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Abstract: Coffee endophytes have been studied for almost 74 years, and several studies have demon-
strated coffee-endophytic fungi with antibacterial and antifungal potential for human and plant
pathogens. In this study, we isolated and identified a total of 235 strains of endophytic fungi from
coffee leaf tissues collected in four coffee plantations in Pu’er city, Yunnan province, China. Molecular
identification was carried out using maximum likelihood phylogenetic analysis of nuclear ribo-
somal internal transcribed spacer (ITS1-5.8S rDNA-ITS2) sequences, while the colonization rate
and the isolation frequency were also calculated. Two pathogenic fungi (Alternaria alternata and
Penicillium digitatum) and two pathogenic bacteria (Pseudomonas syringae and Salmonella enterica subsp.
enterica) were used for screening the antagonistic activities of 61 strains of coffee-endophytic fungi by
a dual-culture test assay while maximum likelihood phylogenetic analysis confirmed their natural
classification. This is the first study of coffee-leaf-endophytic fungal diversity in China, and the
results revealed that coffee-endophytic fungi from this study belong to the Ascomycota, distributed
among two classes, 10 orders, and 17 families. Concurrently, endophytic fungi isolates distributed in
Arthrinium, Biscogniauxia, Daldinia, Diaporthe, and Nigrospora showed strong antagonistic activities
against the pathogens. For the pathogens Alternaria alternata and Pseudomonas syringae, Nigrospora
XCE-7 showed the best inhibitory effects with inhibition rates of 71.76% and 61.11%, respectively. For
the pathogen Penicillium digitatum, Daldinia ME-9 showed the best inhibitory effect with a 74.67%
inhibition rate, while Biscogniauxia PTE-7 and Daldinia T5E-1-3 showed the best inhibitory effect with
a rate of 60.42% against the pathogen Salmonella enterica subsp. enterica. Overall, our study shows the
diversity of coffee endophytes in four coffee-growing areas in Pu’er city, Yunnan province, China,
and their potential use as biological control agents against two fungal and two bacterial pathogens.

Keywords: biocontrol agents; Coffea; coffee-endophytic fungi; pathogenic fungi; pathogenic bacteria

1. Introduction

Coffee is one of the most important crops around the world that grow in tropical and
subtropical areas, and it is the second-largest export commodity after crude oil [1,2]. Coffee
is susceptible to diseases and pests, but most coffee diseases are caused by pathogenic
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fungi, which can infect various tissues of coffee before and after coffee harvest and affect
the yield and quality of the fruit [3,4]. Cerda et al. [5] showed that pests and diseases cause
up to 38% of coffee yield losses. In order to reduce the impact of diseases on coffee, cultural
control, chemical control, and biological control strategies have been developed [6,7].
Cultural control can avoid and reduce some plant diseases and generally requires workers
to implement it manually, which is time-consuming and labor-intensive [7]. Chemicals can
control diseases and increase yields, such as the use of the fungicides cyproconazole and
thiamethoxam in the soil to control rust disease [8], but the chemical methods can result in
environmental and food contamination, which forces society to use nonchemical methods
for plant disease control [9]. Carl von Tubeuf was the first person to use biological control
to manage plant diseases in 1914 [10–13]. The biological control of plant diseases occurs
with several distinct mechanisms, including competition for nutrients between a pathogen
and a harmless species, parasitism, and production of antibiotics [14,15]. Biological controls
have the advantages of being environmentally compatible, can exhibit broad or narrow
targets depending on the organism, can be site-specific, less prone to resistance, safe, and
inexpensive compared with chemical pesticides. Due to these advantages, biocontrol has
become a popular method of plant disease management [16–18]. Currently, some fungi
and bacteria as biocontrol agents are available as commercial products [17]. A total of
101 microbial biological control agents were registered for disease control in Australia,
Brazil, Canada, Europe, Japan, New Zealand, and the United States in 2017 [19].

Endophytes are microorganisms such as actinomycetes, bacteria, or fungi that live in
plant tissues and do not cause the host to produce any disease symptoms [20–22]. They is
generally considered reciprocal and neutral, but can cause disease or become saprophytic
when senescence occurs in the host, its vitality decreases, and other factors are weak-
ened [23,24]. The host strongly restricts the growth of endophytes, but it can overcome the
host’s defense by secreting biologically active metabolites or changing the balance of plant
hormones in the host [24–26]. Endophytes spend all or part of their life cycle in the healthy
tissues of plants [27,28]. The bioactive compounds synthesized by endophytes enhance
the resistance of plants to pathogenic microorganisms and pests, protect the host from
environmental stresses such as high temperature and drought, and help the host to more
easily access nutrients to promote the growth necessary for a stable symbiosis [21,26,29].
These bioactive metabolites produced by endophytes can be used directly or indirectly as
potential biological fertilizers to promote plant growth and biocontrol agents to control
pathogenic-causing diseases [28,30–33]. Fadiji and Babalola [34] summarized the applica-
tions of endophytes into four categories. These are: (i) plant growth promotion, including
nutrient uptake, photostimulation, and phosphate solubilization; (ii) plant health and
protection (antimicrobial activities and pathogen displacement); (iii) pollution control and
phytoremediation; and (iv) medical and industrial applications (anticancer and antiviral).
Since endophytes can produce large amounts of biologically active substances, the use of
endophytes to control plant diseases and to increase crop yields has become the focus of
the agricultural industry [17,35–37].

Endophytic fungi are one of the groups of microorganisms that colonize plant tissues
and interact with plants, which can be used for biological control and resistance induction,
and these fungi are one of the most interesting groups with high utilization value and high
diversity [38]. Endophytic fungi are known to produce important secondary metabolites
such as anticancer, antifungal, antidiabetic, and immunosuppressant compounds, which
can be used as a source of some important secondary metabolites [39,40]. Numerous at-
tempts have been made to control wilt diseases through biocontrol agents using endophytic
fungi, and this way holds great promise for improving crop productivity while serving as
an alternative to chemical fungicides and synthetic fertilizers [41–44]. A huge number of
studies have shown that fungal endophytes have potential research values (e.g., endophytic
fungi secrete hormones such as indoleacetic acid and gibberellins that aid in plant develop-
mental processes and improve plant growth and crop productivity) [45,46]. The endophytic
fungus Penicillium indica can regulate the production of phytohormones and contributes to
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root growth in crops such as barley and tobacco [47,48]. The endophytic fungus Acremonium
alternatum controls the damage caused by the moth Plutella xylostella in beans and induces
resistance against Leveillula taurica (the powdery mildew pathogen) in tomatoes [49]. Ek-
Ramos et al. [49] showed that the cotton fungal endophyte Phomopsis sp. reduces caterpillar
herbivory activity in cotton plants. The endophytic fungi Aspergillus terreus and Penicil-
lium citrinum reduce the pathogenic Sclerotium rolfsii and induce increases in the biomass
yield of sunflower plants [50]. Many studies have revealed that endophytic fungi, such
as Ampelomyces quisqualis, Aureobasidium pullulans, Beauveria bassiana, Botryosphaeria sp.,
Candida oleophila, Coniothyrium minitans, Gliocladium catenulatum, Metarhizium anisopliae,
Paecilomyces lilacinus, Pestalotiopsis microspora, Phlebiopsis gigantea, Purpureocillium lilacinum,
Trichoderma asperellum, T. atroviride, T. gamsii, T. polysporum, and Verticillium lecanii, can be
used as biocontrol agents in commercial products [51–56]. Therefore, endophytic fungi
represent an effective agent in managing diseases and promoting plant growth; they also
provide great opportunities for researching new products.

Studies of endophytic fungi in coffee were pioneered by Rayner in 1948 [57]. Since
1948, many studies have been published on coffee endophytes but no research has been
carried out on the antagonistic effects of coffee endophytes as evaluated by a dual-culture
assay. Beauveria bassiana can be established in coffee seedlings through different inoculation
methods and the plants can resist coffee berry borers [58]. Fernandes et al. [59] showed
that the fungal endophytes isolated from the healthy leaves of Coffea arabica could produce
bacteriostatic, antifungal, and antitumor bioactive substances. Trichoderma sp. isolated
from healthy coffee roots by Mulaw et al. [60] was demonstrated to have an antagonistic
effect on the fungus Fusarium sp., which causes vascular wilt diseases. Monteiro et al. [61]
isolated endophytes from Coffea arabica, and the results showed that Acremonium, Mus-
codor, and Simplicillium have antibacterial activities against Aspergillus ochraceus, while six
different endophytic fungal strains can inhibit the growth of Fusarium verticillioides. The
endophyte Simplicillium coffeanum isolated from coffee branches by Gomes et al. [62] has
antimicrobial activities against Aspergillus niger, A. ochraceus, A. sydowii, and A. tubingensis.
Trichoderma harzianum (CRF1) and T. viride (CRF-2), isolated from coffee rhizosphere soil
by Ranjini et al. [63], can control Myrothecium roridum in vivo, a fungus that causes stem
necrosis and leaf spot of coffee seedlings.

Both bacteria and fungi cause diseases in coffee [7]. Alternaria alternata was identified
in Brazil in 1999 as the causative agent of necrotic spots on coffee leaves [64]. This pathogen
is more serious when present in other fruits and vegetables, and the current control methods
include fungicides, synthetic chemical fungicides, and biological control [65]. Penicillium
digitatum is a destructive postharvest pathogen causing green mold in fruit, especially citrus
fruits [66]. Fungicides are still the main control agent of postharvest green mold, and it is
necessary to develop novel and safer strategies for effectively controlling plant diseases [67].
Bacterial halo blight disease caused by Pseudomonas syringae has affected coffee plantations
in Brazil and Ethiopia. Due to only a few efficient commercial products being available
on the market to control this disease and the low efficiency of the chemical control on
field conditions, biological control and disease-resistant variety development should be
the most promising management methods [68–70]. Salmonella enterica subsp. enterica is
a common pathogen of animals, humans, or plants [71]. Salmonella can adhere to plant
surfaces before actively infecting the interior of different plants, leading to the colonization
of plant organs [72,73] and suppression of the plant immune system [74]. In addition,
Salmonella originating from plants reduces its virulence toward animals [75]. Therefore,
plants act as an alternative host for Salmonella pathogens and have a role in transmitting
back to animals. Moreover, Salmonella can adapt to survive in different environments
outside the host organism, such as low pH or high temperatures [76].

The microfungal diversity of the Greater Mekong Subregion (GMS) has been relatively
well-studied, but their secondary metabolites have not been well-studied [77]. Since
endophytic fungi have become the source of new antibacterial and antifungal agents,
with some examples producing valuable secondary metabolites, this study was planned
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to identify and examine the antagonistic abilities against two fungal and two bacterial
pathogens of endophytic fungi, which were isolated from healthy coffee leaves from four
coffee-growing areas in Pu’er city, Yunnan province, China.

2. Materials and Methods
2.1. Sampling Location and Leaf Collection

Pu’er city has the largest coffee planting area, with the highest yield, and the best-
quality coffee production in Yunnan province, China [78]. This study was conducted on
mature and healthy leaf samples collected from four coffee-planting areas in Pu’er city,
Yunnan province, China (Figure 1, Table 1). All sites were >30 km and <210 km apart.
More than 50 healthy leaves were collected from each coffee plant host, placed in clean
plastic bags, kept in iceboxes, brought to the laboratory, and refrigerated at 4 ◦C until
further processing.
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Table 1. Information on the host species and sample collection sites.

Host (Varieties) Coffee Plantation Site in Pu’er City Location (Latitude;
Longitude; Altitude) Abbreviation Collection Date

Coffea arabica (Catimor)

Xiao Ao Zi coffee plantation
(小凹子咖啡庄园) 22.6618◦ N; 100.9584◦ E; 1066 m XCE 21 December 2020

Qi Xiang coffee plantation
(奇象咖啡庄园) 22.7040◦ N; 101.3462◦ E; 900 m QCE 22 December 2020

Mo Jiang Jing Gong coffee plantation
(墨江晶工咖啡庄园) 23.2543◦ N; 101.7390◦ E; 1100 m ME 23 December 2020

Coffea arabica (Aika)

Xiang Yuan Shu He coffee plantation
(香橼树河咖啡庄园) 22.7541◦ N; 101.2869◦ E; 1006 m

AKE 22 December 2020
Coffea arabica (P4) P4E 22 December 2020
Coffea arabica (PT) PTE 22 December 2020
Coffea arabica (T5175) T5E 22 December 2020
Coffea arabica (T8667) T8E 22 December 2020

Coffea arabica (Yellow Bourbon) Xiao Ao Zi coffee plantation
(小凹子咖啡庄园) 22.6618◦ N; 100.9584◦ E; 1066 m XYE 21 December 2020

2.2. Coffee Leaves Processing and Fungal Endophytes Isolation

The isolation process of endophytic fungi refers to the slightly modified method of
Tibpromma et al. [79] and Du et al. [80]. Sterile water, 70% alcohol, 1% sodium hypochlorite,
a sterile scalpel, sterile tissue paper, sterile fine-tip forceps, and potato dextrose agar (PDA)
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plates (supplemented with amoxicillin) were prepared. Ten healthy leaves were randomly
selected for each host and each leaf was washed under running tap water and then air-dried.
Working under an aseptic laminar hood, a hole puncher was used to randomly punch the
leaves to obtain 5 mm size pieces (10 pieces/leaf) and these were washed in sterile water
for one minute, dried on sterile tissue paper, soaked in 70% alcohol for 30 s, transferred to
1% sodium hypochlorite and soaked for one minute, then soaked in 70% alcohol for 30 s,
and finally transferred to sterile water for one minute to remove chemicals. Afterwards,
they were dried on sterile tissue paper; then, five pieces were placed on 90 mm-diameter
PDA plates. A total of 30 leaf pieces were placed on six PDA plates for each host and each
location. All PDA plates were incubated at 28 ◦C and observation of the culture plates was
performed every day to check emerging hypha from the edge of the leaves. After colonies
had grown, a small piece of mycelium with agar was cut and transferred to new PDA plates
to obtain a pure culture [26,81,82]. There was a total of 270 coffee leaf pieces, including
Arabica coffee (150 pieces × 5 plants × 1 place), Catimor (90 pieces × 1 plant × 3 places),
and Yellow Bourbon (30 pieces × 1 plant × 1 places). A total of 235 pure cultures were
isolated in this study (Table 2).

Table 2. Records of coffee leaf fungal endophytes.

Class Genus AKE ME P4E PTE QCE T5E T8E XCE XYE Total

Dothideomycetes

Cladosporium - 1 - - - - - 1 - 2
Phyllosticta 2 2 1 1 2 2 - 1 5 16
Pyrenochaetopsis - - - - - 1 - - - 1
Shiraia - - - - 1 - - - - 1

Sordariomycetes

Annulohypoxylon 1 - 1 1 - - 1 - - 4
Arthrinium - - - - - - - 2 3 5
Biscogniauxia 1 - - 1 - - - - - 2
Cladorrhinum 1 - 1 1 - - 2 - - 5
Colletotrichum 8 15 7 5 20 6 8 17 14 100
Daldinia 5 1 4 3 4 3 4 - 1 25
Diaporthe - 2 1 - - - - - - 3
Fusarium - - - - 1 - - - - 1
Hypoxylon - - - 1 - - 2 1 1 5
Kretzschmaria - - - 1 - - - - - 1
Naviculispora - - - - - 1 - - - 1
Nemania - - - - - - - - 2 2
Neurospora - - 1 - - - - - - 1
Nigrospora - - 1 - - 3 1 2 - 7
Nodulisporium - - - - - - 2 - - 2
Pestalotiopsis - - - - - 1 - - - 1
Xylaria 6 - 5 4 1 3 6 1 3 29

- Unknown 2 - 1 5 2 4 6 1 - 21

Total 21 26 21 23 23 31 24 32 26 29 235

2.3. DNA Extraction, PCR Amplification, and ITS Gene Sequencing

The Biospin Fungus Genomic DNA Extraction Kit-BSC14S1 (BioFlux, Beijing, China)
was used for DNA extraction from pure cultures grown on PDA for 7–10 days. The
extraction process followed the protocol of the manufacturer. Internal transcribed spacer
(ITS) regions 1 and 2 of the nuclear ribosomal DNA operon, including the 5.8S region, were
amplified by the primers ITS5 and ITS4 [83]. The methods of Lu et al. [84] were followed
for the polymerase chain reaction (PCR). Amplification reactions were performed in a 25 µL
reaction volume which contained 2 µL DNA, 1 µL of each reverse and forward primers and
8.5 µL ddH2O, 12.5 µL 2 × FastTaq Premix (mixture of FastTaq TM DNA Polymerase, buffer,
dNTP Mixture, and stabilizer) (Beijing Qingke Biological Technology Co., Ltd., Beijing,
China). The amplified PCR products were sent to Bioer Technology Co., Ltd., Hangzhou,
and Beijing Kinco Biotechnology Co., Ltd. Kunming Branch, China for sequencing.
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2.4. Molecular Identification and Phylogenetic Analyses

A total of 235 sequences were obtained, and the newly generated sequences were
merged forward and reversed by Geneious 9.1.2 (https://www.geneious.com/ (Auckland,
New Zealand), accessed on 30 June 2022). The BLAST search of the sequences was carried
out and the top five high-similarity results were recorded. Among our isolates, resistant gen-
era based on published papers and less frequently isolated genera were selected (61 isolates)
for the dual-culture assay. The closest match of sequences for the 61 isolates that were used
for dual-culture assay were retrieved from GenBank. Multiple alignments were prepared us-
ing the online tool MAFFT version 7 (https://mafft.cbrc.jp/alignment/server/, accessed on
1 June 2022) [85], manually edited in BioEdit v. 7.0.5.2 [86], and then their format converted
from FASTA to PHYLIP by ALTER online tool (https://www.sing-group.org/ALTER/,
accessed on 1 April 2022) [87]. Phylogenetic analyses of the aligned sequences were con-
ducted using the maximum likelihood method [88]. Maximum likelihood trees were
generated via RAxML-HPC version 8 on XSEDE (8.2.12) [89,90] in the CIPRES Science
Gateway platform [91] using the GTR+I+G model of evolution. The resulting trees were
visualized with FigTree version 1.4.0 and annotated in Microsoft 365 PowerPoint. Sixty-one
generated sequences were deposited in GenBank and accession numbers were obtained.

2.5. Diversity Analysis

The doughnut chart in Excel 365 was used to show the family, order, and class distri-
bution of endophytic fungi. The colonization rate (CR) and the isolation frequency (IF) of
the calculated endophytic fungi: CR = NS/NL × 100%, IF = NS/NT × 100%, NS = number
of strains isolated from the location, NL = number of leaf pieces prepared from the location,
NT = all number of isolates from all location. Then, the taxonomic diversity based on the
species/genera (S/G) ratio was calculated to evaluate the endophyte diversity of each
host. In addition, the relative abundances of the species were calculated and the similarity
between the fungal communities was estimated using Sorensen’s index [92]. The species
diversity of different hosts in each sampling site was calculated by the Shannon diver-
sity (H’), Margalef diversity (d), and the Pielou evenness indices (J’), H’ = -∑ (Pi ln [Pi]),
Pi = ni/N, ni = number of individuals of the species i, and N = total number of individuals
of all species; d = S-1/Log N, where S is the number of species and N is the total number of
specimens in the sample; J’ = H’/Log (S), where H’ is the value obtained by the Shannon
index and S is species richness [26,93,94].

2.6. Tests for Antagonism: Endophytic Fungi vs. Pathogenic Fungi/Bacteria

Endophytes were selected for dual-culture testing in vitro based on the information
reported in the literature [95,96] and the less frequent strains from our results. The living
cultures of the 61 endophytic fungi were deposited in the Kunming Institute of Botany
Culture Collection (KUMCC). The 61 endophytic fungi were tested for dual-culture assays
in 9 cm Petri dishes with two fungal and bacterial pathogens (i.e., Alternaria alternata,
Penicillium digitatum, Pseudomonas syringae, and Salmonella enterica subsp. enterica) (Table 3)
from China General Microbiological Culture Collection Center (CGMCC). These pathogens
were selected for our experiments because they are common and cause different diseases
on numerous hosts (Table 3) and have been used in biological control tests [97–103]. The
PDA was supplemented with amoxicillin antibiotic and nutrient agar (NA) was prepared
without amoxicillin antibiotic. The steps used are given in Figure 2.

Table 3. Information of the pathogens obtained from CGMCC.

Pathogen Group Species Name Strain Number Major Disease

Bacteria
Pseudomonas syringae CGMCC 1.3333 Canker, halo blight of bean [70]

Salmonella enterica subsp. enterica CGMCC 1.10603 Food-borne illness [72]

Fungi Alternaria alternata CGMCC 3.15535 Black spots [64]
Penicillium digitatum CGMCC 3.15410 Fruit post-harvest diseases [66]

https://www.geneious.com/
https://mafft.cbrc.jp/alignment/server/
https://www.sing-group.org/ALTER/
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3. Results
3.1. Isolation and Identification of Endophytic Fungi

A total of 235 fungal endophytes were isolated from 270 coffee leaf pieces obtained
from four coffee plantations in Yunnan province, China. All endophytes were used for the
molecular identification, based on the blast result of ITS sequences, and the closest species
information was obtained. Overall, 235 endophytes belong to Ascomycota (100%) and are
distributed among two classes, 10 orders, and 17 families (Figure 3). At the class level, 91%
are members of the Sordariomycetes, while 9% are members of the Dothideomycetes. At
the order level, the Glomerellales (42.6%) is the largest group, while the Amphisphaeriales
(0.4%) and the Hypocreales (0.4%) are reported as the least important. At the family level,
the Glomerellaceae (42.6%) is the most common family, while the Cucurbitariaceae (0.4%),
Naviculisporaceae (0.4%), Nectriaceae (0.4%), Podosporaceae (0.4%), Pestalotiopsidaceae
(0.4%), Sordariaceae (0.4%), and Shiraiaceae (0.4%) are the less important families.
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Figure 3. Taxonomic distribution of the fungal taxa (n = 235) from the coffee.

Table 2 shows that 235 species are distributed in 21 genera. Colletotrichum is the
most common genus, composed of 100 isolates, and found in each location and on each
host. This is followed by Xylaria (composed of 29 isolates) and Daldinia (composed of
25 isolates). Seven genera (Fusarium, Kretzschmaria, Naviculispora, Neurospora, Pestalotiopsis,
Pyrenochaetopsis, and Shiraia) have a low frequency of occurrence; all of these are represented
by one isolate and are distributed in two coffee plantations. In addition, 21 genus names
could not be determined from only the blast results of ITS, which indicated these as
unidentified fungal endophytes, unidentified fungal species, or an undetermined species
in the Sordariomycetes.

3.2. Phylogenetic Analyses

Phylogenetic analyses were carried out on the 61 endophytes that were used for the
dual-culture testing. Our ITS sequences were combined with the sequences of close relatives
in GenBank to construct an ITS phylogenetic tree that was composed of 167 sequences.
The ML analysis of the combined dataset yielded a best scoring tree with a final ML
optimization likelihood value of − 13283.937651. The alignment has 684 distinct alignment
patterns, with 32.41% completely undetermined characters and gaps. Parameters for the
GTR+I+G model: estimated base frequencies A = 0.246497, C = 0.253353, G = 0.238501,
T = 0.261649; substitution rates AC = 0.867207, AG = 1.955827, AT = 1.257643, CG = 0.680575,
CT = 2.861925, GT = 1.000000; and gamma distribution shape parameter α = 0.259865. The
RAxML analysis resulted in a tree which is shown in Figure 4.
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Figure 4. A maximum likelihood analysis showing the phylogenetic relationships of coffee fungal
endophytes. The tree has a total of 167 fungal sequences, of which 61 fungal sequences came from
the present study and 106 reference sequences of close relatives came from the GenBank. Mucor
circinelloides (NR126116; Mucoraceae; Mucorale; Mucoromycetes) was used as the outgroup taxon.
The bootstrap support values (≥50%) are indicated at the nodes. The bold font indicates the type
species from the GenBank and data presented in the red font are the isolate code and culture number
of the fungal endophytes obtained from the coffee leaves. Fungal isolates are further highlighted in
different colors according to the family classification. Images on the right side of the phylogeny tree
are the morphotypes of each clade.
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The phylogenetic tree includes two classes, seven orders, and nine families. Five orders
(Amphisphaeriales, Diaporthales, Glomerellales, Sordariales and Xylariales) and seven
families (Apiosporaceae, Diaporthaceae, Glomerellaceae, Graphostromataceae, Hypoxy-
laceae, Lasiosphaeriaceae and Xylariaceae) belong to the class Sordariomycetes. Another
two orders (Botryosphaeriales and Capnodiales) and two families (Cladosporiaceae and
Phyllostictaceae) belong to the class Dothideomycetes (Figure 4).

Since the blast result of XCE-26 has a high similarity with both Podospora intestinacea
(MN341351, 99.40%) and Cercophora thailandica (NR_164483, 99.12%), we were not able to
determine the genus name and it was treated as Lasiosphaeriaceae sp.

3.3. Diversity of Coffee Fungal Endophytes

In Table 4, the highest colonization rate (CR) and the isolation frequency (IF) were re-
ported from Coffea arabica (T8667) from the Xiang Yuan Shu He coffee plantation
(CR = 106.67%, IF = 13.62%), while Catimor (ME) from the Mo Jiang Jing Gong coffee
plantation reported the lowest (CR = 70.00%, IF = 8.94%). By analyzing the taxonomic
diversity through the computation of the (S/G) ratio, and the relative abundance of the
species through the calculation of Margalef diversity (d), Shannon diversity (H’), and the
Pielou evenness indices (J’), we found that Coffea arabica (P4) from the Xiang Yuan Shu He
coffee plantation showed the highest species richness (d = 5.7407, H’ = 2.8944, J’ = 0.9830),
followed by Coffea arabica (T5175) from the same coffee plantation (d = 4.7199, H’ = 2.6582,
J’ = 0.9587). The number of species and the genera of these two hosts are P4 (18 species,
nine genera, S/G = 2.00) and T5175 (15 species, eight genera, S/G = 1.88). Furthermore, the
best S/G ratio was reported from Coffea arabica (PT) from the Xiang Yuan Shu He coffee
plantation, which was reported as 14 species belonging to nine genera, S/G = 1.56.

Table 4. Records and diversity of fungal endophytes associated with coffee hosts from different
population sites. R = individuals/records, S = number of species, G = number of genera, d = Margalef
diversity, H’ = Shannon diversity index, J’ = Pielou evenness index, CR = colonization rate,
IF = isolation frequency.

Isolate Name Leaf Pieces R S G S/G Ratio d H’ J’ CR (%) IF (%)

AKE 30 26 12 7 1.71 3.9901 2.4382 0.9506 86.67% 11.06%
ME 30 21 11 5 2.20 3.2846 2.2524 0.9393 70.00% 8.94%
P4E 30 23 18 9 2.00 5.7407 2.8944 0.9830 76.67% 9.79%
PTE 30 23 14 9 1.56 4.4650 2.5218 0.9312 76.67% 9.79%
QCE 30 31 16 6 2.67 4.3681 2.5246 0.9106 103.33% 13.19%
T5E 30 24 15 8 1.88 4.7199 2.6582 0.9587 80.00% 10.21%
T8E 30 32 15 9 1.67 4.3281 2.6205 0.9452 106.67% 13.62%
XCE 30 26 13 7 1.86 3.9901 2.2125 0.8384 86.67% 11.06%
XYE 30 29 13 7 1.86 3.5637 2.3303 0.9085 96.67% 12.34%

3.4. Dual-Culture Assay

To evaluate the antagonistic abilities of coffee endophytes, 61 coffee endophytes along
with four pathogens were selected for a dual-culture assay in our study. The results are
shown in Table 5. We had some dual-culture plates grown for 10 days with an inhibition rate
greater or equal to 60%. For bacterial pathogens, only two endophytes exhibited significant
values of growth inhibition against Pseudomonas syringae (1.3333) and Salmonella enterica
subsp. enterica (1.10603) (Figure 5). In contrast, the effect of fungal pathogens (Figure 6) was
appreciably greater than that of bacteria. For example, 13 endophytes exhibited significant
values of growth inhibition against Alternaria alternata (3.15535) and 10 endophytes exhibited
significant values of growth inhibition against Penicillium digitatum (3.15410).
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Table 5. Results of the dual-culture assay of 61 selected endophytes against the four pathogens. The type of fungal interaction for each isolate against each pathogen
and the percentage of growth inhibition (I%) ± standard deviation (SD) is indicated.

Isolate Code Species Name Strain Number
GenBank Accession

Number (ITS)

Percent Inhibition (PI) of 10 Days ± SD

Penicillium
digitatum

CGMCC 3.15410

Alternaria alternata
CGMCC 3.15535

Pseudomonas
syringae

CGMCC 1.3333

Salmonella enterica
subsp. enterica

CGMCC 1.10603

AKE-1 Xylaria sp. KUMCC 21-0349 ON100618 52.00 ± 3.56 43.98 ± 5.57 28.89 ± 9.88 41.67 ± 8.68
AKE-3 Xylaria sp. KUMCC 21-0350 ON100619 52.00 ± 14.22 44.44 ± 5.14 0.00 ± 0.00 39.58 ± 8.68
AKE-6 Colletotrichum sp. KUMCC 21-0351 ON100620 59.11 ± 1.58 44.44 ± 1.29 24.44 ± 2.47 43.75 ± 26.04
AKE-7 Cladorrhinum sp. KUMCC 21-0352 ON100621 52.00 ± 15.41 43.52 ± 0.43 22.22 ± 9.88 52.08 ± 8.68

AKE-11 Daldinia sp. KUMCC 21-0353 ON100622 67.56 ± 5.14 60.00 ± 2.04 31.11 ± 9.88 39.58 ± 8.68
AKE-12 Daldinia sp. KUMCC 21-0354 ON100623 64.00 ± 4.74 60.19 ± 0.43 53.33 ± 29.63 54.17 ± 8.68
AKE-19 Annulohypoxylon sp. KUMCC 21-0355 ON100624 53.33 ± 1.19 43.98 ± 3.00 20.00 ± 29.63 43.75 ± 26.04

ME-7 Diaporthe sp. KUMCC 21-0364 ON100633 64.89 ± 7.51 63.43 ± 0.43 37.78 ± 9.88 40.63 ± 8.68
ME-8 Colletotrichum sp. KUMCC 21-0365 ON100634 50.22 ± 0.40 45.83 ± 1.29 28.89 ± 39.51 41.67 ± 8.68
ME-9 Daldinia sp. KUMCC 21-0366 ON100635 74.67 ± 8.30 71.30 ± 0.43 60.00 ± 7.41 50.00 ± 6.51
ME-10 Colletotrichum sp. KUMCC 21-0367 ON100636 51.56 ± 5.14 46.30 ± 3.00 31.11 ± 2.47 41.67 ± 8.68
ME-16 Colletotrichum sp. KUMCC 21-0368 ON100637 57.78 ± 0.40 44.44 ± 1.29 26.67 ± 29.63 29.17 ± 8.68
PTE-3 Hypoxylon sp. KUMCC 21-0356 ON100625 58.67 ± 3.56 56.94 ± 5.14 4.44 ± 9.88 39.58 ± 8.68
PTE-6 Xylaria sp. KUMCC 21-0357 ON100626 50.22 ± 0.40 37.50 ± 9.00 0.00 ± 0.00 45.83 ± 34.72
PTE-7 Biscogniauxia sp. KUMCC 21-0358 ON100627 67.56 ± 0.40 61.11 ± 1.29 53.33 ± 0.00 60.42 ±8.68
PTE-9 Xylaria sp. KUMCC 21-0359 ON100628 50.22 ± 0.40 43.06 ± 1.29 35.56 ± 9.88 25.00 ± 26.04
PTE-10 Annulohypoxylon sp. KUMCC 21-0360 ON100629 57.78 ± 2.77 58.33 ± 0.00 31.11 ± 17.28 39.58 ± 34.72
PTE-12 Phyllosticta sp. KUMCC 21-0361 ON100630 46.67 ± 18.96 44.44 ± 1.29 28.89 ± 17.28 37.50 ± 6.51
PTE-18 Kretzschmaria sp. KUMCC 21-0362 ON100631 47.56 ± 0.40 37.96 ± 3.00 0.00 ± 0.00 39.58 ± 8.68
PTE-19 Xylaria sp. KUMCC 21-0363 ON100632 47.56 ± 0.40 41.20 ± 5.57 0.00 ± 0.00 39.58 ± 8.68
P4E-1 Daldinia sp. KUMCC 21-0380 ON072525 64.89 ± 6.32 54.63 ± 1.71 46.67 ± 29.63 41.67 ± 8.68
P4E-2 Xylaria sp. KUMCC 21-0381 ON072526 46.67 ± 1.19 29.63 ± 3.00 33.33 ± 0.00 37.50 ± 0.00
P4E-4 Daldinia sp. KUMCC 21-0382 ON072527 47.56 ± 0.40 53.70 ± 3.00 4.44 ± 39.51 47.92 ± 8.68

P4E-8-2 Xylaria sp. KUMCC 21-0383 ON072528 49.78 ± 0.40 30.56 ± 1.29 8.89 ± 69.14 39.58 ± 8.68
P4E-9 Phyllosticta sp. KUMCC 21-0384 ON072529 44.89 ± 2.77 30.56 ± 1.29 33.33 ± 0.00 41.67 ± 8.68

P4E-11 Colletotrichum sp. KUMCC 21-0385 ON072530 47.56 ± 2.77 26.39 ± 1.29 22.22 ± 39.51 37.50 ± 0.00
P4E-16 Colletotrichum sp. KUMCC 21-0386 ON072531 40.89 ± 0.40 32.87 ± 3.00 33.33 ± 29.63 39.58 ± 8.68
P4E-18 Nigrospora sp. KUMCC 21-0387 ON072532 43.56 ± 0.40 29.17 ± 1.29 28.89 ± 69.14 45.83 ± 8.68
P4E-23 Cladorrhinum sp. KUMCC 21-0388 ON072533 43.56 ± 0.40 28.24 ± 3.00 31.11 ± 32.10 43.75 ± 0.00
P4E-26 Diaporthe sp. KUMCC 21-0389 ON072534 46.22 ± 0.40 34.72 ± 1.29 31.11 ± 9.88 41.67 ±8.68
QCE-13 Xylaria sp. KUMCC 21-0397 ON072542 37.33 ± 1.19 24.07 ± 3.00 2.22 ± 9.88 25.00 ± 26.04
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Table 5. Cont.

Isolate Code Species Name Strain Number
GenBank Accession

Number (ITS)

Percent Inhibition (PI) of 10 Days ± SD

Penicillium
digitatum

CGMCC 3.15410

Alternaria alternata
CGMCC 3.15535

Pseudomonas
syringae

CGMCC 1.3333

Salmonella enterica
subsp. enterica

CGMCC 1.10603

QCE-14 Daldinia sp. KUMCC 21-0398 ON072543 44.89 ± 0.40 53.70 ± 1.71 24.44 ± 9.88 41.67 ± 8.68
QCE-17 Colletotrichum sp. KUMCC 21-0399 ON072544 44.89 ± 1.58 34.26 ± 3.00 6.67 ± 29.63 45.83 ± 34.72

QCE-20-2 Phyllosticta sp. KUMCC 21-0400 ON072545 44.44 ± 1.58 30.56 ± 1.29 0.00 ± 0.00 41.67 ± 8.68
QCE-24 Colletotrichum sp. KUMCC 21-0401 ON072546 55.56 ± 2.77 44.44 ± 1.29 22.22 ± 69.14 47.92 ± 8.68
QCE-26 Colletotrichum sp. KUMCC 21-0402 ON072547 46.67 ± 1.19 34.72 ± 1.29 0.00 ± 0.00 39.58 ± 8.68
T5E-1-3 Daldinia sp. KUMCC 21-0369 ON100638 70.67 ± 4.74 63.43 ± 3.00 55.56 ± 9.88 60.42 ± 8.68
T5E-3 Daldinia sp. KUMCC 21-0370 ON100639 68.00 ± 1.19 68.52 ± 0.43 21.11 ± 17.28 39.58 ± 8.68
T5E-7 Nigrospora sp. KUMCC 21-0371 ON100640 72.00 ± 1.19 65.74 ± 3.00 13.33 ± 29.63 41.67 ± 6.51

T5E-13 Nigrospora sp. KUMCC 21-0372 ON100641 65.78 ± 2.77 48.61 ± 1.29 27.78 ± 17.28 52.08 ± 8.68
T5E-19 Phyllosticta sp. KUMCC 21-0373 ON100642 51.56 ± 2.77 36.11 ± 5.14 24.44 ± 9.88 35.42 ± 8.68
T8E-1 Daldinia sp. KUMCC 21-0374 ON100643 52.89 ± 11.06 55.56 ± 5.14 46.67 ± 29.63 5.00 ± 0.00
T8E-4 Nodulisporium sp. KUMCC 21-0375 ON100644 58.22 ± 2.77 45.37 ± 3.00 35.56 ± 9.88 43.75 ± 26.4

T8E-8-1 Xylaria sp. KUMCC 21-0376 ON100645 45.78 ± 2.77 43.98 ± 3.00 13.33 ± 29.63 41.67 ± 8.68
T8E-11-1 Xylaria sp. KUMCC 21-0377 ON100646 43.56 ± 2.77 45.37 ± 0.43 35.56 ± 9.88 35.42 ± 8.68
T8E-12 Xylaria sp. KUMCC 21-0378 ON100647 44.44 ± 5.14 43.06 ± 1.29 28.89 ± 39.51 41.67 ± 15.19
T8E-22 Nigrospora sp. KUMCC 21-0379 ON100648 53.33 ± 1.19 43.98 ± 0.43 2.22 ± 9.88 43.75 ± 26.04
XCE-2 Cladosporium sp. KUMCC 21-0403 ON072548 42.67 ± 1.19 32.41 ± 0.43 8.89 ± 39.51 39.58 ± 8.68
XCE-4 Colletotrichum sp. KUMCC 21-0404 ON072549 47.56 ± 2.77 37.50 ± 1.29 4.44 ± 9.88 37.50 ± 26.04
XCE-7 Nigrospora sp. KUMCC 21-0405 ON072550 68.00 ± 1.19 71.76 ± 0.43 61.11± 32.10 56.25 ± 0.00
XCE-8 Xylaria sp. KUMCC 21-0406 ON072551 46.67 ± 1.19 30.56 ± 1.29 40.00 ± 29.63 29.17 ± 8.68
XCE-10 Arthrinium sp. KUMCC 21-0407 ON072552 64.90 ± 2.77 57.87 ± 3.00 28.89 ± 39.51 35.42 ± 15.19
XCE-25 Nigrospora sp. KUMCC 21-0408 ON072553 67.56 ± 6.32 62.50 ± 1.29 15.56 ± 9.88 45.83 ± 34.82
XCE-26 Lasiosphaeriaceae sp. KUMCC 21-0409 ON072554 48.44 ± 0.40 34.26 ± 3.00 26.67 ± 0.00 33.33 ± 8.68
XYE-4 Colletotrichum sp. KUMCC 21-0390 ON072535 42.22 ± 1.58 32.87 ± 1.71 15.56 ± 39.51 41.67 ± 8.68
XYE-9 Daldinia sp. KUMCC 21-0391 ON072536 47.56 ± 0.40 31.48 ± 0.43 22.22 ± 9.88 41.67 ± 8.68

XYE-13 Cladorrhinum sp. KUMCC 21-0392 ON072537 44.44 ± 0.40 29.17 ± 1.29 46.67 ± 29.63 56.25 ± 0.00
XYE-14 Hypoxylon sp. KUMCC 21-0393 ON072538 44.44 ± 2.77 34.72 ± 1.29 33.33 ± 0.00 35.42 ± 8.68

XYE-16-2 Phyllosticta sp. KUMCC 21-0394 ON072539 46.22 ± 0.40 31.02 ± 5.57 2.22 ± 9.88 39.58 ± 8.68
XYE-18 Xylaria sp. KUMCC 21-0395 ON072540 38.22 ± 5.14 31.94 ± 1.29 33.33 ± 0.00 39.58 ± 8.68

XYE-19-2 Arthrinium sp. KUMCC 21-0396 ON072541 44.44 ± 2.77 34.72 ± 1.29 15.56 ± 9.88 27.08 ± 8.68
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3.4.1. Effect of Coffee Endophytes on the Growth of Pseudomonas syringae (1.3333)

Nigrospora sp. XCE-7 (Figure 5b) was able to inhibit the growth of Pse. syringae with
an inhibition rate of 61.11%, and Daldinia sp. ME-9 (Figure 5c) showed an inhibition rate of
60.00%. The Pse. syringae control plate is shown in Figure 5a.

3.4.2. Effect of Coffee Endophytes on the Growth of Salmonella enterica subsp. enterica (1.10603)

Biscogniauxia sp. PTE-7 (Figure 5e) and Daldinia sp. T5E-1-3 (Figure 5f) showed the
same inhibition rate of 60.42% against the growth of S. enterica subsp. enterica. PTE-7
produced a yellow mycelium after it was in contact with bacterial pathogens. The S. enterica
subsp. enterica control plate is shown in Figure 5d.
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3.4.3. Effect of Coffee Endophytes on the Growth of Alternaria alternata (3.15535)

Nigrospora sp. XCE-7 (Figure 6j) inhibited the growth of A. alternata with an interaction
characterized by a clear zone around the pathogen and an inhibition rate of 71.76%. It was
followed by Daldinia sp. ME-9 (Figure 6f) with an inhibition rate of 71.30%. Those demon-
strating inhibition rates greater than or equal to 60 were Daldinia sp. T5E-3 (Figure 6h,
68.52%), Nigrospora sp. T5E-7 (Figure 6i, 65.74%), Daldinia sp. T5E-1-3 (Figure 6g, 63.43%),
Diaporthe sp. ME-7 (Figure 6e, 63.43%), Nigrospora sp. XCE-25 (Figure 6k, 62.50%), Biscogni-
auxia sp. PTE-7 (Figure 6d, 61.11%), Daldinia sp. AKE-12 (Figure 6c, 60.19%), and Daldinia sp.
AKE-11 (Figure 6b, 60.00%). The A. alternata control plate is shown in Figure 6a.

3.4.4. Effect of Coffee Endophytes on the Growth of Penicillium digitatum (3.15410)

Daldinia sp. ME-9 (Figure 6q) inhibited the growth of Pen. digitatum with an inhibition
rate of 74.67%, and this was followed by Nigrospora sp. T5E-7 (Figure 6t) with an inhibition
rate of 72.00%. Inhibition rates greater than or equal to 60 were found in Daldinia sp. T5E-1-3
(Figure 6r, 70.67%), Daldinia sp. T5E-3(Figure 6s, 68.00%), Nigrospora sp. XCE-7 (Figure 6w,
68.00%), Daldinia sp. AKE-11 (Figure 6m, 67.56%), Biscogniauxia sp. PTE-7 (Figure 6o,
67.56%), Nigrospora sp. XCE-25 (Figure 6y, 67.56%), Nigrospora sp. T5E-13 (Figure 6u,
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65.78%), Arthrinium sp. XCE-10 (Figure 6x, 64.90%), Diaporthe sp. ME-7 (Figure 6p, 64.89%),
Daldinia sp. P4E-1 (Figure 6v, 64.89%), and Daldinia sp. AKE-12 (Figure 6n, 64.00%). Among
these, XCE-7 and T5E-13 inhibited the growth of Pen. digitatum by displaying a small zone
around the pathogen. The Pen. digitatum control plate is shown in Figure 6l.
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Figure 6. Illustration of an antagonist test using the dual-culture technique with two fungal pathogens
and an inhibition rate greater than or equal to 60%. The two pathogens were cocultivated with the
coffee fungal endophytes on PDA plates and incubated for ten days at 28 ◦C. (a) Alternaria alternata
control plate; (b–k) Coffee endophytes inhibit A. alternata; (l) Penicillium digitatum control plate;
(m–y) Coffee endophytes inhibit Pen. digitatum.

Overall, this dual-culture assay demonstrated that most coffee endophytes inhibit the
growth of pathogens by competition for nutrients and space, while only two endophytes
displayed the mechanism of antibiosis to inhibit the growth of pathogens by producing
metabolites (antibiotics and enzymes). One of the Nigrospora sp. (XCE-7) isolates produced
a clear zone of inhibition for Pseudomonas syringae, Alternaria alternata, and Penicillium
digitatum, while Nigrospora sp. (T5E-13) had a zone of inhibition only for Pen. digitatum. In
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this study, Arthrinium sp., Biscogniauxia sp., Daldinia sp., Diaporthe sp. and Nigrospora sp.
produced different levels of inhibitory effects on the growth of pathogens. Arthrinium sp.
(XCE-10) inhibited only the growth of one fungal pathogen (Pen. digitatum), but Diaporthe sp.
(ME-7) inhibited the growth of two fungal pathogens (Alternaria alternata and Pen. digitatum).
Biscogniauxia sp. (PTE-7), Daldinia sp. (AKE-11, AKE-12, ME-9, P4E-1, T5E-1-3, and T5E-3),
and Nigrospora sp. (T5E-13, T5E-7, XCE-7, and XCE-25) inhibited the growth of fungal
pathogens as well as bacterial pathogens.

4. Discussion

The results of our study agree with the results of previous studies [59,81,93,104], which
showed that Colletotrichum and Xylaria are the dominant endophytes in coffee leaves. How-
ever, the species richness and diversity of endophytes as determined in the present study
are different and higher than those reported by Santamarıá and Baymanet [81] in Puerto
Rico, Saucedo-García et al. [104] in Mexico, and Oliveira et al. [93] in Brazil for coffee leaf
endophytes. Species of Colletotrichum are common saprobes, pathogens, and endophytes on
a range of economically important plant hosts in tropical regions [105,106], and species of
Xylaria are recognized as saprotrophic fungi and as endophytic fungi of many plants [107].
Other unique and less frequently encountered species were reported, most likely due
to different climates, altitude, humidity, and sampling period. Herein, nine genera are
reported for the first time to be isolated as coffee endophytes. These are Annulohypoxylon,
Biscogniauxia, Kretzschmaria, Naviculispora, Neurospora, and Pyrenochaetopsis, and they were
isolated from Coffea arabica in the Xiang Yuan Shu He coffee plantation. Fusarium sp. and
Shiraia sp. were isolated from Catimor in the Qi Xiang coffee plantation, and Nemania sp.
was isolated from Yellow Bourbon in the Xiao Ao Zi coffee plantation. In this study, only the
PDA medium was used, and it is possible that some species were not capable of growing
on PDA.

Endophytic fungi isolated from Coffea showed promising sources of bioactive com-
pounds [61]. Fulthorpe et al. [108] reported the isolation of coffee root endophytes that
have potential ecological roles with Coffea arabica based on next-generation sequencing, and
Burkholderia, Enterobacter and Pantoea were reported as the dominant bacterial genera while
Cladosporium, Exidiopsis, Mycena, Penicillium and Trechispora were reported as the dominant
fungal genera [108]. Sette et al. [109] used a minimal inhibitory concentration test (MIC) to
investigate the endophytic filamentous fungi against different human pathogenic bacteria
from coffee plants (Coffea arabica and C. robusta) in Pedreira, Mococa, and Pindorama coun-
ties in Brazil. The study showed that 17 endophytic fungi were able to inhibit at least one
of the bacterial pathogens while Guignardia sp. (CBMAI 69), Phomopsis sp. (CBMAI 164),
and Trichoderma harzianum (CBMAI 43) were able to inhibit four to five bacterial species.
Furthermore, the study showed that Aspergillus versicolor (CBMAI 46), Cladosporium sp.
(CBMAI 64 and CBMAI 66), Fusarium oxysporum (CBMAI 53), and Glomerella sp. (CBMAI 63)
can inhibit all pathogenic bacteria [109]. The previous studies show that coffee-endophytic
fungi are diverse and different groups of fungi are able to inhibit different fungal and
bacterial pathogens [58–63,108,109]. When comparing those results with our study, dif-
ferent endophytic fungi isolated in our study, such as Arthrinium sp., Biscogniauxia sp.,
Daldinia sp., Diaporthe sp. and Nigrospora sp., can also inhibit the growth of pathogens but
they are not the same fungal genera that were reported in previous studies [58–63,108,109].

Arthrinium is known for its antifungal capacity [110]. The species A. aureum and
A. phaeospermum have the potential to inhibit the growth of Fusarium oxysporum and
F. niveum and thus can be applied in biological controls [111]. Our isolate Arthrinium sp.
(XCE-10) showed an inhibition rate of 64.89% against the growth of Penicillium digitatum.

Biscogniauxia sp. (O-811) isolated from the fresh fruiting bodies of wild mushrooms acts
against the rice blast disease Magnaporthe oryzae by producing an inhibitory compound [112],
while our endophytic strain Biscogniauxia sp. (PTE-7) can inhibit the growth of the fungal
pathogens Alternaria alternata and Penicillium digitatum while also inhibiting the bacterial
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pathogen Salmonella enterica subsp. enterica with inhibition rates of 61.11%, 67.56%, and
60.42%, respectively.

Daldinia cf. concentrica prevented the development of molds on organic dried fruits
and eliminated Aspergillus niger infection in peanuts by emitting volatile organic com-
pounds [113]. The endophytic fungus Daldinia eschscholtzii BPEF73 of black pepper showed
nematocidal activity by producing metabolites [114]. Six Daldinia isolates (T5E-1-3, T5E-3,
AKE-11, P4E-1, AKE-12, and ME-9) in our study showed good antagonistic abilities against
all four pathogens tested. The isolate ME-9 inhibited Penicillium digitatum with the highest
inhibition rate of 74.67%.

Studies have shown that some endophytic species belonging to the genus Diaporthe
can produce metabolites that protect the host from infection or act as a biological control
for disease. For example, the endophytic fungus Diaporthe phaseolorum isolated from
tomatoes can produce 16 different compounds, and it has an inhibitory effect on the
growth of Xanthomonas vesicatoria, which causes bacterial spot disease in tomatoes [115].
Dhakshinamoorthy et al. [116] showed that the endophytic fungus Diaporthe caatingaensis
from Buchanania axillaris leaves can produce the bioactive metabolite Camptothecin (CPT).
While our endophyte Diaporthe sp. ME-7 has inhibitory effects on the growth of the fungal
pathogens Alternaria alternata (63.43%) and Penicillium digitatum (64.89%), it did not show
any apparent inhibitory effects on bacterial pathogens.

Nigrospora oryzae was isolated as an endophytic fungus from the leaves of Coccinia grandis
and its secondary metabolites can be used as drugs to control diabetes. They also exhibit
strong antifungal activities against the plant pathogen Cladosporium cladosporioides [117].
Our four Nigrospora isolates T5E-13, T5E-7, XCE-7, and XCE-25 showed antagonistic abilities
for all three pathogens. The best isolate among all of these was XCE-7 which showed the
highest inhibition rate of 71.76% against Alternaria alternata.

Our study is the first report on coffee-leaf-endophytic fungal diversity in China. We
also tested the antagonistic abilities of endophytic fungi present in coffee leaves against
major bacterial and fungal pathogens. Two isolates (Nigrospora sp. XCE-7 and Daldinia sp.
ME-9) showed antagonism against the growth of Alternaria alternata, with an inhibition
rate of over 70%. Three isolates (Daldinia sp. ME-9, Nigrospora sp. T5E-7, and Daldinia sp.
T5E1-3) displayed antagonism against the growth of Penicillium digitatum, with an inhibition
rate of over 70%. It is necessary to carry out further research on secondary metabolites
and identification of the four coffee endophytes ME-9, T5E-1-3, T5E-7, and XCE-7 to the
species level.
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