caffeic acid phenethyl ester (CAPE) is a central active component of propolis, which
is obtained from honeybee hives [17]. Propolis has multiple applications in dentistry,
and therefore, CAPE is of potential clinical interest [18–20]. The aim of the present study
was to investigate whether IL-8 can serve as a therapeutic target for periodontitis, and to
determine whether CAPE reduces inflammation through the suppression of IL-8 expression
in THP-1 cells.

2. Results
2.1. The Impact of Proinflammatory Cytokines and the Oral Microbiota on the Severity of
Periodontal Disease

We first examined the effects of proinflammatory cytokines and the oral microbiota on
the severity of periodontitis. Table 1 shows the correlation coefficients between the baseline
clinical parameters, i.e., the PI, BOP, and PPD, and levels of salivary proinflammatory
cytokines or relative abundances of certain bacteria in the oral microbiota in patients with
periodontal disease. There was a significant correlation between BOP and the levels of IL-8
(r = 0.45; p < 0.001). Positive correlations of the mean PPD with IL-8 (r = 0.49; p < 0.001)
levels are also shown in Table 1. There were no significant correlations between the baseline
percentages of the four bacterial species in the oral microbiota and clinical parameters. Thus,
salivary IL-8 concentrations were positively correlated with the severity of periodontal
disease before treatment but were not associated with the relative abundances of the four
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bacteria, P. gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter
actinomycetemcomitans.

Table 1. The relationship of baseline clinical parameters with salivary proinflammatory cytokines and
representative bacterial species in the oral microbiota of patients (n = 72) with periodontal disease.

Characteristics PI (%) BOP (%) PPD (Mean; mm)

Salivary proinflammatory cytokines

Interleukin-6 0.08 0.08 0.13
Interleukin-8 −0.14 0.45 *** 0.49 ***

Tumor necrosis factor-α −0.05 0.00 0.04

Selected oral microbiota species

Porphyromonas gingivalis −0.14 −0.11 −0.03
Prevotella intermedia −0.20 −0.05 −0.06

Fusobacterium nucleatum −0.04 −0.13 −0.08
Aggregatibacter

actinomycetemcomitans −0.03 −0.02 −0.10

Data are presented as correlation coefficients. *** p < 0.0001; PI: plaque index; BOP: bleeding on probing; PPD:
probing pocket depth.

In addition, there were no significant correlations (r-values: −0.19–0.09; p-values: 0.11–
0.98) between the indicators of clinical effectiveness in patients before and after treatment
as well as the proportions of the four bacteria before treatment (Table 2). These data suggest
that proinflammatory cytokines have a greater impact than the oral microbiota on the
severity of periodontal disease.

Table 2. Relationship of differences between pre- and post-treatment values of clinical parameters
with representative bacterial species in the oral microbiota in patients (n = 72) with periodontal
disease.

Selected Oral Microbiota Species ∆PI (%) ∆BOP (%) ∆PPD (Mean; mm)

Porphyromonas gingivalis 0.01 (0.94) −0.07 (0.55) −0.001 (0.98)
Prevotella intermedia 0.09 (0.44) −0.19 (0.11) −0.07 (0.57)

Fusobacterium nucleatum subsp. nucleatum 0.08 (0.53) −0.04 (0.72) −0.02 (0.86)
Aggregatibacter actinomycetemcomitans 0.05 (0.69) −0.03 (0.80) −0.07 (0.51)

Data are presented as correlation coefficients (p-values). PI: plaque index; BOP: bleeding on probing; PPD: probing
pocket depth.

2.2. The Relationship between Oral Microbiota and Salivary Proinflammatory Cytokines

Next, we evaluated the potential relationship between the oral microbiota and salivary
proinflammatory cytokines in patients with periodontal disease. The scatter plots (Figure 1)
show the extent of reduction in salivary IL-8 (∆IL-8) levels after treatment versus the
percentages of each of the bacteria in the oral microbiota. There were significant negative
correlations between the percentages of F. nucleatum and A. actinomycetemcomitans and
∆IL-8, with coefficients of correlation of −0.27 (p = 0.02; Figure 1C) and −0.25 (p = 0.03;
Figure 1D), respectively. There were no significant correlations between the oral microbiota
and the other two salivary cytokines (IL-6 and TNF-α).
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Figure 1. Scatter plots of differences between pre- and post-treatment levels of salivary interleukin-8 (IL-8) in patients with
periodontitis versus respective percentages of representative bacterial species in the oral microbiota: (A) Porphyromonas
gingivalis; (B) Prevotella intermedia; (C) Fusobacterium nucleatum; and (D) Aggregatibacter actinomycetemcomitans. ∆IL-8 (ng/mL)
= baseline IL-8–post-treatment IL-8.

2.3. Contribution of IL-8 to the Treatment Outcome of Periodontal Disease

The scatter plots (Figure 2) show the extent of reduction in the effectiveness of peri-
odontal treatment (∆PPD) values versus those in salivary cytokine concentrations after
treatment. There was a significant correlation between ∆PPD and ∆IL-8 values, with
correlation coefficients of 0.37 (p = 0.0013; Figure 2B); however, ∆PPD values were not
associated with ∆IL-6 (Figure 2A) or ∆TNF-α (Figure 2C), nor was there any significant
correlation between the ∆PI or ∆BOP values and any of the proinflammatory cytokines.
The correlation coefficients of the reduction in oral hygiene index (∆PI) with the ∆IL-6,
∆IL-8, and ∆IL-6 values were −0.03 (p = 0.83), −0.13 (p = 0.26), and −0.11 (p = 0.37), respec-
tively. The correlation coefficients of the reduction in the periodontal inflammatory index
(∆BOP) with the ∆IL-6, ∆IL-8, and ∆IL-6 values were −0.08 (p = 0.48), 0.12 (p = 0.30), and
−0.09 (p = 0.42), respectively. The data showed that the salivary IL-8 concentrations were
significantly correlated with the effectiveness of periodontal treatment. A greater reduction
in salivary IL-8 after treatment was associated with better effectiveness of periodontal
disease treatment. Thus, reducing salivary IL-8 secretion can increase the effectiveness of
periodontal disease treatment.
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Figure 2. Scatter plot of difference (∆) in IL-8 and (∆) in clinical indices. (A) Difference (∆) in salivary interleukin-8 (ng/mL)
and difference (∆) in plaque index (%). (B) Difference (∆) in salivary interleukin-8 (ng/mL) and difference (∆) in bleeding
on probing (%). (C) Difference (∆) in salivary interleukin-8 (ng/mL) and difference (∆) in pocket depth (mm). ∆IL-8 =
baseline IL-8–after treatment IL-8; ∆plaque index = baseline plaque index–after treatment plaque index. ∆Pocket depth =
baseline pocket depth–after treatment pocket depth.

2.4. Saliva-Induced IL-8 Expression in THP-1 Cells

Based on the clinical findings, we further evaluated whether saliva from patients
with periodontal disease increases IL-8 expression in human immune cells. Our data
showed that the expression of IL-8 mRNA was significantly higher in THP-1 cells exposed
to saliva obtained from patients with periodontal disease than that in control cells (p <
0.001; Figure 3A). This finding indicated the presence of IL-8 expression-promoting factors
in the saliva of patients with periodontal disease (Figure 3B).

Figure 3. Regulation of saliva-induced interleukin-8 (IL-8) expression in THP-1 cells via the IKK2/IκBα/NF-κB pathway.
(A) mRNA expression levels of IL-8 in cells exposed to saliva (5%) and control cells. Effects of IKK2 and NF-κB inhibitors
(BMS-345541 and BAY 11-7082, respectively) on saliva-induced mRNA expression of IL-8 in THP-1 cells. Data represent the
mean ± standard error of the mean (n = 3). *** p < 0.001 compared to control group; ## p < 0.01 compared to saliva-treated
group (Student’s t-test). (B) Working scheme for the regulation of saliva-induced IL-8 expression via the IKK2/IκBα/NF-κB
pathway. Blue arrow = stimulation; red line with an end bar = inhibition; black arrow = direction or flow.
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2.5. Induction of IL-8 Expression via the IKK2/IκBα/NF-κB Pathway in THP-1 Cells

NF-κB is a key transcription factor in the IKK2 pathway, and may activate the IL-8 pro-
moter to induce gene transcription [21]. We next investigated whether the IKK2/IκBα/NF-
κB pathway was involved in the saliva-induced upregulation of IL-8 mRNA levels in
THP-1 cells. The blocking of IKK2 by BMS-345541 (25 µM) or NF-κB by BAY 11-7082 (12
µM) significantly attenuated the increase in IL-8 mRNA levels in saliva-treated THP-1 cells
(Figure 3A). These data indicate that the saliva from patients with periodontal disease
induced the IL-8 promoter via the IKK2/IκBα/NF-κB pathway in THP-1 cells (Figure 3B).

2.6. Induction of Heme Oxygenase-1 (HO-1) and Inhibition of IL-8 Expression by CAPE in
THP-1 Cells

We also demonstrated that CAPE (Figure 4A) increased HO-1 mRNA and protein
expression in THP-1 cells, whereas tin-protoporphyrin (SnPP, 20 µM), the HO-1 inhibitor,
almost completely abolished these effects (Figure 4B). Furthermore, primary macrophages
showed a massive inflammatory response, reflected by IL-8 expression, upon exposure
to human saliva from patients with periodontitis. In the presence of CAPE, IL-8 expres-
sion was almost completely abolished (Figure 4C). However, SnPP reversed the anti-
inflammatory effect of CAPE on saliva-induced THP-1 cells (Figure 4C). Moreover, CAPE
inhibited the activation of IκBα and NF-κB in saliva-induced THP-1 cells, whereas blocking
HO-1 activity with SnPP reversed the inhibition of IKK2, IκBα, and NF-κB phosphorylation
by CAPE (Figure 4D).

Figure 4. The effects of caffeic acid phenethyl ester (CAPE) on saliva-induced interleukin-8 (IL-8) expression in THP-1 cells
and potential underlying molecular mechanisms. (A) Structure of CAPE. (B) Effects of CAPE (20 µM) and tin-protoporphyrin
(SnPP, heme oxygenase-1 (HO-1) inhibitor; 20 µM) on HO-1 mRNA and protein expression in THP-1 cells. Data represent
the mean ± standard error of the mean (SEM; n = 3). *** p < 0.001 compared to control group; ### p < 0.01 compared to
CAPE-treated group (Student’s t-test). (C) Effects of CAPE and SnPP on saliva-induced IL-8 mRNA expression in THP-1
cells. (D) Levels of phosphorylated IKK2, IκBα, and NF-κB (p65) proteins in THP-1 cells stimulated with 5% saliva alone
or pretreated with 20 µM CAPE or CAPE combined with SnPP before saliva treatment. Data represent the mean ± SEM
(n = 3). * p < 0.05, *** p < 0.001 compared to control group; # p <0.05 compared to saliva-treated group; ++ p < 0.01, +++

p < 0.001 compared to CAPE-treated group (Student’s t-test). (E) Working model for saliva-induced IL-8 expression via the
IKK2/IκBα/NF-κB pathway in periodontal disease. Blue arrow = stimulation; red line with an end bar = inhibition; black
arrow = direction or flow.
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3. Discussion

Chronic inflammation in periodontitis is accompanied by oxidative stress and the
overexpression of proinflammatory cytokines, which together culminate in catabolic events
that lead to tissue destruction and tooth loss. The clinical relevance of our data is based
on the finding that IL-8 is a potential therapeutic target for treating periodontitis; we also
revealed the molecular and cellular mechanisms of the beneficial effects of propolis on
oral health. The present study showed that IL-8 was elevated in the saliva of patients
with periodontitis compared to that in the saliva of healthy individuals, and thus reducing
salivary IL-8 secretion may increase the effectiveness of treatment for periodontal disease.
In addition, the treatment of the immune cell line THP-1 with the saliva from patients with
periodontitis caused a massive inflammatory response and increased IL-8 expression via
the IKK2/IκBα/NF-κB pathway. We demonstrated that CAPE reduced inflammation and
suppressed IL-8 expression by inducing HO-1 in THP-1 cells (Figure 4E).

Periodontal diseases are chronic infectious diseases characterized by a destructive
inflammatory process, which affects the supporting tissues of the tooth leading to the
resorption of the alveolar bone, formation of periodontal pockets, and eventual tooth
loss [22]. Interactions between the oral microbiota and the proinflammatory responses of
the host have been implicated in the onset and progression of periodontitis. However, the
underlying mechanisms of these interactions are unknown. Numerous bacterial species
have been isolated from the subgingival plaque, some of which are thought to be closely
related to disease onset and progression [23]. Bacteria are the primary etiological factors
associated with periodontal disease. Herein, we found that the percentages of F. nuclea-
tum and A. actinomycetemcomitans in the microbiota of the oral cavity were related to the
treatment-associated reduction in salivary IL-8 levels, but not to the effectiveness of the
periodontitis treatment. It was previously shown that IL-8 levels were significantly upregu-
lated (by 16–33-fold) by F. nucleatum [24]. In our previous study, baseline salivary IL-8 levels
showed a significant positive correlation with those of the other two proinflammatory
cytokines, IL-6 and TNF-α (r = 0.39–0.55). The inflammatory response and disease severity,
based on the periodontal clinical parameters, were positively correlated with salivary IL-8
levels. Recent studies showed that plasma IL-8 levels were similar between healthy subjects
and patients with periodontitis. However, IL-8 levels were higher in patients who had
both periodontitis and diabetes than in periodontally healthy subjects or patients with
periodontitis without concomitant diabetes [25].

Periodontal disease is characterized by inflammatory cell accumulation in the ex-
travascular gingival connective tissue [26]. Cytokines perform an important role in the
pathogenesis of chronic inflammatory diseases. Due to their proinflammatory and neu-
trophil chemotactic properties, cytokines such as interleukins may play a central role in
the pathogenesis of periodontitis. We detected high levels of IL-8 in the saliva of patients
with periodontitis, and other studies have also suggested that IL-8 plays a significant
role in the pathogenesis of periodontitis [27]. It is likely that locally secreted IL-8 induces
neutrophil extravasation at the site of inflammation, and that the numerous neutrophils
present in the lamina propria and in the epithelium of inflamed gingiva are directed there
by IL-8. In addition, IL-8 may attract T cells and induce the motility of CD45RO+ γδ and
γδ T cells present in inflamed gingiva [28,29]. Moreover, IL-8 plays an important role
in the pathology of chronic inflammatory diseases and is secreted by a variety of cells,
including monocytes, fibroblasts, lymphocytes, and endothelial cells. In inflamed gingival
tissues, IL-8 was expressed in epithelial cells and macrophages. Therefore, IL-8 levels in
the gingival crevicular fluid are valuable for detecting inflammation in the periodontal
tissue [30].

A previous study reported that IKK2 is a target for the treatment of inflammation-
associated bone loss [31]. The IKK2 subunit is an inflammatory signal activator, which
phosphorylates IκBα and targets it for the release of NF-κB (p65). The pivotal role of the
transcription factor NF-κB in regulating inflammation is well known [32]. The NF-κB
protein complex controls the expression of cytokines, such as IL-8 and TNF-α, which are
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important mediators of inflammation. IKK2 but not IKK1 is essential for inflammation-
induced bone loss and is required for osteoclastogenesis in vivo [33]. The specific and
selective inhibition of the IKK2 subunit and of the classical NF-κB activation pathway was
shown to be an effective approach for treating inflammatory diseases [33,34].

CAPE, a central component of propolis, has been shown to exert anti-inflammatory
effects on gingival fibroblasts [35]. A potential treatment strategy to restore periodontal
health and remove scaling and root flatness is to reduce inflammation and oxidative stress
by local application of CAPE [19,35]. Propolis was shown to improve the periodontal status
of patients with type 2 diabetes [36], and CAPE was reported to protect against ligature-
induced periodontitis and other detrimental conditions in rats. Thus, CAPE can reduce
harmful effects related to inflammation and cytotoxic activity. The results of our study are
consistent with previous findings suggesting that the inhibition of the NF-κB subunit p65 by
CAPE controls anti-inflammatory activity in periodontitis [37]. Moreover, CAPE suppresses
inflammation and oxidative damage considered to cause periodontal disease. Previous
studies suggested that HO-1 is a potential target of periodontal therapy [38,39]. Herein,
we found that CAPE increased HO-1 expression, thereby inhibiting saliva-induced IL-8
expression. Therefore, CAPE, which can reduce inflammation and suppress IL-8 expression
in macrophage/monocyte THP-1 cells, may increase the effectiveness of treatment protocols
for periodontal disease. However, further efficacy studies are required before CAPE can be
safely used for local treatment in patients with periodontitis.

One limitation of this study is that only patients with periodontitis were recruited,
which may explain the lack of any association between the oral microbiota and effectiveness
of periodontitis treatment. Periodontitis is a common infectious disease, and patients
should have certain quantities of specific pathogens in their oral microbiota to initiate
inflammation. Unfortunately, the analysis of oral microbiota composition based on 16S
rRNA gene sequencing reflects only the relative abundance of each potential microbial
pathogen as a percentage rather than indicating actual levels. Additionally, the association
between the oral microbiota and the effectiveness of periodontitis treatment should be
evaluated in comparison to healthy controls.

4. Materials and Methods
4.1. Study Participants and Sample Collection

A total of 72 participants were recruited at the Taipei Medical University Hospital
under a research protocol approved by the Research Ethics Committee of the Taipei Medical
University Joint Institutional Review Board N201802045 (Taipei, Taiwan). The study
was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2013.
Informed consent was obtained from all study participants. Those enrolled were eligible
for the comprehensive periodontal treatment project and for non-surgical periodontitis
treatment on their first visit, and satisfied the clinical criteria for periodontal disease
as mandated by the National Health Insurance Administration, Ministry of Health and
Welfare, Taiwan [40]. Subjects with a history of periodontal therapy, cancer, chronic
diseases like diabetes and hypertension, and smoking, as well as pregnant women, were
excluded from this study. All clinical examinations and treatments were carried out by a
periodontist. The detailed protocols for measuring the clinical parameters and collecting
saliva are described in our previous study [41]. The clinical parameters of periodontal
disease, which included the PI (oral hygiene index), BOP (inflammatory index), and PPD
(disease severity index), were recorded at baseline and after clinical treatment. The PI was
calculated by dividing the number of plaque-containing surfaces by the total number of
available surfaces, which were measured based on the plaque control record and soft debris
and mineralized deposits on the four surfaces (buccal, lingual, mesial, and distal) of each
tooth. A periodontal probe inserted into the gingival sulcus at six sites (distobuccal, buccal,
mesiobuccal, distolingual, lingual, and mesiolingual) of each tooth was used to measure
BOP and the PPD. All periodontal examinations were performed by the same periodontist.
The extent of reduction (∆) in PI, BOP, and PPD in each patient, which was calculated by
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subtracting the respective post-treatment value from that at baseline, was used to evaluate
the effectiveness of the periodontal clinical treatment.

Saliva was collected before and after the completion of clinical treatment using the
Saliva-Check kit (GC Corporation, Tokyo, Japan). The tubes were stored at −20 ◦C, and
proinflammatory cytokines were analyzed within two months of collection. The concentra-
tions of proinflammatory cytokines (IL-β, IL-6, IL-8, and TNF-α) were determined using
a Milliplex MAP human cytokine/chemokine magnetic bead panel kit (Merck Millipore,
Darmstadt, Germany). The coefficients of variance for IL-1β, IL-6, IL-8, and TNF-α were
1.01%, 1.62%, 0.61%, and 0.70%, respectively.

4.2. Cell Line and Treatment

THP-1 cells (American Type Culture Collection, Rockville, MD, USA) a human
promonocytic cell lines were cultured in an RPMI 1640 medium (Gibco BRL, Gaithers-
burg, MD, USA) supplemented with 10 IU/mL penicillin G, 10 µg/mL streptomycin,
2 mM L-glutamine, and 10% fetal calf serum (HyClone Laboratories, Logan, UT, USA).
Briefly, THP-1 cells were differentiated with 50 ng/mL phorbol 12-myristate 13-acetate
(Sigma-Aldrich, St. Louis, MO, USA) for three days until >99% of cells were adherent. The
cells were pretreated with BMS-345541 (25 µM), NF-κB by BAY 11-7082 (12 µM), or CAPE
(20 µM) and tin-protoporphyrin (SnPP, the HO-1 inhibitor; 20 µM) at 37 ◦C for 1 h, and
then treated with a pooled saliva sample obtained from patients with periodontitis for 24 h.
All further steps were performed on ice or in a cold room unless otherwise noted.

4.3. Subgingival Specimen Collection and Sequencing of the 16S Ribosomal RNA (rRNA) Genes of
the Oral Microbiota

The subgingival calculus and surrounding tissues were collected when patients un-
derwent scaling and root planning. DNA was extracted from the subgingival tissues using
proteinase K digestion, followed by phenol and chloroform extraction. 16S rRNA genes
were amplified using specific primers. All polymerase chain reaction (PCR) amplifications
were carried out in a volume of 25 µL containing 0.5 µL of KAPA® high-fidelity PCR master
mix (Kapa Biosystems, Wilmington, MA, USA), 0.5 µM forward and reverse primers, and
approximately 1 ng of template DNA. Thermocycling conditions were as follows: initial
denaturation occurred at 95 ◦C for 3 min, followed by 30 cycles of denaturation at 95 ◦C for
30 s, annealing at 57 ◦C for 30 s, and elongation at 72 ◦C for 30 s with a final extension at
72 ◦C for 5 min. The PCR products were mixed with an equal volume of 1× loading buffer
containing SYBR Green and subjected to electrophoresis on a 2% agarose gel. Samples with
a single bright band between 450 and 500 base pairs were chosen for further experiments.
The PCR products were mixed in equal density ratios and then purified using a QIAquick
gel extraction kit (Qiagen, Hilden, Germany). Sequencing libraries were generated using
the TruSeq nano DNA library prep kit (Illumina, San Diego, CA, USA) following the manu-
facturer’s recommendations, and index codes were added. Library quality was assessed
on a Qubit® 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and Agilent
Bioanalyzer 2100 system. The library was then sequenced on the Illumina MiSeq platform
to generate 300 base pair paired-end reads. Microbiota raw data were reprocessed, in-
cluding the merging of reads, primer-trimming, quality-filtration, alignment, and chimera
removal, using mothur and QIIME. The levels of 16S rRNA gene reads from four species (P.
gingivalis, P. intermedia, F. nucleatum, and A. actinomycetemcomitans) in relation to the total
rRNA reads were calculated as a percentage for the four species.

4.4. Isolation of RNA and Reverse Transcription–PCR

Total RNA was isolated from the THP-1 cells using a TRIzol kit (GibcoBRL, Gaithers-
burg, MD, USA) according to the manufacturer’s instructions. Reverse transcription was
performed using an iScript gDNA Clear cDNA synthesis kit (Bio-Rad, Hercules, CA,
USA). Quantitative real-time-PCR analyses were performed using the SensiFAST SYBR
kit (BIO-98020, BioLine, Eveleigh, Australia) according to the manufacturer’s instructions.
Amplification was performed using a StepOnePlus real-time PCR system (Applied Biosys-
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tems, Life Technologies, Carlsbad, CA, USA). The primer sequences are shown in Table S1.
Relative gene expression was calculated using the delta CT method. The reactions were
performed in duplicate.

4.5. Western Blotting

The cells were solubilized in an NETN lysis buffer, and protein levels were measured
by using the BAC protein assay (Pierce Biotechnology, Inc., Pittsuburgh, PA, USA). Cell
lysates containing sodium dodecyl sulfate buffer and protease inhibitors were separated
by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, followed by the transfer of
the proteins onto polyvinylidene difluoride membranes. The membranes were blocked,
incubated with primary antibodies, and incubated with an appropriate secondary antibody.
Protein expression was detected using an enhanced chemiluminescence reagent (Pierce
Biotechnology, Inc.). Immunoreactive band intensity was quantified by video densitometry
(G-box imaging system, Syngene, Frederick, MD, USA).

4.6. Statistical Analysis

All experiments were repeated three times. Data are presented as the mean and
standard error of the mean (SEM) of cumulative data from all experiments. Statistical
analyses were performed using the Student’s t-test. Pearson’s correlation analysis was used
to determine the association between salivary cytokines and oral microbiota. All analyses
were performed using GraphPad Prism 7.0 software (GraphPad Software, La Jolla, CA,
USA). Significance was set at p < 0.05.

5. Conclusions

We found that IL-8 levels were elevated in the saliva of patients with poor periodontitis
treatment. Furthermore, CAPE reduced inflammation by suppressing IL-8 expression in
THP-1 cells. These data suggest that IL-8 can serve as a potential biomarker and good
therapeutic target, and that CAPE can be used to treat periodontitis. However, preclinical
models should be evaluated to determine the effectiveness of CAPE against periodontal
inflammation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22073641/s1, Table S1: Primer sequences.
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