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Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by the progressive degeneration of upper and lower
motor neurons (MNs), leading to muscular atrophy and eventual respiratory failure. ALS research has primarily focused on
mechanisms regarding MN cell death; however, degenerative processes in the skeletal muscle, particularly involving neuromuscular
junctions (NMJs), are observed in the early stages of and throughout disease progression. According to the “dying-back”
hypothesis, NMJ degeneration may not only precede, but actively cause upper and lower MN loss. The importance of NMJ
pathology has relatively received little attention in ALS, possibly because compensatory mechanisms mask NMJ loss for prolonged
periods. Many mechanisms explaining NMJ degeneration have been proposed such as the disruption of anterograde/retrograde
axonal transport, irregular cellular metabolism, and changes in muscle gene and protein expression. Neurotrophic factors, which
are known to have neuroprotective and regenerative properties, have been intensely investigated for their therapeutic potential in
both the preclinical and clinical setting. Additional research should focus on the potential of preserving NMJs in order to delay or
prevent disease progression

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurode-
generative disease characterized by the loss of both upper
and lower motor neurons (MNs) [1–3]. ALS research has
primarily focused on mechanisms regarding MN cell death;
however, degenerative processes in the skeletal muscle,
particularly involving neuromuscular junctions (NMJs), are
observed in the early stages of and throughout disease
progression [4, 5]. Many studies support a “dying-back”
hypothesis in which distal NMJ degeneration precedes and
causes proximal cell body death. This paper will describe
the NMJ, ALS pathology and the “dying-back” hypothesis
(Figure 1). Then, we will discuss growth factor treatments
and current progress regarding them.

2. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neuromuscular
disease characterized by the progressive degeneration of

upper and lower MNs, leading to muscular atrophy and
eventual respiratory failure [1–3]. Diagnoses occur most
often between the ages of 40 and 60 and the disease is
fatal within 5-6 years of clinical diagnosis. ALS is the most
frequent adult-onset MN disease with a worldwide incidence
rate of 1–3 new cases per 100,000 individuals. About 90% of
ALS cases are sporadic and the remaining 10% of ALS cases
are familial (FALS). In about 20% of FALS cases, the cause
can be attributed to a mutation in the Cu2+/Zn2+ superoxide
dismutase 1 (SOD1), a ubiquitously-expressed free-radical
defense enzyme [6]. The mutations cause misfolding of this
normally stable homodimeric protein [7]. Overexpressing
the human SOD1 mutant in rodents results in a disease
progression similar to that observed in ALS patients, provid-
ing a valuable model (SOD1G93A mice or rats) on which a
great deal of ALS research has been based [8, 9]. Two other
heritable mutations associated with protein mislocalization
and aggregation have become important areas of research
in ALS: the RNA-processing proteins fused in sarcoma
(FUS) and TARDNA binding protein 43 (TDP-43) [10, 11].
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Figure 1: Schematic illustrating the “Dying-Back” hypothesis. (a) In a healthy system, communication and the transport of vital
biomolecules occurs normally along the axon connecting MNs and the NMJs they innervate. (b) In ALS, a progressive distal to proximal
degeneration occurs, described as “Dying-Back.” NMJ degeneration is followed by axonal degeneration and eventually MN degeneration.

Although the SOD1 mutation represents a relatively rare,
inherited form of ALS, both inherited and sporadic forms
of ALS exhibit the same clinical course and neuropathology.
Therefore, SOD1G93A rodent models are important tools
with which to better understand and investigate potential
therapeutic treatments for ALS.

The mechanism underlying MN death in ALS is still
unknown. Multiple mechanisms account for the selective
vulnerability of MNs, including abnormal astrocyte and
microglial activation, reduced neurotrophic factor secretion,
protein aggregations, mitochondrial malfunction, rupture
in the axonal passage, destruction in calcium metabolism,
changes in skeletal proteins, high levels of excitotoxicity
by glutamate and oxidative damage [12–14]. It is widely
accepted that ALS is caused by MN degeneration. However,
NMJ degeneration precedes and may even directly cause MN
loss.

3. The Neuromuscular Junction

The neuromuscular junction (NMJ) is the synapse where
the axon terminal of a MN meets the motor endplate,
the highly excitable region of muscle fiber plasma mem-
brane responsible for initiating action potentials across
the muscle’s surface, ultimately causing the muscle to
contract. (Figure 2(a)). In vertebrates, the signal passes
through the NMJ via the neurotransmitter acetylcholine.
Terminal branches expand outward from the motor nerve
and emerge from their myelin sheath at the muscle to
form terminals. These terminals are filled with synaptic
vesicles, mitochondria, and tubules from smooth endo-
plasmic reticula. Synaptic terminals permit the necessary
communication between MNs and their target muscles
for muscle contraction. The motor end plate is densely
populated by nicotinic acetylcholine receptors. Glial cells,
called terminal Schwann cells (TSCs), are also intimately
associated with the nerve-muscle connection. TSCs are
nonmyelinating Schwann cells that play important roles in

the formation, function, maintenance, and repair of the NMJ
[15]. In neuromuscular junction diseases such as myasthenia
gravis, Lambert-Eaton syndrome, and myasthenic syndrome,
normal conduction through the neuromuscular junction is
disrupted [16].

4. Presymptomatic Degeneration of the NMJ

Recent studies suggest that distal degeneration in the skeletal
muscle plays a key role in the progression of ALS. Several
studies using SOD1G93A mice have shown that NMJ degen-
eration occurs in the early stages of disease progression,
long before MN loss [17]. Furthermore, distal axonopathy
followed NMJ denervation, but preceded both neuronal
degeneration and the onset of clinical symptoms (Figure 1)
[18–21]. There is growing evidence suggesting that muscle
weakness is not apparent until a large proportion of the
motor units are lost [5]. The time differential between NMJ
degeneration and muscle weakness is caused by remaining
axonal reinnervation of the muscle. This process is able to
compensate for denervation at first and no loss in muscle
strength is observed. Eventually, reinnervation is not able
to keep up with degeneration from the disease and muscle
weakness becomes apparent [14, 15].

Presymtomatic NMJ degeneration is supported by a
study that used longitudinal magnetic resonance imaging
(MRI) of the same SOD1G93A mice. Researchers discovered
that the muscle volume in these animals was significantly
reduced from as early as week 8 of life, 4 weeks prior to clin-
ical onset [22]. Neuropathological analysis using SOD1G93A

mouse samples demonstrated a similar pattern of disease
with prominent evidence of axonal degeneration only in
muscle [23]. Furthermore, Hegedus et al. (2007) [24] applied
electromyography to the SOD1G93A mice and explored the
time course of functional loss in motor units. They also
explored whether or not a difference existed between the
loss of function in fast and slow twitch muscle. A significant
decline in the whole muscle contractile force occurred 50



Neurology Research International 3

Axon

TSCs

Muscle fiber

(a) Healthy NMJ

Slowed axonal
transport

TSC degeneration

Irregular protein
expression

Abnormal muscle
metabolism

(b) Degenerated NMJ

TSC protection?

hMSC-GDNF

GDNF GDNF

(c) Ex vivo GDNF delivery

Figure 2: Schematic detailing NMJ degeneration and treatment. (a) A healthy, functioning NMJ, including TSCs and Ach receptors, is a vital
point of communication between MNs in the spinal cord and muscle. (b) In ALS, NMJs begin to degenerate due to a number of pathologies,
including disrupted axonal transport and irregular mitochondrial metabolism. NMJ degeneration occurs long before MN degeneration
in the spinal cord, preceding clinical symptoms. (c) Ex vivo delivery of GDNF to NMJ via hMSC-GDNF may help to rescue TSCs from
degenerative processes, thereby, delaying or preventing degeneration of the NMJ as a whole.

days before the onset of clinical symptoms. Furthermore, the
number of functional motor units decreased in fast twitch,
but not slow twitch, muscle. Another study found that skele-
tal muscle-restricted expression of the mutant SOD1 gene is
sufficient to dismantle neuromuscular connections and cause
MN distal axonopathy, resulting in MN disease in these mice
[25–27]. This suggests that subclinical pathology in skeletal
muscle is not merely the consequence of neurogenic atrophy,
but initiates additional pathogenic processes.

The “dying-back” hypothesis is further supported by our
recent research using SOD1G93A rats. We assessed whether
human neural progenitor cells secreting glial cell line-derived
neurotrophic factor (hNPC-GDNF) could also maintain
neuromuscular connections following transplantation into
the spinal cord of ALS rats. The animals were unilaterally
transplanted at presymptomatic 70 days with hNPC-GDNF
and then sacrificed at the mid-stage of disease (6 weeks
after surgery). We confirmed a highly significant increase in
MN survival within the hNPC-GDNF group when compared
with the non-grafted side. However, hNPC-GDNF did not
have a significant effect on the innervation of NMJs in the
hind limb muscle [28]. These results suggest that while hNPC
releasing GDNF were able to protect MNs, they were no
longer connected to the muscle.

5. Possible Mechanisms of NMJ Denervation

In the last few decades, many explanations regarding NMJ
degeneration have been proposed. Here, we describe some of
the main components of the “dying-back” hypothesis which
have been demonstrated (Figure 2).

One circumstance that may contribute to NMJ degener-
ation is the accumulation of SOD1G93A proteins in neurons,
which slows anterograde and retrograde axonal transport,
resulting in insufficient maintenance of the distal axon [29,
30]. An increased expression of Sema3A, an axon guidance
protein, was found in SOD1G93A mice. It is thought that
Sema3A, secreted by the TSCs, may lead to the repulsion of
motor axons away from the NMJ, resulting in denervation
[5]. Nogo-A, a neurite outgrowth inhibitor that is overex-
pressed in the slow-twitch fibers of SOD1G93A mice, may
contribute to NMJ degeneration [31]. Overexpression of the
dynamitin subunit of dynactin also inhibits retrograde trans-
port and causes an α-MN degeneration progression similar
to that observed in ALS [32]. Angiogenin (ANG), which is
mainly implicated in angiogenesis, also has axonal guidance
functions by regulating neurite extension and pathfinding.
Mutations in ANG can inhibit neurite outgrowth and
negatively affects MN survival [5]. The consequences of
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these mutations highlight the importance of anterograde
and retrograde transport in maintaining the functionality
of MNs. Since the fine-tuning of axonal transport is crucial
for the survival of motor neurons, the development of
molecular-targeted therapies to maintain axonal transport
would be a powerful strategy.

Recent work has also shown that abnormalities in muscle
energy metabolism may play a role in initiating NMJ degen-
eration. Large MNs are susceptible in a caliber-specific order
with the largest caliber axons being the most susceptible to
degeneration in SOD1G93A mice and human patients [33,
34]. This is supported by the observation that MNs inner-
vating fast-twitch muscle fibers, mainly composed of type
IIB and IID/X muscle fibers, showed signs of degradation
before MNs innervating slow-twitch type I and IIA fibers
in SOD1G93A rodents. Fast-twitch fibers are often innervated
by the larger caliber type II MNs and slow-twitch fibers
are innervated by the smaller caliber type I MNs [24]. It is
generally accepted that the MNs innervating fast motor units
have the largest soma sizes, axon calibers, and innervation
ratios [35]. It has been proposed that irregular muscle
metabolism is the cause of caliber-specific degradation.
SOD1G93A rodents experience an increased basal metabolic
rate and subsequent weight loss due to decreased levels of
cellular adenosine-5′-triphosphate (ATP) [36]. An increased
basal metabolic rate in SOD1G93A rats has also been linked
to elevated levels of mitochondrial uncoupling protein [37].
Since larger-caliber nerve fibers have the highest metabolic
needs, they would be the most susceptible in irregular
metabolic conditions [5].

Alterations in trophic factor expression in the skeletal
muscle could influence the course of MN degeneration
and NMJ denervation. Numerous studies support this idea
and demonstrate that the expression of growth factors
dramatically changes in the muscle of patients with ALS
throughout the stages of the disease. Although increased
GDNF mRNA expression was observed in muscle biopsies
from ALS patients [38], the other study showed that GDNF
mRNA was decreased in the postmortem muscles of ALS
patients [39]. These observations imply that GDNF gene
expression decreases considerably as the disease progresses.
Similarly, decreased expression of insulin-like-growth factor-
I (IGF-I) has been observed in the skeletal muscle of ALS
patients [40].

Furthermore, TSCs may be intimately involved in the
course of ALS pathology. TSCs cap the nerve terminal
covering motor terminal branches and synaptic boutons.
These cells play key roles in the maintenance of preterminal
axon structure and function during development and in
adult life [41]. TSCs dysfunction or loss could thus serve
as a possible trigger for NMJ degeneration. We recently
performed a longitudinal study using SOD1G93A rats to
understand the ability of TSCs to protect neuromuscular
connections and found that the number of TSCs was
significantly reduced following disease progression in ALS rat
muscle. Given the importance of TSCs in the maintenance
and function of NMJs, further studies are necessary to
understand the mediators of TSC plasticity. Then, suitable

cellular and molecular targets can be identified for novel
treatments for ALS and other neuromuscular diseases.

6. Upper MNs and “Dying-Back”

The connection between upper MN degeneration and the
dying-back hypothesis is still uncertain. Some early studies
suggest that cortical and lower MN degeneration occur
independently and not as a transsynaptic phenomenon [42,
43]. Attarian et al. conducted two studies comparing the
responses of motor units in ALS patients to transcranial
magnetic stimulation and peripheral nerve stimulation [44,
45]. Although a positive correlation existed between cortical
and spinal dysfunction at first, it eventually disappeared,
again suggesting that upper and lower MN degeneration
occur separately. Furthermore, it has been suggested that
the disease starts at a focal point which involves both
upper and lower MNs, but that each set of MNs is affected
separately as the disease progresses [46]. Some studies
even suggest a “dying-forward” hypothesis which places
corticomotoneuron degeneration at the earlier stages of
disease progression. Corticomotoneuron hyperexcitability,
induced by glutamate, may drive the anterior horn cell into
a metabolic deficit [47]. However, identifying corticospinal
MN degeneration and corresponding subcerebral projection
neurons more accurately can now be done with recently
identified molecular markers and FluoroGold labeling. Only
∼6,000 corticospinal and corticobulbar MNs exist per hemi-
sphere in mice, intermixed with millions of other cortical
pyramidal neurons in the same region and layer V of the
motor cortex [48]. As the pathology and progression of
upper and lower MN degeneration is better understood, we
can refine our treatment target and rationale.

7. Possible Treatments Targeting Muscle:
How Can We Prevent “Dying-Back”?

Mounting evidence for the “dying-back” hypothesis suggests
that the survival of NMJs is imperative in hindering the
progression of ALS. Therefore, therapeutic treatments aimed
at preserving NMJs may be the most effective.

One therapeutic strategy following this model is the
direct delivery of neurotrophic factors to skeletal muscle.
Neurotrophic factors are intimately involved in the devel-
opment and survival of neurons thereby supporting their
candidacy as a therapeutic option for ALS. MNs are able to
bind, internalize, and retrogradely transport growth factors
from muscle in a receptor-dependent manner. Alternatively,
injecting viral constructs encoding growth factors directly
into the spinal cord avoids the need for retrograde transport
of the protein from the muscle. Several growth factors
such as GDNF, IGF-I, vascular endothelial growth factor
(VEGF), ciliary neurotrophic factor (CNTF), and brain-
derived growth factor (BDNF) have been evaluated in
experimental models of ALS (for review see [49, 50]). In
nearly all cases, these factors have had positive effects on both
MN survival and function in SOD1G93A rodents [51–54].

GDNF is important in the branching of neurons at the
NMJ and modulating synaptic plasticity [55]. The enhanced
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expression of GDNF in the muscle of the SOD1G93A mice
delays disease onset, improves locomotor performance,
and increases lifespan [51–53, 56–58]. However, delivering
GDNF directly to the MNs within the spinal cord had only
modest effects on the survival of facial MNs and no effect
on lumbar MN survival or function. This was observed even
though high levels of GDNF were expressed directly around
dying MNs [59]. In support of this study, another report
used promoter-driven transgenic mice to overexpress GDNF
locally in either the muscle or spinal cord of SOD1G93A

animals. GDNF expression in the muscle was able to slow
disease progression and onset, but expression in the spinal
cord had no effect [60].

In previous years, we demonstrated that intramuscu-
lar GDNF delivery using stem cells helps preserve NMJs
(Figure 2(c)) [61]. Human mesenchymal stem cells (hMSC)
were genetically modified to release GDNF (hMSC-GDNF)
and were transplanted into the limb muscles of presymp-
tomatic SOD1G93A rats. These cells survived, released GDNF,
and significantly affected innervation of NMJs in the
transplanted muscle at 6 weeks post surgery. hMSC-GDNF
transplanted rats also survived ∼18 days longer than their
control littermates when animals were kept until endpoint
[61].

IGF-I has been known to play a key role in MN survival,
axonal growth, and the maintenance of synaptic connections
[62, 63]. This trophic factor is involved in muscle and
nerve tissue anabolism and thus induces muscle hypertrophy
and promotes neural survival. After intramuscular treatment
with adeno-associated virus expressing IGF-I, it was shown
that IGF-I can be retrogradely transported from muscle to
the spinal cord and led to MN protection in the SOD1G93A

mice [52]. This effect was further increased when physical
exercise was associated with treatment [64]. Another study
reported that muscle-restricted expression of IGF-I isoforms
maintained muscle integrity, stabilized neuromuscular junc-
tions, enhanced MN survival, delayed the onset of disease,
and slowed disease progression in the SOD1G93A mice [65].
These studies reappraised the potential role of the skeletal
muscle and IGF-I signaling as a target for treatment in ALS
patients.

VEGF is another trophic factor that contributes to the
pathogenesis of ALS and possibly applies to muscle-target
treatments. In SOD1G93A mice, increased expression of VEGF
by intramuscular viral injections prolongs their survival and
enhances motor performance [7, 53]. Also, intracerebroven-
tricular administration of VEGF in a rat model of ALS
enhanced MN survival, while an intraperitoneal injection of
VEGF led to the preservation of NMJs [66].

Despite the promising effects in preclinical studies,
several growth factors, including BDNF, CNTF, and IGF-I,
did not yield positive results in clinical trials for ALS patients
[67]. However, the failure of these trials may be attributed to
factors such as inappropriate delivery routes and doses which
were validated in preclinical trials and may have affected the
pharmacological concentration of growth factors in target
tissues [68]. Therefore, the therapeutic benefits of these
growth factors may need to be tested using the direct delivery
into skeletal muscle.

NMJ degeneration may also be alleviated by controlling
abnormally elevated energy metabolism which occurs in
muscle. It has been suggested that hypermetabolism in
skeletal muscle drives a chronic energy deficit in SOD1G93A

mice which precedes amyotrophy and muscle denervation.
SOD1G93A mice show a body weight deficit compared to
wild type mice [33]. This body weight deficit was not
due to decreased food intake, but rather to an increase
in the basal metabolic rate. Energy metabolism, especially
lipid metabolism, was strikingly altered in these animals.
Furthermore, gene expression changes and increased muscle
glucose uptake implicated the muscle as a site of excessive
nutrient consumption in SOD1G93A mice. Interestingly, a
high-fat diet used to increase energy levels was enough to
prolong the life of SOD1G93A rats and reduce muscle dener-
vation, although this strategy might not work well for human
ALS patients due to insulin resistance [37, 69].

If an altered metabolic rate in skeletal muscle is critical
for NMJ degeneration, exercise would also be expected
to benefit ALS patients. Recent studies using ALS mouse
models have reported a life span increase in exercised animals
[70, 71]. Therapeutic exercise is also feasible, tolerated,
and safe for patients with ALS [72, 73]. Clinical trials of
ALS patients have suggested that regular physical exercise
may be neuroprotective, ameliorate symptoms, and improve
functionality [74]. Interestingly, synergistic effects of IGF-I
gene delivery and exercise have profound effects on survival
function [64]. Therefore, it is possible that combining
exercise and stem-cell- or viral-based growth factor delivery
may provide a more powerful therapy.

8. Conclusion

ALS is emerging as a “multisystemic” disease in which struc-
tural, physiological, and metabolic alterations occur in
different tissues and cell types such as MNs, glia, and muscle
tissues. The degenerating processes may act synergistically
to induce and exacerbate the disease. Recent studies have
provided evidence supporting a “dying-back” hypothesis in
which distal NMJ degeneration precedes proximal neuronal
cell death. It has been proposed that NMJ degeneration
is not initially noticeable due to reinnervation processes
by remaining axons of the muscle fibers as part of a
compensatory mechanism. Eventually, however this process
cannot keep up with the disease progression and muscle
weakness is observed. Growth factor delivery targeting the
skeletal muscle has provided significant results in protecting
NMJ innervations, increasing MN survival, and prolonging
the survival period of rodent models of ALS. On the other
hand, treatments to rescue MNs according to a “dying-
forward” model of MN pathology in ALS have shown only
limited success in SOD1G93A transgenic rodents as well as
humans. Due to the accessibility of muscle tissue, it is much
easier to directly deliver growth factors in muscle than in
other tissues such as the spinal cord. Perhaps the most
powerful approach will be to target both the spinal cord (i.e.,
cell body) and muscle (i.e., nerve terminals of MNs).
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