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Abstract: The production of goat meat is determined by the growth speed of muscle fibers, and the
autophagy and apoptosis of myoblast cells is a crucial process in the growth of muscle fibers. The
rapid growth of muscle fibers occurs from one month old to nine months old in goats; however, the
mechanisms of myoblast cells’ autophagy and apoptosis in this process are still unknown. To identify
candidate genes and signaling pathway mechanisms involved in myoblast apoptosis and autophagy,
we compared the expression characteristics of longissimus dorsi tissues from Wu’an goats—a native
goat breed of China—at 1 month old (mon1 group) and 9 months old (mon9 group). Herein, a total of
182 differentially expressed mRNAs (DEGs) in the mon1 vs. mon9 comparison, along with the KEGG
enrichments, showed that the PI3K-Akt pathway associated with autophagy and apoptosis was
significantly enriched. Among these DEGs, expression of vacuole membrane protein 1 (VMP1)—a
key gene for the PI3K-Akt pathway—was significantly upregulated in the older goats relative to
the 1-month-old goats. We demonstrated that VMP1 promotes the proliferation and autophagy of
myoblasts, and inhibits their apoptosis. The integration analysis of miRNA–mRNA showed that
miR-124a was a regulator of VMP1 in muscle tissue, and overexpression and inhibition of miR-124a
suppressed the proliferation and autophagy of myoblasts. The PI3K/Akt/mTOR pathway was an
important pathway for cell autophagy. Additionally, the activator of the PI3K/Akt/mTOR pathway,
the expression of VMP1, and ULK1 were higher than the negative control, and the expression of mTOR
was depressed. The expression of VMP1, ULK1, and mTOR was the opposite when the inhibitor
was added to the myoblasts. These results show that the PI3K/Akt/mTOR pathway promoted the
expression of VMP1 and ULK1. By using adenovirus-mediated apoptosis and proliferation assays,
we found that that miR-124a inhibits myoblast proliferation and autophagy, and promotes their
apoptosis by targeting VMP1. In conclusion, our results indicated that VMP1 was highly expressed
in the LD muscle tissues of nine-month-old goats, and that it was regulated by miR-124a to inhibit
myoblast cells’ apoptosis through the PI3K/Akt/mTOR pathway, and to promote proliferation and
autophagy. These findings contribute to the understanding of the molecular mechanisms involved in
myoblast proliferation, autophagy, and apoptosis.
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1. Introduction

Skeletal muscle’s metabolic plasticity, growth, and atrophy have been widely inves-
tigated in past decades—particularly the effects that systemic inflammation has on these
processes [1]. The domestic goat (Capra hircus) is an important agricultural animal; goat
meat has a higher protein content, but lower fat and cholesterol content, than beef or
pork [2]. An improved understanding of the molecular mechanisms that regulate skeletal
muscle growth and development may result in an opportunity to enhance meat produc-
tion [3]. A larger diameter of skeletal muscle fiber corresponds to a faster growth rate;
in goats, the diameter of muscle fibers increases between 1 and 9 months of age, and
then remains constant [4]. Skeletal muscle groups originate from different regions of the
developing embryo, and have characteristic morphological specializations [5–7]. Dur-
ing the development and regeneration of skeletal muscle, myogenic precursors undergo
several cellular and molecular changes, differentiating into multinucleated myofibers [8].
When myoblasts are stimulated by regulatory factors, they begin to migrate to the target
tissue area and proliferate extensively. Under the actions of myoblast regulatory factors
and muscle regulatory factors (MRFs), the cells differentiate and fuse to form multinu-
cleated myotubes and, eventually, muscle tissue [9]. The mechanisms of skeletal muscle
development and myoblast proliferation, however, remain unclear.

In recent years, RNA-Seq has been widely used to analyze the genetic mechanisms
underlying skeletal muscle growth and development in pigs [10,11], cattle [12,13], and
sheep [14,15]. Between fetal and juvenile Huanghuai goats, Wang et al. (2015) identified
6432 differentially expressed genes in longissimus thoracis muscle tissues; many of these
genes were found to be involved in fetal myogenesis, proliferation, and the differentiation
of muscle cells [16]. In the longissimus dorsi muscle tissues of Jianzhou big-eared goats,
Lin et al., 2017 reported 111 differentially expressed genes between kids (2-month-old),
young (9-month-old), and adult (24-month-old) goats; these DEGs were related to muscle
development and lipid metabolism [17]. Some important functional genes and signaling
pathways related to meat yield and quality have been found. For example, previous studies
have revealed the crucial roles of myostatin (MSTN), MRF family members, and insulin-
like growth factor (IGF) family members in skeletal muscle growth and development
in goats [18–20]. The autophagy signaling pathway is especially important for energy
generation/consumption and macromolecule turnover processes in skeletal muscles [21].
In mammalian cells, the sequential association of at least a subset of the ATG proteins,
referred to as the core molecular machinery [22], leads to autophagosome formation. VMP1
belongs to this family of essential ATG proteins. In recent years, the biological function of
VMP1 has been increasingly elucidated, and when VMP1 is located on the ER membrane, it
has been shown to promote the formation of autophagosomes by regulating the interaction
between the endoplasmic reticulum (ER) and isolated membranes [23–25]. Conversely,
autophagy is completely blocked in the absence of VMP1 [26].

In this study, we used RNA sequencing to determine the differentially expressed
mRNAs in longissimus dorsi (LD) tissues of Wu’an goats at different stages of growth:
1-month-old goats (average fiber diameter, 9.12 ± 0.13 µm) and 9-month-old goats (average
fiber diameter, 28.9 ± 1.42 µm). We further characterized the autophagy-associated gene
VMP1 as a target of miR-124a and inhibitor of the rapamycin complex 1 (mTOR) signaling
pathway, thereby regulating myoblast proliferation, autophagy, and apoptosis. Identifying
the regulatory function of VMP1 and its role in signaling pathways associated with the
development of skeletal muscle and myoblast proliferation should generate information
that would be useful to improve meat yield.

2. Materials and Methods
2.1. Ethics Statement

All experiments involving animals were approved by the Institutional Animal Care
and Use Committee (IACUC) of Henan Agricultural University (Permit Number: 17-0118).



Cells 2022, 11, 2227 3 of 21

2.2. Animals and Sample Collection

Ten female Wu’an black goats—three aged 1 month (mon1) and three aged 9 months
(mon9) were selected for the RNA-Seq. These goats were bred at a goat breeding farm in the
city of Wu’an, Hebei Province, China. All goats were raised under the same conditions to
minimize differences arising from external factors. Immediately after slaughter, longissimus
dorsi tissue was taken and placed on dry ice until storage at −80 ◦C. A selection of tissues
was immediately put into a 4% paraformaldehyde fixation solution for use in preparing
frozen sections.

2.3. Hematoxylin–Eosin Staining

Histology was performed using conventional methods on longissimus dorsi (LD)
tissues that had been preserved in 4% paraformaldehyde for 72 h. Hematoxylin–eosin
staining was performed according to the protocol of Guardiola et al. [27]. Samples were
observed using a fluorescence microscope (Olympus, Tokyo, Japan). ImageJ software was
used to analyze the diameter of muscle fibers from each group.

2.4. RNA Extraction, Library Construction, and Differential Expression Analysis

Total RNA from the longissimus dorsi tissue was isolated using TRIzol reagent (In-
vitrogen, Carlsbad, CA, USA). The quality, concentration, and integrity of the RNA were
assessed using a NanoDrop photometer and an Agilent 2100 bioanalyzer. The values for
260/280 ranged from 1.8 to 2.0. Six cDNA libraries were constructed and subjected to
Illumina HiSeq 2500 high-throughput sequencing. The RIN values ranged from 7.8 to 8.6,
in line with the requirements of the library construction. Construction and sequencing of
the mRNA libraries were as described by Jia et al. [28]. Prior to differential gene expression
analysis, read counts for each sequenced library were normalized using the edgeR R pack-
age, as described by Law CW et al., 2016 [29]. Differentially expressed genes were identified
by comparing normalized mon1 and mon9 reads using the DEGseq2 (2010) R package as
described by Love MI et al., 2014 [30]. p-Values were adjusted using the q-value [31]. Genes
exhibiting a q-value < 0.005 and |log2(fold change)| > 1 were classified as differentially
expressed genes (DEGs). Upregulated genes were defined as those whose transcripts were
more abundant in the mon9 libraries.

2.5. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Analyses

To associate DEGs with biological and metabolic pathways, GO (http://geneontology.
org, accessed on 5 December 2021) and KEGG (www.genome.jp/kegg, accessed on 5 De-
cember 2021) analyses were performed using DAVID Bioinformatics Resources v6.7 (http:
//david.abcc.ncifcrf.gov/, accessed on 5 December 2021). We used KOBAS to test for
statistically significant enrichment of gene candidates in the KEGG pathways [32].

2.6. Reverse-Transcription (RT)-qPCR Verification

RT-qPCR was used to verify the expression levels of the differentially expressed genes
and miRNAs. Approximately 0.1 µg of RNA per sample was reverse transcribed into cDNA
using RT reagents (Takara, Dalian, China). GAPDH and U6 were used as endogenous
controls for normalizing the expression of genes and miRNAs. All experiments were
performed with five biological replicates, and each sample was tested in triplicate. RT-
qPCR was performed on a LightCycler 480II (Roche, Basel, Sweden) using SYBR Premix
Ex Taq II. The cycling conditions were pre-denaturation at 95 ◦C for 5 s, then 40 cycles of
95 ◦C for 5 s, and 60 ◦C for 30 s. Melting curve analysis was performed, and the relative
expression levels were determined using the 2 ∆∆Ct method [33]. The p-value calculation
was performed by t-test, and p < 0.05 was used to indicate significant differences. The
primers were designed using Primer 5 (listed in Supplementary Table S1).

http://geneontology.org
http://geneontology.org
www.genome.jp/kegg
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
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2.7. miRNA Prediction for VMP1 Targeting

Integrated analysis of our previous miRNA-Seq sequencing data (PRJNA831288)
revealed that miR-124a was able to directly target VMP1. VMP1 3′-UTR sequences were
obtained from NCBI (XM_018064144.1). Interactions between VMP1 and miRNA were
predicted vs. the mature goat miRNA sequence using TargetScan (http://www.targetscan.
org/vert_71/, accessed on 7 February 2022) and miRanda (https://www.miranda-ng.org/
en/, accessed on 7 February 2022). Mature miRNA sequences from other species were
obtained from miRBase (http://www.mirbase.org, accessed on 10 February 2022).

2.8. Cell Culture

Following previously described methods, primary goat myoblasts were isolated from
the longissimus dorsi of goats (Fauconneau and Paboeuf, 2000) [34]. The isolated cells
were seeded into 6 mm plates and cultured in a complete medium (DMEM/F12 [1:1],
20% FBS, and 1% penicillin/streptomycin) (Gibco, Melbourne, Australia), as described by
Duran et al. [35]. When cells reached greater than 90% confluence, they were transferred to
10 cm plates for the experiment.

2.9. Plasmid Construction and Transfection

The coding region of VMP1 was cloned into a pcDNA3.1 expression vector, and
the recombinant vectors were named pcDNA3.1-VMP1 and pcDNA3.1-NC. The 3′-UTR
of wild-type and mutant VMP1, containing the predicted target sites, were each cloned
into a pmiR-GLO vector between Xho I and Not I; the recombinant vectors were named
pmiR-GLO-VMP1-WT and pmiR-GLO-VMP1-MUT. The siRNA-VMP1, siRNA-NC, and
the miR-124a mimic and inhibitor were synthesized by Genewiz (Suzhou, China).

2.10. Dual-Luciferase Reporter Assay

293T cells, a human renal epithelial cell line, were cultured in DMEM and 10% FBS
and used to validate the miRNA target. Cells were seeded into 24-well plates, then co-
transfected with 200 ng of mRNA-3′-UTR-WT or mRNA-3′-UTR-MUT together with 10 µL
of miRNA mimic or mimic-NC using Lipofectamine 2000 (Invitrogen, USA). At 48 h post-
transfection, luciferase activity was measured using the Dual Luciferase Reporter Assay
System (Promega, WI, USA). Samples were assayed in triplicate.

2.11. Western Blot Analysis

Protein was extracted from goat LD tissues and primary myoblast cells using a Total
Histone Extraction Kit (Beyotime Biotech Co., Ltd., Shanghai, China); protein concentrations
were determined using a BCA protein assay kit (Beyotime). The 30 µg of protein per
sample was resolved using 12% SDS–PAGE and then transferred onto PVD membranes
activated with methanol. After transfer, membranes were blocked with blocking buffer
(Beyotime) for 6 h at 4 ◦C, and then incubated with primary antibodies overnight at 4 ◦C.
The primary antibodies were anti-ULK1 (1:100) (Santa Cruz Biotechnology, New York,
NY, USA), anti-VMP1 (1:500), anti-beclin-1 (1:1000), anti-caspase-3 (1:1000), anti-mTOR
mammalian (1:1000), and anti-GAPDH (1:1000) (all from Cell Signaling Technology, New
York, NY, USA). After incubation, the membranes were rinsed with wash buffer (Beyotime)
and incubated for 2 h at 4 ◦C with secondary antibodies. The secondary Ab was HRP-
conjugated goat anti-rabbit IgG (H + L) (Proteintech, Wuhan, China), used at dilutions
recommended by Beyotime.

2.12. Cell Proliferation Assay

The 1 × 106 myoblast cells were inoculated into wells of 96-well plates and then
incubated for 2–4 h at 37 ◦C. Cell proliferation was measured using a Cell Counting Kit-8
(CCK-8) (Solarbio, Beijing, China) according to the manufacturer’s protocol. Absorbance at
450 nm was measured at 24, 48, and 72 h after the addition of the CCK-8 solution.

http://www.targetscan.org/vert_71/
http://www.targetscan.org/vert_71/
https://www.miranda-ng.org/en/
https://www.miranda-ng.org/en/
http://www.mirbase.org
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2.13. Ethynyldeoxyuridine Incorporation Assay

Myoblast proliferation was quantified using an ethynyldeoxyuridine (EdU) kit accord-
ing to the manufacturer’s protocol (Beyotime). Cells were seeded into 96-well plates as
described above. Them, 100 µL of 50 µM EdU was aliquoted to each well, and the cells
were incubated for an additional 3 h. The cells were then washed with PBS and fixed with
4% paraformaldehyde for 30 min. To neutralize excess aldehyde groups, 50 µL of 2 mg/mL
of glycine was aliquoted per well and incubated with cells for 15 min. Subsequently, 100 µL
of 0.5% Triton X-100 in PBS was aliquoted per well and incubated with cells for 15 min.
After rinsing, 100 µL of Apollo reagent was added, and the cells were incubated in the
dark for 30 min at room temperature. Cells were washed with PBS and then their nuclei
were stained with Hoechst 33,342 reaction solution for 30 min in the dark. EdU-stained
cells were visualized and quantified using a fluorescence microscope. Three fields were
randomly selected for quantification and statistical analysis.

2.14. Cell Apoptosis Analysis

Myoblasts were washed twice with PBS, and the concentration was adjusted to
106 cells/mL. The 100 µL of binding buffer (MeilunBio, Dalian, China) was then added to
the cell suspension along with 5 µL of annexin V–FITC (MeilunBio), cells were then incu-
bated for 10 min at room temperature. Cells were then incubated with 7.5 µL of propidium
iodide (PI, MeilunBio) for 15 min at room temperature in the dark. Apoptosis was analyzed
by fluorescence microscopy, as well as by flow cytometry using FlowJo software (v7.6.1,
Ashland, OR, USA).

2.15. PI3K/ULK1/mTOR Pathway Analysis

3-Methyladenine (3-MA, S1039)—a PI3K inhibitor—and rapamycin (AY-22989, S2767)—
a PI3K activator—were used to investigate the relationship between PI3K and VMP1. My-
oblast cells were incubated with 3-MA or AY-22989 for 3 h as described by Zhang et al. [36].
A CCK-8 assay was used to determine the optimal concentrations of 3-MA and AY-22989 for
use in the experiments. The 3-MA and AY-22989 were purchased from Selleck Chemicals
(Houston, TX, USA).

2.16. Confocal Microscopy

The extent of the autophagic flux was evaluated using an adenovirus-harboring
tandem fluorescent mRFP-GFP-LC3 (Hanbio, Shanghai, China). Myoblasts were grown on
glass slides in six-well plates and transfected with 4 µg of pcDNA3.1-VMP1, pcDNA3.1-NC,
si-VMP1, si-NC, miR-124a mimic, mimic NC, miR-124a inhibitor, or inhibitor NC. After
incubation for 1 h, 500 MOI (multiplicity of infection) of adenovirus was aliquoted to cells
and incubated for 6–8 h. The culture medium was then changed, and the cells continued
incubating for a total of 48 h. Subsequently, the cells were washed with cold PBS and fixed
with 4% paraformaldehyde for 30 min. The cells were washed three times with PBS and
then observed using a confocal microscope (Olympus, Melville, NY, USA).

2.17. Statistical Analysis

Data were subjected to statistical analyses using SPSS 20 statistical software, and
the mean of three replicates was evaluated and displayed as the mean ± standard error
(SE). The histograms were completed using Excel and GraphPad Prism. Significance
was determined using Duncan’s multiple range tests, and is presented as * p < 0.05 and
** p < 0.01.

3. Results

Histological observations revealed distinct differences in the morphological char-
acteristics of longissimus dorsi (LD) from the mon9 and mon1 groups (Figure 1). The
average diameter of mon9 muscle fibers (34.68 ± 2.18 µm) was significantly greater than
the diameter of mon1 fibers (18.48 ± 1.29 µm).
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Figure 1. Diameter of longissimus dorsi fibers from Wu’an goats: (A) A representative transverse
section of longissimus dorsi fibers from a 1-month-old goat. (B) A representative transverse section
of longissimus dorsi fibers from a 9-month-old goat. (C) Muscle fiber diameter statistics for the
mon1 and mon9 groups; three fibers per group were measured. Data are shown as the mean ± SE.
** p < 0.01.

3.1. RNA-Seq Analysis

Six mRNA libraries were constructed (3 each for the mon1 and mon9 groups). Bulk
statistics for reading counts and mapping rates are presented in Supplementary Table S2. A
total of 46,929 known transcripts and 12,434 novel transcripts were identified (Supplemen-
tary Table S3) and used in subsequent analyses. After a series of filtering steps, 182 genes
were classified as differentially expressed (Supplementary Table S4). Among them, 37 were
upregulated and 145 downregulated (Figure 2A). The DEG expression profiles are summa-
rized as a heat map in Figure 2B and Supplementary Figure S1. The GO analysis showed
that the DEGs were involved primarily in cell growth, cell migration, material transport,
cell adhesion regulation, cell component movement regulation, and material synthesis
(Figure 2C). However, the KEGG pathways containing the most clustered DEGs were the
PI3K-AKT signaling (chx04151) and p53 signaling pathways (chx04115) (Figure 2D).

We selected 10 DEGs and independently verified their expression using RT-qPCR,
including five downregulated genes (ANKRD1, RASD1, XIRP1, KLHL40, and TWF2) and
five upregulated genes (ADAMTS2, NREP, COL1A1, FGF18, and HBBC). A comparison of
the relative gene expression levels determined by RT-qPCR and RNA-Seq showed that the
two methods yield consistent results (Figure 2E).
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Figure 2. mRNA sequencing and analysis of differentially expressed genes (DEGs): (A,B) Volcano
plot and heatmap of DEGs between mon1 and mon9. (C,D) Identified GO terms and KEGG pathways
for the DEGs. (E) DEG verification by RT-qPCR and sequencing. * p < 0.05; ** p < 0.01.

3.2. Function of VMP1 in Cell Proliferation and Apoptosis of Goat Myoblasts

The growth and development of the longissimus dorsi are mainly determined by
cell proliferation, apoptosis, and differentiation [37]. VMP1 was significantly upregulated
in mon9 relative to mon1 goats, and was enriched in the PI3K-mTOR pathway, which
functions in cell proliferation and apoptosis processes. To determine the role of VMP1 in
goat myoblast cell proliferation and apoptosis, VMP1 overexpression and knock-down
models were constructed (Figure 3A,B). VMP1 overexpression induced an increase in
mRNA levels of the proliferation marker genes CDK4, cyclin D1, and cyclin D2 (Figure 3E).
A CCK-8 assay revealed that cell proliferation was induced 6 h after transfection in the
overexpression model (Figure 3C). Additionally, increased quantities of EdU-positive cells



Cells 2022, 11, 2227 8 of 21

were observed when VMP1 was overexpressed (Figure 3G,H). These results demonstrate
that overexpression of VMP1 promotes the proliferation of goat myoblasts. In contrast, we
observed the opposite pattern in the knockdown experiment using si-VMP1. The results
show that proliferation marker genes were downregulated (Figure 3F), cell proliferation
was reduced 24 h post-transfection (Figure 3D), and EdU-positive cell numbers decreased
(Figure 3G,I). Overall, these results demonstrate that knockdown of VMP1 suppresses goat
myoblast cell proliferation.

Figure 3. VMP1 regulates the proliferation of goat myoblasts: (A,B) RT-qPCR was used to determine
VMP1 expression levels in myoblasts transfected with pcDNA3.1-VMP1 and siRNA-VMP1. (C) Prolif-
eration of goat myoblasts overexpressing VMP1, measured using a Cell Counting Kit-8. (D) Prolifera-
tion of goat myoblasts transfected with siRNA-VMP1. (E) Expression of the cell-proliferation-related
genes CDK4, cyclin D1, and cyclin D2 in cells overexpressing VMP1 was determined by RT-qPCR.
(F) Expression of cell-proliferation-related genes in cells transfected with siRNA-VMP1. (G) EdU
staining of myoblasts overexpressing VMP1, and in which VMP1 is silenced. (H,I) Fold change in
the proliferation of myoblasts overexpressing VMP1, and in which VMP1 is silenced. Replicates = 3.
Data are shown as the mean ± SE. * p < 0.05 and ** p < 0.01. NC, negative control.
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We then investigated the effects of VMP1 on goat cell apoptosis. Apoptosis was
inhibited by transfection with pcDNA3.1-VMP1. VMP1 overexpression was associated with
a decrease in mRNA and protein levels of caspase-9, caspase-3, and beclin-1 (Figure 4A,C,D).
The siRNA-VMP1 knockdown showed the opposite trend, with increased expression of
caspase-9, caspase-3, and beclin-1 (Figure 4B–D). Flow cytometry revealed that transfection
with pcDNA3.1-NC increased the numbers of apoptotic cells, compared with transfection
with pcDNA3.1-VMP1 (Figure 4E,F). In contrast, apoptotic cell numbers decreased slightly
after siRNA-NC transfection compared with siRNA-VMP1 transfection (Figure 4G,H).
Together, these results indicate that VMP1 inhibits apoptosis in goat myoblast cells.

Figure 4. VMP1 regulates apoptosis of goat myoblasts: (A,B) Expression levels of apoptosis-related
genes (caspase-3, caspase-9, and beclin-1) were quantified by RT-qPCR in myoblasts overexpressing
and underexpressing VMP1. (C,D) Western blot analysis illustrates the levels of beclin-1 and caspase-
3 cleavage in myoblasts overexpressing and underexpressing VMP1. GAPDH was used as the internal
standard. (E) Apoptotic myoblasts were identified by flow cytometry. Cells were stained with annexin
V–FITC/propidium iodide (PI). (F) Percentages of myoblasts in apoptosis. (G) Apoptotic myoblasts
identified by flow cytometry. (H) Percentages of myoblasts in apoptosis. Replicates = 3. Data are
presented as means ± SE; * p < 0.05 and ** p < 0.01. NC, negative control.
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3.3. miR-124a Targets VMP1

Integrated analysis of our previous miRNA-Seq sequencing data (PRJNA831288)
revealed that miR-124a was able to directly target VMP1. Consistent results were predicted
by both TargetScan and miRanda software. The RT-qPCR results showed that the expression
of miR-124a was significantly higher in LD tissues in the mon1 group than in the mon9
group (Figure 5A). The expression level of the VMP1 protein was significantly lower in
the mon1 group than in the mon9 group, which was also consistent with their mRNA
expression (Figure 5B). Dual-luciferase reporter assays were performed to determine
whether there was a direct interaction between miR-124a and VMP1. Luciferase activity of
the VMP1 wild-type plasmid with the miR-124a mimic was lower than that of the VMP1
mutant plasmid with the miR-124a mimic (Figure 5C), supporting the hypothesis that VMP1
is a direct target of miR-214a. VMP1 mRNA and protein expression in goat myoblasts
were determined after transfection with the miR-124a mimic or miR-124a inhibitor. The
results showed decreased mRNA (Figure 5D) and protein (Figure 5E,F) expression in the
miR-124a mimic transfected cells. In the miR-124a inhibitor transfected cells, the expression
levels of VMP1 mRNA and protein were significantly increased (Figure 5E–G). These data
demonstrate that the VMP1 gene is a direct target of miR-124a in goats.

3.4. miR-124a Inhibits Proliferation of, and Induces Cell Apoptosis in, Goat Myoblasts

To investigate the function of miR-124a in goat myoblast proliferation, myoblast
cells overexpressing the miR-124a mimic showed significantly elevated levels of miR-124a
(Figure 6A), as well as a decrease in the mRNA levels of proliferation-related genes (i.e.,
CDK4, cyclin D1, and cyclin D2) (Figure 6E). CCK-8 assays indicated that the prolifera-
tive state of these myoblast cells was depressed between 24 and 48 h post-transfection
(Figure 6C). Additionally, from EdU staining we saw that the quantity of EdU-positive cells
24 h post-transfection was reduced in the miR-124a-mimic-transfected cells (Figure 6G,K).
Cells transfected with an miR-124a inhibitor showed significantly decreased levels of
miR-124a mRNA (Figure 6B), and significantly elevated levels of CDK4, cyclin D1, and
cyclin D2 mRNAs (Figure 6F). CCK-8 assays indicated that the proliferative state of these
cells was elevated between 24 and 48 h post-transfection (Figure 6D). From EdU staining,
we saw that the quantity of EdU-positive cells was increased in the miR-124a-inhibitor-
transfected cells (Figure 6G,H). Overall, these results demonstrate that miR-124a inhibits
goat myoblast proliferation.

We also investigated the effect of miR-124a on myoblast apoptosis, and found that
in cells transfected with the miR-124a mimic, the mRNA and protein levels of caspase-9,
caspase-3, and beclin-1 were all increased (Figure 7A,C,D), indicating that apoptosis was
promoted in these cells. miR-124-inhibitor-transfected cells showed decreased levels of
caspase-9, caspase-3, and beclin-1 mRNA and proteins (Figure 7B–D). Flow cytometry re-
vealed an increase in the number of apoptotic cells in the miR-124a mimic group compared
with the mimic NC group (Figure 7E,F), and a slight decrease in the number of apoptotic
cells in the miR-124 inhibitor group (Figure 7G,H). These results indicate that miR-124a
promotes apoptosis in goat myoblasts.
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Figure 5. Expression of miR-124a and its regulation of VMP1 in goat LD tissue: (A) Expression levels
of miR-124a and VMP1 in mon1 and mon9 goat LD tissues. Data are presented as means ± standard
error (SE); n = 3. (B) Western blot of VMP1 levels in the LD tissues is consistent with mRNA
expression. (C) Relative luciferase activity was assayed 48 h after 293T cells were co-transfected
with VMP1-3′-UTR wild-type or mutant dual-luciferase vectors, together with the miR-124a mimic
or mimic negative control (NC). (D,E) Expression of VMP1 in goat myoblasts was detected by RT-
qPCR in cells overexpressing and underexpressing VMP1. (F,G) Western blot of VMP1 in goat
myoblasts overexpressing and underexpressing miR-124a. Replications = 3. Data are presented as the
mean ± SE; * p < 0.05 and ** p < 0.01.
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Figure 6. miR-124a regulates the proliferation of goat myoblasts: (A,B) RT-qPCR was used to
determine miR-124a expression levels in myoblasts transfected with the miR-124a mimic and inhibitor.
(C) Proliferation curve of myoblasts overexpressing miR-124a. (D) Proliferation curve of myoblasts
underexpressing miR-124a. (E) Expression of the proliferation-related genes CDK4, cyclin D1, and
cyclin D2 in cells overexpressing miR-124a. (F) Expression of proliferation-related genes in cells
underexpressing miR-124a. (G) Myoblasts overexpressing and underexpressing miR-124a stained
with EdU. (H) Fold change in the proliferation of myoblasts overexpressing and underexpressing
miR-124a. Replicates = 3. Data are shown as the mean ± SE. * p < 0.05 and ** p < 0.01. NC,
negative control.
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Figure 7. miR-124a regulates apoptosis of goat myoblasts: (A,B) Expression levels of cell-apoptosis-
related genes (caspase-3, caspase-9, and beclin-1) in cells overexpressing and underexpressing miR-
124a were quantified by RT-qPCR. (C,D) Western blot analysis revealed the expression of caspase-3
and beclin-1 after gain and loss of miR-124a. GAPDH was used as an internal reference. (E) My-
oblasts overexpressing miR-124a were stained with annexin V–FITC/propidium iodide (PI), and
then subjected to flow cytometry. (F) The percentage of miR-124a-overexpressing myoblasts in
apoptosis. (G) Flow cytometry of myoblasts underexpressing miR-124a. (H) Percentage of miR-
124a-underexpressing myoblasts in apoptosis. Replicates = 3. Data are presented as the mean ± SE;
* p < 0.05 and ** p < 0.01. NC, negative control.
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3.5. VMP1 Promotes Goat Myoblast Proliferation via the PI3K/Akt/mTOR Pathway

To investigate the relationship between VMP1 and the PI3K signaling pathway, my-
oblasts were treated with a PI3K activator (AY-22989) or inhibitor (3-MA) (Figure 8A,B,
respectively). Cells treated with AY-22989 (50 µg/mL) had increased levels of VMP1 and
ULK1 over the AY-22989-NC-treated cells, and showed decreased levels of mTOR. Cells
treated with 3-MA (20 nM) had increased levels of mTOR over the 3-MA-NC-treated
cells, and showed decreased levels of VMP1 and ULK1 (Figure 8C,D). These results reveal
that both VMP1 and ULK1 are downstream regulators of the PI3K/Akt/mTOR signaling
pathways, and might be related to cell autophagy.

Figure 8. Phosphoinositide 3-kinase (PI3K/AKT/mTOR) pathway analysis: (A,B) CCK-8 assays
were used to determine the optimal concentrations of the mTOR activator (AY-22989) and inhibitor
(3-MA). (C,D) Levels of mTOR and downstream regulators (VMP1 and ULK1) in myoblasts were
detected by Western blotting after treatment with AY-22989 or 3-MA. GAPDH was used as an internal
control. Replicates = 3. Data are presented as the mean ± SE; * p < 0.05 and ** p < 0.01. The different
letters represented the significant difference.

3.6. VMP1 Promotes Myoblast Autophagy

Recent studies have demonstrated that VMP1 is involved in the regulation of au-
tophagy [38,39]. Therefore, we investigated the effects of VMP1 overexpression and knock-
down on goat myoblast autophagy. Myoblasts transfected with pcDNA3.1-VMP1 and
infected with the mRFP-GFP-LC3-harboring adenovirus had more GFP and mRFP puncta
than cells transfected with pcDNA3.1-NC (Figure 9A–C). Cells transfected with siRNA-
VMP1 had fewer red puncta than cells transfected with siRNA-NC, reflecting a decreased
level of autophagic flux (Figure 9A,D,E). In cells transfected with pcDNA3.1-VMP1 (vs.
pcDNA3.1-NC), levels of mTOR were decreased, while levels of ULK1 were increased. In
contrast, in cells in which VMP1 had been knocked down, mTOR levels were increased, and
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ULK1 levels decreased; siRNA-VMP1 inhibited the degradation of mTOR and the accumu-
lation of ULK1 (Figure 9F,G, respectively), thereby suppressing autophagy. These results
demonstrate that VMP1 promotes autophagy by activating the VMP1/ULK1 pathway.
Based on these results, we suggest that VMP1 promotes autophagy in goat myoblast cells.

Figure 9. VMP1 promotes myoblast autophagy: (A) An adenovirus harboring tandem fluorescent
mRFP-GFP-LC3 was used to evaluate the extent of autophagic flux after VMP1 overexpression or
silencing. (B,D) Mean numbers of green and red puncta per cell; three cells were randomly selected
from each field to be counted. (C,E) Mean numbers of autophagosomes and autolysosomes per cell.
Autophagosomes contain both green and red puncta; in the merged images, the puncta appear yellow.
Autolysosomes contain red puncta only. (F,G) Levels of ULK1/mTOR were detected after VMP1
overexpression or silencing. GAPDH was used as an internal standard. Replicates = 3. Data are
presented as the mean ± SE; * p < 0.05 and ** p < 0.01.

3.7. miR-124a Regulates Myoblast Autophagy by Targeting VMP1

Transfected myoblasts were infected with an adenovirus harboring tandem fluorescent
mRFP-GFP-LC3 in order to evaluate the extent of autophagic flux, allowing us to distinguish
between autophagosomes and autolysosomes. The autolysosomes contained only mRFP,
while the autophagosomes contained both GFP and red mRFP signals, and the merged
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images reveal a yellow signal where there is co-localization. Cells transfected with the miR-
124a mimic had significantly fewer GFP and mRFP puncta per cell than cells transfected
with the mimic NC (Figure 10A–C). In the overlaid images, fewer red dots were observed,
indicating decreased autolysosome synthesis. Cells transfected with the miR-124a inhibitor
had significantly more red puncta than cells transfected with the inhibitor NC, indicating
an increased level of autophagic flux (Figure 10A,D,E). These data suggest that miR-124a
inhibits goat myoblast autophagy.

Figure 10. miR-124a regulates myoblast autophagy via the transient receptor potential of the
VMP1/ULK1 pathway: (A) An adenovirus harboring tandem fluorescent mRFP-GFP-LC3 was used
to evaluate the extent of autophagic flux after overexpression or inhibition of miR-124a. (B,D) Mean
numbers of GFP and mRFP puncta per cell; three cells were randomly selected from each field to be
counted. (C,E) Mean numbers of autophagosomes and autolysosomes per cell. Autophagosomes
have green and red puncta, while in the merged images the puncta appear yellow. Autolysosomes
have red puncta only. (F,G) Protein levels of ULK1/mTOR were detected after overexpression or
inhibition of miR-124a. GAPDH was used as an internal standard. Replicates = 3. Data are presented
as the mean ± SE; * p < 0.05 and ** p < 0.01.
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3.8. miR-124a Impedes the VMP1/ULK1/mTOR Pathway

Myoblasts transfected with the miR-124a mimic had decreased levels of VMP1 and
ULK1 (the expression of VMP1 shown in Figure 5F,G), but increased levels of mTOR.
In contrast, cells transfected the miR-124a inhibitor had increased levels of VMP1 and
ULK1, and decreased levels of mTOR. Inhibition of miR-124a resulted in the accumula-
tion and degradation of VMP1 and ULK1, respectively (Figure 10F,G), resulting in en-
hanced autophagy. These results show that miR-124a inhibits autophagy by impeding the
VMP1/ULK1/mTOR pathway.

4. Discussion

The response of myofibers to cancer and the cachectic environment is considered cen-
tral to understanding the regulation of muscle development and wasting [40]. Abnormal
autophagy in muscles results in cellular alterations, such as mitochondrial damage, ER
stress, impaired sarcomeric protein turnover, and cell death [41], collectively leading to the
development of various skeletal muscle diseases. Autophagic removal of dysfunctional
organelles appears to be an important suppressor of the apoptotic death-signaling pro-
gram [42,43]. In this study, we screened 182 DEGs from the LD tissues of 1-month-old and
9-month-old Wu’an goats. GO analysis showed that the DEGs corresponded to functions
and pathways related to energy metabolism, substance metabolism, and cell movement.
KEGG analysis showed that the majority of DEGs were enriched in the PI3K-Akt signaling
pathway and regulation of the actin cytoskeleton. PI3K-Akt is a key signaling pathway
involved in regulating the cell cycle; it is closely related to the proliferation and differen-
tiation of skeletal muscle, along with muscle hypertrophy [44,45]. The DEGs we found
enriched in the mon9 group included the significant PI3K-Akt genes, along with VMP1,
which participated in the processes of cell proliferation, apoptosis, and autophagy [46,47].

High expression of VMP1 has been frequently linked to cancer, and is correlated with
increased levels of cell proliferation and autophagy [39,48–50]. The aim of this study was
to investigate the molecular mechanisms that underlie the differences in skeletal mus-
cle between young growing goats (1-month-old) and goats that have finished growing
(9-months-old). RNA-Seq showed that most DEGs were expressed at low levels in the
longissimus dorsi tissues of young goats. We speculated that VMP1 plays an important
role in goat myoblast proliferation, apoptosis, and autophagy. Integration of the previous
study of miRNA-Seq data with bioinformatics tools analysis revealed that miR-124a is an
important regulatory element of VMP1. Therefore, a series of experiments were conducted,
and the results showed that miR-124a impeded goat myoblast proliferation and autophagy,
and promoted apoptosis, by targeting VMP1. VMP1 (vacuole membrane protein 1) is a
transmembrane protein associated with the ER, Golgi apparatus, and intracellular vesi-
cles [51]. During early development, both protein synthesis and protein breakdown are
equally important, and VMP1 plays a part in the proteostasis mechanism and removal
of damaged organelles. In VMP1-depleted Cos-7 cells, which exhibited a fragmented ER
and disorganized Golgi bodies, a rapid accumulation of AprA—a protein secreted via the
ER–Golgi transport pathway—was observed in controls overexpressing VMP1, suggesting
that VMP1 may also be involved in protein secretion [52,53]. Autophagy is the major degra-
dation pathway involved in the clearance of protein aggregates; overexpression of VMP1
induces the formation of autophagosomes in mammalian cells, which might lead to clear-
ance of accumulated proteins involved in neurodegenerative disorders [54,55]. It is also
highly involved in the processes of protein secretion, phagocytosis, osmoregulation, and cy-
tokinesis, thereby mediating diverse cellular processes [56]. Previous studies demonstrated
that VMP1 plays an important role in the autophagic process by regulating interactions
between the ER and the autophagic isolation membrane [23]. VMP1 is also involved in
cellular processes and important signaling pathways, such as the AMPK pathway [57],
PI3K–Akt pathway [58], and the mTOR pathway [59]. Morishita et al. reported that overex-
pression of VMP1 increased autophagic flux and improved mitochondrial quality, whereas
its suppression resulted in decreased cell autophagy [60]. Here, we showed that overex-
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pression of miR-124a promoted myoblast apoptosis, which was characterized by increased
apoptotic cell numbers and increased expression of caspase-9, caspase-3, and beclin-1. The
results of CCK-8 and EdU indicated that myoblasts overexpressing an miR-124a mimic had
depressed viability and proliferation, and the opposite was true after inhibition of miR-124a
expression. Subsequently, bioinformatics analyses and dual-luciferase reporter gene assays
demonstrated that miR-124a directly targets VMP1. Expression levels of VMP1 mRNA and
protein were suppressed in cells overexpressing miR-124a. VMP1-silenced myoblasts were
inhibited in their proliferation, and the number of apoptotic cells was increased.

Increased expression of cleaved caspase-3 and caspase-9 leads to inhibition of au-
tophagy and enhanced apoptosis [61]. We found that miR-124a regulates myoblast au-
tophagy by targeting VMP1. Wang et al. reported that miR-21 directly inhibits the transla-
tion of VMP1, and that the loss of miR-21 leads to higher expression of VMP1 and stimulates
autophagy [50]. In this study, we confirmed that VMP1 is a target gene of miR-124a and
regulates myoblast autophagy by targeting the ULK1/mTOR pathway. The activity of
mTOR—an upstream regulator of ULK1—prevents the activation of ULK1, and disrupts
the interaction between ULK1 and AMPK [62]. The overexpression of miR-124a attenuated
autophagic flux and reduced the expression of VMP1 and ULK1, while increasing the levels
of mTOR. In contrast, miR-124a inhibition enhanced autophagic flux in cultured myoblasts,
and led to increased expression of VMP1 and ULK1, along with decreased expression of
mTOR. Inhibition of miR-124a resulted in the accumulation of ULK1 and VMP1 and the
degradation of mTOR, indicating that miR-124a inhibited myoblasts’ proliferation and
autophagy by impeding the VMP1/ULK1/mTOR pathway.

5. Conclusions

We annotated 182 DEGs between 1-month-old and 9-month-old Wu’an goats, and
identified VMP1—predominantly expressed in the LD tissues of the older goats—as being
involved in myoblast proliferation and autophagy and, thus, muscle development. We
determined that VMP1 expression in myoblasts is regulated by miR-124a, and that by
suppressing VMP1 expression, miR-124a inhibits the PI3K/ULK1/mTOR pathway, thereby
inhibiting myoblast apoptosis and autophagy (Figure 11). This work provides insight into
the regulatory mechanisms underlying muscle development, which could from the basis for
the development of new therapeutic strategies for muscle proliferation and atrophy diseases.

Figure 11. Flowchart of the effects of VMP1 regulated by miR-124a on the proliferation, autophagy,
and apoptosis of goat myoblasts through the PI3K/AKT/mTOR signaling pathway.
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