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Abstract: The human gastrointestinal tract harbors approximately 100 trillion microorganisms with
different microbial compositions across geographic locations. In this work, we used RNASeq data from
stomach samples of non-disease (164 individuals from European ancestry) and gastric cancer patients
(137 from Europe and Asia) from public databases. Although these data were intended to characterize
the human expression profiles, they allowed for a reliable inference of the microbiome composition,
as confirmed from measures such as the genus coverage, richness and evenness. The microbiome
diversity (weighted UniFrac distances) in gastric cancer mimics host diversity across the world,
with European gastric microbiome profiles clustering together, distinct from Asian ones. Despite the
confirmed loss of microbiome diversity from a healthy status to a cancer status, the structured profile
was still recognized in the disease condition. In concordance with the parallel host-bacteria population
structure, we found 16 human loci (non-synonymous variants) in the European-descendent cohorts
that were significantly associated with specific genera abundance. These microbiome quantitative
trait loci display heterogeneity between population groups, being mainly linked to the immune
system or cellular features that may play a role in enabling microbe colonization and inflammation.

Keywords: gastric microbiome; gastric cancer; European and Asian diversity; biomarkers; microbiome
quantitative trait loci; miQTL

1. Introduction

Current estimates place the beginning of the cooperative interaction between microbes and their
animal hosts in the last 500 million years [1]. Examples of such close interactions in the gastrointestinal
tract are Bacteroidaceae and Bifidobacteriaceae, which have been symbionts of primates for over
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15 million years [2]. A big increase in normal human microbiome knowledge is being contributed
by large scale studies such as the Human Microbiome Project (HMP, led by the United States of
America) [3] and MetaHIT (led by the European Union and China) [4]. In the particular case of the
largest human microbiome reservoir, the gastrointestinal tract, it harbors approximately 100 trillion
microorganisms in a proportion of approximately 1:1 to human cells [5,6], with up to 100 times more
genes than the human genome [4,7].

The microbiome composition is dynamic and is affected by factors such as diet, antibiotics, age and
ethnicity. By analysing the gut microbiome in stool samples from BaAka pygmies and its neighbor
Bantus, and comparing them with samples collected in the United States, Gomez et al. [8] showed that
hunter-gatherers harbored an increased abundance of Prevotellaceae, Treponema, and Clostridiaceae,
associated with a profile of increased virulence, and amino acid and vitamin metabolism. The gut
microbiome of Bantu was dominated by Firmicutes and displayed western-like features, such as an
increased abundance of predictive carbohydrates and xenobiotic metabolic pathways. Nevertheless,
the two African groups were more similar to each other in terms of their gut microbiome diversity
than either group against the USA cohort. Additionally, there was a loss of (alpha) diversity in the
industrialized population, mainly due to the loss of the bacterial taxa involved in fiber processing,
coupled with a gain of lineages associated with the consumption of agricultural products. The gut
microbiome of the Danish is generally enriched with the phylum Firmicutes, including Oenococcus
and other lactic acid bacteria [9], whereas that of the Chinese has greater abundance of Proteobacteria.
A genome-wide association study of the gut microbiota in 1812 Germans [10] identified significant
associations for the overall microbial variation and individual taxa at multiple loci, especially with the
VDR (vitamin D receptor) gene, several disease susceptibility genes and sterol metabolism pathway
components. The authors estimate that non-genetic and genetic factors account each for 10% of gut
microbiota variations. A recent study conducted in a large cohort of Flemish and German individuals
lead to the identification of further genetic associations involving multiple microbial traits, including
that between a single nucleotide polymorphism (SNP) on the RAPGEF1 gene, which is involved in the
regulation of the gastrointestinal tract’s physiology, and Ruminococcus [11].

Microbiome homeostasis is critical for human health. Changes in the microbiome composition,
also known as dysbiosis, have now been associated with several diseases, such as obesity [12],
atherosclerosis [13], inflammatory bowel disease [14], Alzheimer’s [15], and cancer [16]. In the
gastric cancer setting, studies that characterized the gastric microbiome found complex bacterial
communities dominated by different species with a low abundance of H. pylori in the stomach of cancer
patients [17–20]. Divergent microbial profiles associated with cancer were described in these studies,
which may be explained in part by the different technical approaches, namely if the original sample
was obtained from a gastric juice or mucosal specimen, and also due to the diverse geographic origins
of the patients studied.

The Cancer Genome Atlas (TCGA) has collected the largest adenocarcinoma cohort of patients
from several countries in Europe (Germany, Poland, Ukraine and Russia), Asia (Vietnam and South
Korea), Oceania (Australia) and America (the United States (USA), Canada and Brazil), and makes freely
available whole genome/exome sequences (WGS/WES) and transcriptomes [21]. While the number of
WGS-typed samples is limited to around 50, RNASeq has been performed in all cancer samples and
in around 30 samples from adjacent normal tissue. It has been shown that it is possible to identify
and quantify non-human sequenced fragments (including bacteria and viruses) from human-centred
WGS [22,23] and RNASeq [23,24]. Another interesting public database is the Genotype-Tissue
Expression (GTEx), which provides RNASeq of several tissues from deceased non-cancer patients [25]
in the United States, mostly of European descent, including approximately 200 gastric samples.
The GTEx has been intensively used to infer expression quantitative trait loci (eQTL) in the various
human tissues. Currently, these two databases are the richest in terms of the geographical origin
of samples, completeness of human omic characterization, clinical classification, and direct gastric
tissue sampling. Nevertheless, the microbiome was not profiled in these samples. In this sense, the
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inference of the microbial community in the TCGA and GTEx datasets would provide a comprehensive
investigation on the role of host diversity in shaping the microbiome dynamics.

In this work, we departed from the TCGA and GTEx RNASeq datasets to investigate and to infer
the bacterial microbiome in cancerous and non-cancerous gastric tissues. Furthermore, we evaluated
the microbiome variation attending to the human population structure and searched for microbiome
quantitative trait loci (miQTL).

2. Materials and Methods

2.1. Samples

Gastric adenocarcinoma RNASeq raw reads, unmapped to the GRCh38 human genome
encompassing 375 tumors and 27 matched normal tissues, were obtained from aligned RNASeq
data on the TCGA Genomic Data Commons repository (https://gdc.cancer.gov/). For these samples,
information regarding their origin, sex, age, ethnicity, pathogenic (type and location of tumor,
pathogenicity scoring), and clinical information (treatment and vital status) was available. For this
tissue, the geographic collection of samples spanned 11 countries (Australia, Brazil, Canada, Germany,
Moldova, Poland, South Korea, Ukraine, the United Kingdom, the United States and Vietnam).
Following the same rationale, we have also inferred the microbiome profile of stomach samples of
non-disease individuals collected in the United States through the analysis of RNASeq data from the
GTEx database [25]. From the 202 stomach GTEx samples, we excluded samples with an ethnicity other
than “white” and with clinical evidence of gastritis, acid reflux or other gastric pathologies, leaving a
total of 164 samples. The distribution of the samples used in this work is summarized in Supplementary
Table S1. The original material was frozen tissue, collected under careful standard operating
procedures available at the consortia websites (https://brd.nci.nih.gov/brd/sop-compendium/show/701;
https://biospecimens.cancer.gov/resources/sops/default.asp).

This study was carried in accordance with the recommended data access guidelines from the TCGA
and GTEx datasets. We received administrative permission for the download of restricted-access data
from stomach cancer patients (TCGA) and patients with normal stomachs from deceased individuals
(GTEx). Additional approval by the local Ethics Committee was not required.

2.2. Microbiome Inference

A total of 900 bacterial whole genomes (one representative strain per species; Supplementary
Table S2) were collected from NCBI following the species identified by the HMP [3] and MetaHit [9]
projects in the gastrointestinal tract and complemented the species identified in the works of
Rajilić-Stojanović and de Vos [26] and Ferreira et al. [20].

The pipeline used in this manuscript to characterize and quantify the bacterial species is described
in detail elsewhere [27], and summed up in Supplementary Figure S1. Briefly, QmihR began by
trimming reads using Trimmomatic (v0.36) [28], checking if: (1) the average Phred of two consecutive
reads was below 20, and (2) the read length was smaller than 40 bases. These reads were then
aligned, by global alignment, against the bacterial reference database with Bowtie2 (v2.2.7) [29] and
the quantification of bacterial genera was performed through RSEM (v1.2.29) [30] for the probabilistic
assignment of multi-mapping reads. The pipeline aggregates the counts of the mapped reads in the
various genes within a species to produce counts of reads aligned per species. After analyses, we
limited counting reads to those mapped to bacterial rRNA genes. Reads belonging to the same genera
were combined and normalized by the library size for the total mapped reads against the bacterial
reference database.

2.3. Checking for Genus Coverage, Richness and Evenness

Estimations of the genus coverage, richness, evenness, and diversity were calculated in R using
the Phyloseq package (v1.23.1) [31]. The alpha diversity was determined by the Shannon index.

https://gdc.cancer.gov/
https://brd.nci.nih.gov/brd/sop-compendium/show/701
https://biospecimens.cancer.gov/resources/sops/default.asp
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Good’s coverage calculated an estimator of the sample coverage of a community. The Chao1 estimator
returned the genus richness based on a vector or matrix of abundance data, reflecting the proportion of
singletons and doubletons in the dataset. The evenness reflects the closeness in the number of genera,
corresponding to Shannon’s index divided by the number of genera.

2.4. Phylogenetic Analyses

The phylogenetic information for the genera present in our samples was retrieved (on the 20th
January 2019) from the Time Tree website (http://www.timetree.org/). This information was used
to calculate unweighted and weighted UniFrac distances. The UniFrac distances are beta measures
(the mean genera diversity among samples) that take into account the similarities and differences
among genera and including the weighted or unweighted genera abundances in calculations [32].
The Bray–Curtis dissimilarity, another distance-based method, takes into account the counts at each
site. The unrooted neighbor-joining tree was used to represent the weighted UniFrac distances between
TCGA population samples. A permutation multivariate analysis (1000 permutations) of variance
(PERMANOVA; [33]) of the weighted UniFrac distances (to reflect the phylogenetic diversity between
genera) was also performed and plotted in a non-metric multidimensional scale (nMDS). The null
hypothesis tested by PERMANOVA was that the centroids of each group are equivalent, under the
assumption of exchangeability of the samples among groups.

A t-distributed stochastic neighbor embedding (t-SNE) analysis based on the normalized values
was estimated to check for the batch influence on the beta-diversity. This analysis was conducted in R
using Rtsne package (v0.15) [34].

2.5. Evaluating Microbiota Composition in Gastric Tumorigenesis

A differential expression was applied to evaluate the changes in the microbiome abundance (for
genera and phyla) by using the DESeq2 package (v1.24.0) [35]. The heatmap reflecting these changes
was obtained in R using the gplots (v3.0.1.1) package.

2.6. Host-Genome and Microbiome Associations

The association of host germline genotypes with microbiome genera abundance was tested in
the TCGA and GTEx datasets. The tested genera were the ones listed in Figure 1, which displayed
frequencies above 1% in at least one population. Genera abundance was further normalized by an
arc-sin transformation to obtain normality. These miQTLs were identified by employing Matrix eQTL
software (v2.2) [36]. Host germline variants, common to both datasets, were limited to the MAF >

0.05 (minimum allele frequency), non-synonymous type and were in a Hardy–Weinberg equilibrium
(p-value > 1 × 10−5). The country of origin, sex, age, sequencing center and year of sample shipment
were considered as confounding variables in all analyses. The p-values were subsequently corrected
for multiple testing using Storey’s q-value method [37]. To check the FST distances between the human
population groups for these variants, we used the African, Asian and European populations from the
1000 Genomes project [38].

http://www.timetree.org/
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Figure 1. Microbiota composition in gastric cancer and non-cancerous samples. (A) Heatmap of 
statistically significant differentiated genera and phyla abundance when comparing the control 
Genotype-Tissue Expression (GTEx) non-cancer gastric microbiome with the European ancestry 
(Europe and USA) The Cancer Genome Atlas (TCGA) cancer samples. (B) Log2 fold change of the 
statistically significant differentiated genera and phyla between the non-cancer (negative axis) and 
cancer (positive axis) cohorts. 

3.3. Microbiome Profiling in Function of Host Geographic Origin 

Taking into consideration that, for the gastric adenocarcinoma, the TCGA cohort includes 
samples collected from multiple geographic locations, we leveraged this information to evaluate 
whether the microbiome varied between the main human ancestral backgrounds.  

We first checked if the RNASeq-based inference had enough resolution to reliably characterize 
the microbiome diversity from all the geographic locations available. As can be seen in Figure 2A, 
Good’s coverage per sample was always higher than 84%, with 57% of samples having this estimate 
> 98%, and 25% of samples having > 99%. Chao1 estimated a median of 196 and 264 genera for the 
various populations in the TCGA and GTEx datasets, respectively. Overall, within the TCGA cancer 
cohort, the bacterial richness and evenness were similar in all populations, and the Shannon index 
was not significantly different between continents.  

We next evaluated if the microbiome had a different signature across continents. In agreement 
with previous descriptions of the gastric microbiome [41,42], genera found in the GTEx and TCGA 
stomach samples belonged mainly to Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and 
Fusobacteria phyla (Figure 2B). Firmicutes was the dominant phylum observed in Asia, while 
Proteobacteria was dominant in Europe (53.6% and 39.7%, and 34.0% and 47.3%, respectively). These 
differences between continents were statistically significant (p = 1.9 × 10−6 and p = 2.9 × 10−5, 
respectively). No statistically significant differences were observed between the remaining phyla. 

Figure 1. Microbiota composition in gastric cancer and non-cancerous samples. (A) Heatmap
of statistically significant differentiated genera and phyla abundance when comparing the control
Genotype-Tissue Expression (GTEx) non-cancer gastric microbiome with the European ancestry (Europe
and USA) The Cancer Genome Atlas (TCGA) cancer samples. (B) Log2 fold change of the statistically
significant differentiated genera and phyla between the non-cancer (negative axis) and cancer (positive
axis) cohorts.

3. Results

3.1. Quality Control of RNASeq Data for Microbiome Inference

After retrieving bacterial reads from the transcriptomic data of the TCGA and GTEx and,
since batch effects in TCGA samples have been described [39,40], an initial quality control of the data
was performed. A characterization based on diversity revealed that samples in batches with a year
of shipment between 2010 and 2012 had a statistically significant (p < 2.2 × 10−16) higher diversity
than the batches from 2013 and 2014 (median Shannon diversity of 2.92 (2010–2012); 1.31 (2013 to
2014), Supplementary Figure S2A). A detailed inspection of the relative abundance of bacteria per
sample showed that some samples had an almost monophyletic microbiome. The most extreme case
was found in the samples which were shipped in 2013 and 2014, which contained almost exclusively
Pseudomonas (128 samples, mean relative abundance of 95% (Supplementary Table S3)). The samples
shipped in 2010, 2011 and 2012 had a more variable microbiome (247 samples in total; with a 20%
mean relative abundance of Pseudomonas), mostly made of three similarly frequent genera and many
less frequent ones. These results led us to conclude that the 2013 and 2014 batches were possibly
contaminated by Pseudomonas (Supplementary Figure S2B) and were thus removed from further
analyses. No discernible differences between batches in the GTEx samples were observed (data not
shown). Even though the alpha diversity analysis showed similar values of diversity for the 2010,
2011 and 2012 batches, we further assessed the batch-specific enrichment of genera. The results
showed (Supplementary Figure S2C) that the 2010 and 2011 batches cluster together into two different
sub-clusters, while the 2012 samples showed a more homogeneous distribution. Given the small
sample sizes of the 2010 and 2011 batches (n = 37 and n= 73, respectively) comparatively to the 2012
batch (n = 137), we conservatively limited further analyses to the TCGA 2012 cohort (largely European
and East Asian samples).

We then checked where in the bacterial genome these reads were mapping to, observing that
81.1% of all the aligned RNASeq reads mapped to the ribosomal RNA (rRNA) genes. On average,
9356 and 7171 reads in the TCGA and GTEx samples, respectively, mapped to rRNA genes with the
following equivalent distributions (p = 0.74): 39.66% and 36.47% on 16S rRNA; 60.12% and 63.17%
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on 23S rRNA; 0.22% and 0.36% on 5S rRNA. To avoid biases due to differentially expressed protein
coding-genes, we limited all further analyses to bacterial rRNA-mapped reads.

3.2. Microbiome Composition in Cancer vs. Non-Cancer Samples from European Ancestry

Previous investigations using 16S rRNA-based methods have disclosed differences in the gastric
microbiome between patients with and without cancer [18–20], mainly in the decreased microbiome
diversity in patients with cancer status. Therefore, we inferred the gastric microbiome from the TCGA
(cancer cohort) and GTEx (non-cancer cohort) datasets. However, since the GTEx dataset originates
from USA individuals, who are mostly of European ancestry (n = 164), we limited this comparison to
the TCGA samples from European and USA (n= 83) origins.

We assessed the microbial diversity in our inferred data, through metrics such as Good’s coverage,
evenness, alpha diversity (Shannon index) and Chao1 estimator. The median estimated coverage was
above 97% in each group (Supplementary Figure S3). The bacterial richness, evenness, and Shannon
diversity were significantly lower in cancer than in non-cancer samples (p = 1.1 × 10−9, p < 2.2 × 10−16,
and p < 2.2 × 10−16, respectively; Supplementary Figure S3).

To evaluate whether there were differences in taxa that could explain the variation in diversity, we
performed a differential analysis of taxa. The results showed that some genera reached statistically
significant differences above two log fold changes between non-cancer and cancer cohorts: Bacillus
(p = 1.5 × 10−113), Parasutterella (p = 7.5 × 10−27), Brevibacillus (p = 4.9 × 10−18), Fusobacterium
(p = 9.4 × 10−14), Enterobacter (p = 8.6 × 10−24), Cloacibacterium (p = 1.48 × 10−17) and Suterella
(p = 2.3 × 10−21) were enriched in the microbiome of cancer samples, whereas, Kocuria (p = 2.6 × 10−10),
Aeromicrobium (p = 1.0 × 10−10), Stenotrophomonas (p = 6.0 × 10−15), Phyllobacterium (p = 8.6 × 10−24),
Brachybacterium (p = 5.4 × 10−10), Staphylococcus (p = 2.5 × 10−22), Blastococcus (p = 5.6 × 10−14),
Micrococcus (p = 3.2× 10−15), Rhodococcus (p = 3.1× 10−20), Propionibacterium (p = 1.5 × 10−38), Escherichia
(p = 7.7 × 10−19), Anaerococcus (p = 3.0 × 10−16), Serratia (p = 6.9 × 10−27), Brevibacterium (p = 4.9 × 10−18)
and Nevskia (p = 1.2 × 10−47) were significantly enriched in non-cancer samples (Figure 1A,B).
There were no differences in the relative abundance of these genera between the four cancer stages
(AJCC pathological tumor staging; Supplementary Figure S4). The differences in genera abundance
led to phylum Actinobacteria (p = 9.4 × 10−51) being more abundant (with statistical significance) in
the non-cancer cohort (Figure 1A,B).

3.3. Microbiome Profiling in Function of Host Geographic Origin

Taking into consideration that, for the gastric adenocarcinoma, the TCGA cohort includes samples
collected from multiple geographic locations, we leveraged this information to evaluate whether the
microbiome varied between the main human ancestral backgrounds.

We first checked if the RNASeq-based inference had enough resolution to reliably characterize the
microbiome diversity from all the geographic locations available. As can be seen in Figure 2A, Good’s
coverage per sample was always higher than 84%, with 57% of samples having this estimate > 98%,
and 25% of samples having > 99%. Chao1 estimated a median of 196 and 264 genera for the various
populations in the TCGA and GTEx datasets, respectively. Overall, within the TCGA cancer cohort,
the bacterial richness and evenness were similar in all populations, and the Shannon index was not
significantly different between continents.
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despite the relative abundance of this genus being significantly higher in the latter (30.4% and 38.1%, 
respectively; p = 4.1 × 10−3). Bacillus was followed by Pseudomonas (24.2% and 15.9%; p = 7.9 × 10−5), 
Shigella (5.4% and 4.2%; p = 4.9 × 10−3), and Lactobacillus (2.3% and 6.4%; p = 0.1), while Helicobacter was 
vestigial (lower than 1%). 

Still within the cancer cohort, but considering the genera per country of origin, the USA had a 
high relative abundance of Fusobacterium (4.0%) and a low relative abundance of Lactobacillus (0.3%), 
while the opposite was observed in the central-eastern group of Ukraine, Poland and Russia (1.0% 
and 1.5% in Ukraine, 0.3% and 1.7% in Poland, and 1.6% and 3.9% in Russia). Bacillus accounted for 
28% of the reads in samples from Russia. In Asia, the samples from South Korean and Vietnamese 
had a high relative abundance of Bacillus (40.0% and 37.1%, respectively) and Pseudomonas (10.0% 
and 22.1%, respectively), but while South Korea had more Lactobacillus (11.0%) and Fusobacterium 
(2.6%) and less Achromobacter (0.8%), Vietnam had the opposite trend (1.4%, 0.4% and 2.7%, 
respectively). These profiles are statistically different for the comparisons between European and East 
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analysis (stress = 0.17; r2 = 0.05; p = 0.054; Figure 3A): USA vs. South Korea, p = 0.048; Poland vs. South 
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distances between groups in a neighbor-joining tree (Figure 3B), it was observed that the distances 
between the microbiomes of cancer samples from different geographic locations reflect the pattern of 
the genetic distances between main human populations: European populations clustering together, 
and East Asian populations in another branch. Thus, the population structure was observed in the 
microbiome of tumor samples. The microbiome of the non-cancerous samples GTEx (mainly 
European-Americans) was closer to the European tumor cohort (Figure 3C), reflecting a common 
human ancestry. 

Figure 2. Alpha diversity and phylogenetic analysis of the gastric microbiome. (A) Good’s coverage,
Chao1, Shannon and evenness in the inferred microbiome patterns. (B) Phylogenetic tree and respective
abundance of genera found in the gastric microbiome (only genera that passed a mean threshold of 1%
in at least one population are displayed in the graph). Samples are from non-cancer individuals from
the GTEx dataset (United States n = 164, in brink pink) and cancer patients from the TCGA 2012 batch
(United States n = 14 in gold; Ukraine n = 24 in limeade, Poland n = 11 in Caribbean green; Russia
n = 34 in cerulean; South Korea n = 28 in purple and Vietnam n = 26 in pink).

We next evaluated if the microbiome had a different signature across continents. In agreement with
previous descriptions of the gastric microbiome [41,42], genera found in the GTEx and TCGA stomach
samples belonged mainly to Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Fusobacteria
phyla (Figure 2B). Firmicutes was the dominant phylum observed in Asia, while Proteobacteria was
dominant in Europe (53.6% and 39.7%, and 34.0% and 47.3%, respectively). These differences between
continents were statistically significant (p = 1.9 × 10−6 and p = 2.9 × 10−5, respectively). No statistically
significant differences were observed between the remaining phyla.

Within the cancer cohort, Bacillus was the dominant genus in European and East Asian samples,
despite the relative abundance of this genus being significantly higher in the latter (30.4% and 38.1%,
respectively; p = 4.1 × 10−3). Bacillus was followed by Pseudomonas (24.2% and 15.9%; p = 7.9 × 10−5),
Shigella (5.4% and 4.2%; p = 4.9 × 10−3), and Lactobacillus (2.3% and 6.4%; p = 0.1), while Helicobacter
was vestigial (lower than 1%).

Still within the cancer cohort, but considering the genera per country of origin, the USA had a
high relative abundance of Fusobacterium (4.0%) and a low relative abundance of Lactobacillus (0.3%),
while the opposite was observed in the central-eastern group of Ukraine, Poland and Russia (1.0% and
1.5% in Ukraine, 0.3% and 1.7% in Poland, and 1.6% and 3.9% in Russia). Bacillus accounted for 28%
of the reads in samples from Russia. In Asia, the samples from South Korean and Vietnamese had a
high relative abundance of Bacillus (40.0% and 37.1%, respectively) and Pseudomonas (10.0% and 22.1%,
respectively), but while South Korea had more Lactobacillus (11.0%) and Fusobacterium (2.6%) and less
Achromobacter (0.8%), Vietnam had the opposite trend (1.4%, 0.4% and 2.7%, respectively). These profiles
are statistically different for the comparisons between European and East Asian groups, as evaluated in
the nMDS plot for the weighted UniFrac distances and PERMANOVA analysis (stress = 0.17; r2 = 0.05;
p = 0.054; Figure 3A): USA vs. South Korea, p = 0.048; Poland vs. South Korea, p = 0.024; South
Korea vs. Vietnam, p = 0.006. By displaying the mean weighted UniFrac distances between groups in
a neighbor-joining tree (Figure 3B), it was observed that the distances between the microbiomes of
cancer samples from different geographic locations reflect the pattern of the genetic distances between
main human populations: European populations clustering together, and East Asian populations in
another branch. Thus, the population structure was observed in the microbiome of tumor samples.
The microbiome of the non-cancerous samples GTEx (mainly European-Americans) was closer to the
European tumor cohort (Figure 3C), reflecting a common human ancestry.
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Figure 3. Gastric cancer microbiome profiling in function of the host geographical origin. (A) non-metric
multidimensional scale (nMDS) plot for the weighted UniFrac distances and PERMANOVA analysis
(stress = 0.17; r2 = 0.05; p~0.054) between the geographic groups in the cancer cohort (same colors as in
Figure 1). (B) Neighbor-joining tree of the mean weighted UniFrac distances between the geographic
groups in the cancer cohort. (C) Neighbor-joining tree of the mean weighted UniFrac distances between
the geographic groups in the cancer and non-cancer cohorts.

3.4. Identification of Host Genetic Variation Associated with the Microbiome

Table 1 summarizes the 16 significant miQTLs, 12 in the TCGA European and 4 in the non-diseased
gastric GTEx cohort. No miQTLs were observed at a q-value lower than 0.1 in the TCGA Asian
cohort, most probably due to the low power of the limited Asian sample size. Some of the European
miQTLs identified in this study already had a known interaction with the microbiome. The association
between the DPH1 gene and Corynebacterium was described before—this gene encodes an enzyme
involved in the secondary transformation (diphtamidation) of histidines in elongation factor 2 (EEF2),
which is a target of the diphtheria toxin secreted by Corynebacterium diphtheriae [43]. The association
between the ZC3H12D gene and Lactobacillus and Fusobacterium may be related with the regulation of
the inflammatory response [44]. Other miQTLs found in this study have been previously linked to
microbial features, although not directly associated with specific genera. The TRIM31 gene was found
to inhibit invasive bacteria by the induction of an autolysosome. The downregulation of this gene by
the human cytomegalovirus results in the hyperproliferation of invasive bacteria [45]. Multiple kinesin
motors, including KIF24, are required for the formation of Salmonella-induced filaments during infection
by Salmonella enterica [46]. The other miQTL are novel and need a more extensive investigation.

Interestingly, most of the miQTLs displayed heterogeneity between population groups,
thus explaining in part the microbiome heterogeneity related with human ancestry. The heterogeneity
was inferred from the FST distances between population groups based on the genotype frequencies from
the 1000 Genomes project [38] (Table 1). All miQTLs except rs1014867-FAT4 showed significant genetic
distances between at least two population groups, indicating that these SNPs are very heterogeneous.
An illustrative example of this is the association between the rs2219078 SNP located in the SULT1C3
gene with Acinetobacter (Figure 4), with allele A being positively associated with a higher frequency of
this bacteria (statistically significant in the TCGA European cohort (False discovery rate (FDR) adjusted
p-value of 0.024), and following the same tendency in the TCGA East Asian and GTEx European cohorts).
Homozygous AA are relatively rare in Europe (4.2%) and Africa (8.5%), but very frequent in East Asia
(45.0%). This SNP was also identified as an eQTL (expression quantitative trait loci) in the stomach
(allele A associated with a higher gene expression) by the GTEx project, and the SULT1C3 gene plays a
role in sulfotransferase activity, being involved in the biotransformation of xenobiotics [47]. Curiously,
several Acinetobacter strains are used in environmental and biotechnological applications for the
biodegradation, leaching and removal of several organic and inorganic compounds [48]. The associated
human gene and bacteria may have an additive function in the metabolism of xenobiotics.
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Figure 4. Example of an identified microbiome quantitative trait locus. (A) Worldwide genotype
frequencies of rs2219078 SNP located in the SULT1C3 gene for 1000 Genomes project populations.
(B) Acinetobacter relative abundances of the rs2219078 genotypes in the TCGA European cohort. (C) The
TCGA East Asian cohort. (D) The GTEx European-descendent cohort.
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Table 1. Statistically significant (q-value < 0.15) microbiome quantitative trait loci (miQTLs) in the TCGA-European and GTEx cohorts. No miQTLs were identified in
the Asian cohort.

SNP Genus GeneID p-Value q-Value Genotype Frequency Fst (p-Values)
MAF_EUR MAF_EAS MAF_AFR EUR_AFR EUR_EAS EAS_AFR

TCGA-EUROPE rs1131600 Corynebacterium DPH1 7.97104 × 10−8 0.01501
G|G: 0.028
A|G: 0.252
A|A: 0.720

G|G: 0.004
A|G: 0.105
A|A: 0.891

A|G: 0.020
A|A: 0.980

0.14323
(0.00000 ± 0.0000)

0.04831
(0.00000 ± 0.0000)

0.0359
(0.00000 ± 0.0000)

TCGA-EUROPE rs61997220 Lactobacillus ZC3H12D 3.07635 × 10−7 0.02414 T|T: 0.907
C|T: 0.093 T|T: 1.000 T|T: 0.995

C|T: 0.005
0.04507

(0.00000 ± 0.0000)
0.04582

(0.00000 ± 0.0000)
0.00113

(0.25978 + 0.0048)

TCGA-EUROPE rs9262143 Acinetobacter PPP1R18 5.68970 × 10−7 0.02414
C|C: 0.845
C|T: 0.151
T|T: 0.004

C|C: 1.000 C|C: 0.995
C|T: 0.005

0.08232
(0.00000 ± 0.0000)

0.07868
(0.00000 ± 0.0000)

0.00113
(0.26255 ± 0.0046)

TCGA-EUROPE rs17350674 Cloacibacterium KIF24 5.97391 × 10−7 0.02414
C|C: 0.614
A|A: 0.050
A|C: 0.336

C|C: 0.988
A|A: 0.002
A|C: 0.010

C|C: 0.980
A|C: 0.020

0.21379
(0.00000 ± 0.0000)

0.19977
(0.00000 ± 0.0000)

0
(0.52688 ± 0.0052)

TCGA-EUROPE rs2219078 Acinetobacter SULT1C3 6.40940 × 10−7 0.02414
G|G: 0.658
A|G: 0.300
A|A: 0.042

G|G: 0.097
A|G: 0.452
A|A: 0.450

G|G: 0.472
A|G: 0.443
A|A: 0.085

0.03291
(0.00000 ± 0.0000)

0.38529
(0.00000 ± 0.0000)

0.24086
(0.00000 ± 0.0000)

TCGA-EUROPE rs2523989 Acinetobacter TRIM31 1.03982 × 10−6 0.03263
C|C: 0.775
C|T: 0.209
T|T: 0.016

C|C: 0.905
C|T: 0.093
T|T: 0.002

C|C: 0.903
C|T: 0.095
T|T: 0.002

0.03296
(0.00000 ± 0.0000)

0.03172
(0.00000 ± 0.0000)

0
(0.99990 ± 0.0000)

TCGA-EUROPE rs7198494 Achromobacter C16orf46 1.75767 × 10−6 0.04728
A|A: 0.648
A|G: 0.294
G|G: 0.058

A|A: 0.962
A|G: 0.036
G|G: 0.002

A|A: 0.526
A|G: 0.389
G|G: 0.085

0.01389
(0.00010 ± 0.0001)

0.15724
(0.00000 ± 0.0000)

0.21452
(0.00000 ± 0.0000)

TCGA-EUROPE rs61997220 Fusobacterium ZC3H12D 2.66174 × 10−6 0.05857 T|T: 0.907
C|T: 0.093 T|T: 1.000 T|T: 0.995

C|T: 0.005
0.04507

(0.00000 ± 0.0000)
0.04582

(0.00000 ± 0.0000)
0.00113

(0.25978 ± 0.0048)

TCGA-EUROPE rs62572859 Lactobacillus C9orf129 2.79953 × 10−6 0.05857
C|C: 0.750
C|T: 0.221
T|T: 0.030

C|C: 0.919
C|T: 0.081

C|C: 0.433
C|T: 0.475
T|T: 0.092

0.09115
(0.00000 ± 0.0000)

0.05751
(0.00000 ± 0.0000)

0.22638
(0.00000 ± 0.0000)

TCGA-EUROPE rs1014867 Lactobacillus FAT4 5.53680 × 10−6 0.09807
C|C: 0.895
C|T: 0.103
T|T: 0.002

C|C: 0.885
C|T: 0.109
T|T: 0.006

C|C: 0.865
C|T: 0.126
T|T: 0.009

0.00188
(0.09425 ± 0.0026)

0
(0.56796 ± 0.0055)

0.00016
(0.33403 ± 0.0052)

TCGA-EUROPE rs1782360 Lactobacillus LRBA 6.08310 × 10−6 0.09807
G|G: 0.855
C|C: 0.012
C|G: 0.133

G|G: 0.754
C|C: 0.022
C|G: 0.224

G|G: 0.495
C|C: 0.077
C|G: 0.428

0.13144
(0.00000 ± 0.0000)

0.01505
(0.00040 ± 0.0002)

0.06804
(0.00000 ± 0.0000)

TCGA-EUROPE rs4963198 Corynebacterium LRRC56 6.84488 × 10−6 0.09914
G|G: 0.109
A|A: 0.437
A|G: 0.453

G|G: 0.022
A|A: 0.768
A|G: 0.210

G|G: 0.319
A|A: 0.194
A|G: 0.487

0.09743
(0.00000 ± 0.0000)

0.11482
(0.00000 ± 0.0000)

0.33553
(0.00000 ± 0.0000)
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Table 1. Cont.

SNP Genus GeneID p-Value q-Value Genotype Frequency Fst (p-Values)
MAF_EUR MAF_EAS MAF_AFR EUR_AFR EUR_EAS EAS_AFR

GTEx rs61733127 Streptococcus PHLPP2 3.22625 × 10−11 0.00001
G|G: 0.024
A|G: 0.249
A|A: 0.728

G|G: 0.012
A|G: 0.109
A|A: 0.879

A|G: 0.056
A|A: 0.944

0.09268
(0.00000 ± 0.0000)

0.03325
(0.00000 ± 0.0000)

0.01635
(0.00000 ± 0.0000)

GTEx rs74344827 Streptococcus TAT 9.87962 × 10−8 0.01160
G|G: 0.700
A|G: 0.274
A|A: 0.026

G|G: 0.905
A|G: 0.087
A|A: 0.008

G|G: 0.663
A|G: 0.309
A|A: 0.029

0.00052
(0.22265 ± 0.0035)

0.06188
(0.00000 ± 0.0000)

0.07456
(0.00000 ± 0.0000)

GTEx rs73229817 Corynebacterium PDLIM2 2.60383 × 10−7 0.02039
C|C: 0.901
C|T: 0.097
T|T: 0.002

C|C: 1.000 C|C: 0.998
C|T: 0.002

0.05466
(0.00000 ± 0.0000)

0.0498
(0.00000 ± 0.0000)

0
(0.99990 ± 0.0000)

GTEx rs12807209 Nevskia MUC6 5.79755 × 10−7 0.03405 G|G: 0.998
C|G: 0.002 G|G: 1.000

G|G: 0.750
C|C: 0.018
C|G: 0.231

0.11679
(0.00000 ± 0.0000)

0
(0.50579 ± 0.0054)

0.11913
(0.00000 ± 0.0000)



Microorganisms 2020, 8, 1196 12 of 15

4. Discussion

In this work, we have indirectly characterized the gastric microbiome of gastric cancer patients
and deceased non-cancer individuals from RNASeq data obtained from the TCGA and GTEx
projects, respectively. We demonstrated that the microbiome inference was reliable, even and
rich for genera coverage, after a careful evaluation of batch-contamination by Pseudomonas (extending
the contamination issues already noticed by [40]) and batch-specific microbiome compositions.
Due to the indirect classification from human-based RNASeq data, some inherent limitations were
unavoidable. The samples were collected and processed using human specific protocols lacking
microbial DNA/RNA-free reagents, microbiome-related negative controls, as well as microbial
RNA-specific enrichment steps. RNASeq in both these projects was enriched by poly-A selection.
Polyadenylation was thought to be scarcely present in bacteria [49]. However, in contrast to eukaryotic
cells, polyadenylation is known to not be restricted to the mRNA in bacteria, with 5S [50], 16S and
23S rRNA also being polyadenylated [51]. Given that these bacterial rRNAs were the most abundant
transcripts found in this study, it is not surprising that we were able to identify abundant bacterial
reads in the non-human RNASeq databases.

The microbiome inference in large well-characterized cohorts of samples from diverse populations,
directly in the stomach tissue, confirmed known evidence and revealed new findings. Specifically, our
results confirmed the loss of microbiome diversity in gastric cancer patients [19,20] with a recognizable
structured microbiome profile in the disease condition, and uncovered novel relationships between
bacteria and host ancestry. Within the European-descendant background, a low microbial diversity in
cancer cases was accompanied by a decrease in the abundance of Rhodococcus, Phyllobacterium and
Staphylococcus, which was counterbalanced by the increase in Bacillus, Enterobacter, Fusobacterium and
Sutterella. At the phylum level, a statistically significant difference in Actinobacteria was observed. The
low frequency of non-cancer patients of Asian ancestry in GTEx did not help ascertain whose bacteria
could be candidate cancer biomarkers in this ancestry. Using a non-metric multidimensional scaling
analysis with the UniFrac distance, we verified the significant differences between the European and
East Asian groups of patients, which reinforces the role of geographic origins in shaping the microbiome
composition. In fact, these differences observed between continents may help to explain differences in
the identification of bacterial species associated with gastric cancer in the various studies [17–20].

This mimicking of the microbiome diversity in gastric cancer and host diversity across the world
is, in part, driven by the associations between microbe genera with human SNPs that are heterogeneous
between African, European and Asian populations. Many of these non-synonymous SNPs are located
in genes that play a role in the immune response. Our major observations of microbiome structure
across the globe, driven by the microbiome quantitative trait loci, reinforce the importance of the
microbiome–host binomial. This knowledge is essential for the identification of predictive biomarkers,
by which the host and microbe genetic factors must be taken into account to predict microbiome-related
conditions. Therefore, we propose that the results of microbiome studies should be interpreted
considering the geographic origin and population genetic background of the host.
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