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Ability of prebiotic polysaccharides to activate a
HIF1α-antimicrobial peptide axis determines liver
injury risk in zebrafish
Zhen Zhang1,3, Chao Ran2,3, Qian-wen Ding1, Hong-liang Liu1, Ming-xu Xie1, Ya-lin Yang2, Ya-dong Xie1,

Chen-chen Gao1, Hong-ling Zhang1 & Zhi-gang Zhou1

Natural polysaccharides have received much attention for their ability to ameliorate hepatic

steatosis induced by high-fat diet. However, the potential risks of their use have been less

investigated. Here, we show that the exopolysaccharides (EPS) from Lactobacillus rhamnosus

GG (LGG) and L. casei BL23 reduce hepatic steatosis in zebrafish fed a high-fat diet, while

BL23 EPS, but not LGG EPS, induce liver inflammation and injury. This is due to the fact that

BL23 EPS induces gut microbial dysbiosis, while LGG EPS promotes microbial homeostasis.

We find that LGG EPS, but not BL23 EPS, can directly activate intestinal HIF1α, and increased

HIF1α boosts local antimicrobial peptide expression to facilitate microbial homeostasis,

explaining the distinct compositions of LGG EPS- and BL23 EPS-associated microbiota.

Finally, we find that liver injury risk is not confined to Lactobacillus-derived EPS but extends to

other types of commonly used natural polysaccharides, depending on their HIF1α activation

efficiency.
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Non-alcoholic fatty liver disease (NAFLD), which is char-
acterized by the accumulation of ectopic triacylglycerol in
liver without excess alcohol consumption, has become the

most common liver disorder worldwide, with a prevalence
reaching 80–90% in obese adults in industrialized countries1,2.
Obesity is a recognized risk factor for NAFLD3. Options for
pharmacologic therapy that target NAFLD remain extremely
limited4,5. In the search for potential pharmacological therapy,
the beneficial effects of natural bioactive substances on hepatic
steatosis are gaining increasing attention.

Recent work has indicated the importance of the gut-liver axis
in the development of liver diseases, especially gut microbiota6.
The gut microbiome contributes to NAFLD development7,8.
Moreover, it determines the progression to non-alcoholic stea-
tohepatitis (NASH)9,10, which is characterized by hepatic
inflammation and liver injury. Similarly, gut microbial dysbiosis
is a key contributor to alcohol-induced steatohepatitis and liver
injury11,12. Despite their importance, host factors responsible for
the maintenance and regulation of intestinal homeostasis, parti-
cularly the microbiota, have been less investigated13. Hypoxia-
inducible factor (HIF) has been recognized as an important
regulator of intestinal homeostasis14. Previous studies mostly
focused on the barrier-protective function of intestinal epithelial
HIF. In this regard, intestinal HIF-1 has been proposed as a
therapeutic target in colitis15,16. Recently, HIF-1α has been
implicated to play a role in maintenance of intestinal homeostasis
and the development of liver disease17. Deletion of intestinal
HIF1α has been shown to worsen gut dysbiosis in response to
alcohol exposure and exacerbate alcoholic liver disease17.

Different natural compounds, such as berberine18,
silymarin19,20, and eriocitrin21, have been proven to attenuate
hepatic steatosis. In particular, polysaccharides have received
much attention recently as an anti-hepatic steatosis
component22,23. Polysaccharides are polymeric carbohydrate
macromolecules composed of long chains of monosaccharide
units that are connected by various glycosidic linkages, and have a
wide variety of biological activities24. Natural polysaccharides
have shown appreciable effects on the amelioration of fatty liver
disease, including polysaccharides from Angelica sinensis25, Fuz-
huan Brick Tea26, and Ginkgo biloba leaf27, Ganoderma luci-
dum22, and Pholiota nameko28. In many cases, the
polysaccharides exert functions as prebiotic agents, and conferr
their anti-hepatosteatosis effects by microbiota modulation22,26.
However, apart from the well-reported benefits, dysregulated
fermentation of some prebiotic polysaccharides (fibers) was
reported to induce microbial dysbiosis and hepatic inflammation
and liver cancer in mice29,30, implying risks associated with their
application. Nevertheless, the underlying mechanisms determin-
ing the safety or risk of different polysaccharides when used as
prebiotics are not clear.

Zebrafish (Danio rerio) is a useful vertebrate biomedical
research model with favorable characteristics, i.e. high repro-
ductive rate, transparent embryos and larvae, tractability in for-
ward genetic screens, and genetic similarity to humans31.
Moreover, there is high conservation at the anatomic and mole-
cular levels of the hepatobiliary system in zebrafish compared
with mammals, and several pharmacological, genetic and nutri-
tional models of NAFLD have been established in zebrafish32–34.
In this study, we established models of high-fat diet-induced
hepatic steatosis in both adult and larval zebrafish. In light of the
beneficial effects of Lactobacillus probiotics and the reported
multi-functions associated with the Lactobacillus exopoly-
saccharides (EPS), the natural polysaccharides derived from
bacteria, we tested the anti-hepatic steatosis capacity of the EPS
from two well used probiotic Lactobacillus strains Lactobacillus
rhamnosus GG (LGG) and L. casei BL23 in the zebrafish model.

The structure and monosaccharide composition of the two EPS’s
are different35,36. Our initial purpose was to test the anti-
hepatosteatosis effect of the EPS. Intriguingly, although oral
administration of both LGG EPS and BL23 EPS ameliorated
hepatic steatosis in high-fat diet-fed zebrafish, BL23 EPS induced
liver inflammation and injury. Moreover, the liver injury effect by
BL23 EPS was attributable to dysbiosis of the intestinal micro-
biota, while LGG EPS improved the intestinal homeostasis. Fur-
ther, we observed that the differentiation of the BL23 EPS and
LGG EPS-associated microbiotas was mainly attributable to direct
induction of HIF1a activation through TLR4ba by LGG EPS. In
contrast, BL23 EPS was not able to induce HIF1a activation. Our
results suggest there is potential risk in using natural poly-
saccharides to treat hepatic steatosis, and point to an important
criterion in selecting safe polysaccharides for this purpose.

Results
High-fat diets induce hepatic steatosis in adult and larval
zebrafish. In mammals, high-fat diets have been used to induce
hepatic steatosis37–39. Similarly, we formulated a high-fat diet for
adult and larvae zebrafish (Supplementary Tables 1 and 2). We
observed that high-fat diet feeding for 4 weeks led to a substantial
increase in body weight and abdominal subcutaneous fat accu-
mulation compared with a control group (Fig. 1a, b). Moreover,
high-fat diet-induced higher triglyceride content in zebrafish liver
versus control (Fig. 1c, d), indicating hepatic steatosis. Con-
sistently, the expression of genes involved in lipogenesis in livers
was upregulated by high-fat diet (Fig. 1e). Similarly, the livers of
zebrafish larvae fed a high-fat diet for 7 exhibited more abundant
lipid droplet accumulation versus control (Fig. 1f), with increased
expression of lipogenesis genes (Fig. 1g). Taken together, these
results demonstrate that high-fat diet leads to lipid metabolism
disorders and hepatic steatosis in zebrafish.

EPS from two Lactobacillus strains ameliorate hepatic steatosis.
EPS are ubiquitous components of the cell envelope of lactoba-
cilli40. Our preliminary results indicated that LGG EPS and BL23
EPS can reduce triacylglyceride accumulation in zebrafish liver
cells by inhibiting lipogenesis without inducing inflammation
(Supplementary Fig. 1a–e). We further investigated whether oral
administration of LGG EPS and BL23 EPS can reduce hepatic
steatosis in high-fat diet-fed zebrafish. The results showed that
LGG EPS and BL23 EPS decreased weight gain in high-fat diet-
fed zebrafish at both 0.5 and 1.0% supplementation (Supple-
mentary Fig. 2a). Moreover, lipid droplets accumulation and
triacylglyceride levels were significantly reduced by LGG EPS and
BL23 EPS at the two doses compared with the high-fat diet group
(Fig. 2a, b). Feed intake did not vary significantly among control,
high-fat diet, and the EPS supplemented high-fat diet groups,
indicating that the effects of EPS on body weight and hepatos-
teatosis were not due to reduced feed consumption (Supple-
mentary Fig. 2b). Similarly, LGG EPS and BL23 EPS decreased
lipid droplet accumulation in liver of zebrafish larvae compared
with the high-fat diet group (Fig. 2c, d). Consistent with the
observed phenotypes, LGG EPS and BL23 EPS reverted the high-
fat diet-associated expression of genes involved in lipogenesis and
energy expenditure, to levels comparable to the control diet group
(Fig. 2e–h).

BL23 EPS induces liver inflammation and injury. Compared to
the high-fat diet group, LGG EPS-fed zebrafish were character-
ized by significantly lower serum alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) activity (Fig. 3a, b).
Inflammation was also decreased in the liver of LGG EPS-fed
zebrafish (Fig. 3c). Intriguingly, although BL23 EPS also reduced
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hepatic steatosis as did LGG EPS, the fish fed a BL23 EPS sup-
plemented diet had significantly higher serum ALT and AST
relative to the high-fat diet group (Fig. 3a, b), and the hepatic
inflammation was worsened (Fig. 3c). Moreover, BL23 EPS led to
hepatocyte apoptosis, as shown by TUNEL staining and the
expression of pro-apoptotic and anti-apoptotic factors (Fig. 3d, e).
Together, these results indicate that although both EPS’s ame-
liorated hepatic steatosis in zebrafish fed a high-fat diet, BL23 EPS
led to liver inflammation and injury, while LGG EPS showed liver
protective effect.

The liver injury effect of BL23 EPS is mediated by the intestinal
microbiome. To investigate the underlying mechanism for liver
injury by BL23 EPS, we treated germ-free zebrafish with BL23
EPS and LGG EPS. Neither EPS induced an inflammatory
response (Fig. 4a), and no apoptosis was observed by TUNEL
staining in BL23 EPS-treated germ-free fish (Fig. 4b), indicating
that the liver injury by BL23 EPS was not induced by the EPS
per se.

Previous studies have reported a link between gut microbial
dysbiosis and liver injury11,12,41. We therefore tested whether
the BL23 EPS-induced liver injury was mediated by the
microbiome. We observed that BL23 EPS, but not LGG EPS,
led to intestinal bacterial outgrowth (Fig. 4c). The microbiome
composition was assessed by Illumina sequencing across the
V3–V4 regions of the 16S rRNA gene. Most of the identified
reads from the digesta samples of all the four treatments
belonged to two phyla (Fusobacteria and Proteobacteria)
(Fig. 4d). Both LGG EPS and BL23 EPS altered the microbiota
compared with the high-fat diet group (Supplementary Fig. 3b,
c; Supplementary Table 3). However, the BL23 EPS microbiome
featured increased abundance of Proteobacteria and reduced
abundance of Fusobacteria compared with the high-fat diet
group, while the LGG EPS microbiome revealed an opposite
differentiation relative to BL23 EPS (Supplementary Table 4).
At the genus level, Cetobacterium and Plesiomonas are the most
discriminatory phylotypes differentiating the BL23 EPS- and
LGG EPS-associated microbiotas, which belong to Fusobacteria
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Fig. 1 High-fat diets induced hepatic steatosis in adult and larval zebrafish. a Body weight of adult zebrafish fed with a control diet or high-fat diet (HFD) for
4 weeks. b Representative image of the abdominal subcutaneous fatty tissue histology with H&E staining. The scale bar is 100 μm. c Triacylglyceride (TAG)
content in liver (n= 3, pool of three zebrafish per sample). d Representative liver histology image by H&E staining. The scale bar is 50 μm. e The
expression of lipid metabolism-related genes in liver (n= 5, pool of three zebrafish per sample). f Representative image of whole-mount oil red O staining
and H&E staining of liver sections in larvae fed control diet and high-fat diet. The scale bar is 100 μm. g The expression of lipid metabolism-related genes in
zebrafish larvae. Gene expression was analyzed using cDNA prepared from pools of larvae in each group after seven days of feeding (n= 3, pool of 20
larvae per sample). Significance was established using a two-tailed student’s t-test. Differences are considered significant at P < 0.05 (*) and P < 0.01 (**)
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and Proteobacteria, respectively (Supplementary Table 5,
Supplementary Fig. 3a). We next sought to investigate whether
the liver injury in BL23 EPS-treated zebrafish was driven by the
altered microbiota. We treated BL23 EPS-fed zebrafish with the
nonabsorbable antibiotics Polymyxin B and Neomycin to
deplete the commensal microbes. We observed that antibiotic

treatment significantly reduced the serum ALT and AST levels
in BL23 EPS-fed zebrafish (Fig. 4e, f), indicating that BL23 EPS-
altered microbiota was a major contributor to the liver injury.
To confirm these results, we transferred intestinal microbiota of
adult zebrafish fed control, high-fat diet, or high-fat diet
containing LGG EPS or BL23 EPS for 4 weeks to germ-free
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zebrafish, and tested the ALT and AST levels of the zebrafish
larvae after eliminating the viscera. The results showed that the
ALT and AST phenotypes in germ-free recipients colonized
with microbiota from different groups recapitulated those
observed in the donor zebrafish. LGG EPS microbiota was
associated with lower ALT and AST levels compared with high-
fat diet microbiota, while BL23 EPS microbiota induced higher
ALT and AST levels (Fig. 4g, h). Together, these results
supported the hypothesis that the liver injury effect of BL23
EPS was driven by the microbiome alteration. Consistent with
the liver injury phenotype, the microbiota transfer results

showed that LGG EPS microbiota can reduce inflammation,
while BL23 EPS microbiota enhanced inflammation in the
colonized zebrafish (Fig. 4i). Further, we colonized germ-free
zebrafish with representative Cetobacterium and Plesiomonas
strains isolated from the intestinal content of adult zebrafish.
We observed that the Plesiomonas strain led to significantly
enhanced inflammation compared with the Cetobacterium
strain (Fig. 4j), suggesting that their differential abundance
in BL23 EPS and LGG EPS microbiomes may contribute to
the overall inflammation phenotype associated with the
microbiota.

Fig. 2 LGG EPS and BL23 EPS ameliorated the hepatic steatosis in high-fat diet-fed zebrafish. Adult zebrafish (1-month-old) were fed with the control diet,
HF diet, or HF diet supplemented with 0.5% or 1% EPS for 4 weeks. a Representative liver histology images with oil red O staining and H&E staining. The
scale bar is 50 μm. b Triacylglyceride contents in the liver (n= 3 or 6, pool of three zebrafish per sample). c Representative images of whole-mount oil red
O staining of larvae fed control diet, high-fat diet, or high-fat diet supplemented with 0.5 or 1% EPS for one week. The scale bar is 200 μm. d Quantitative
evaluation of hepatic steatosis in zebrafish larvae fed control diet, high-fat diet, or high-fat diet supplemented with 0.5 or 1% EPS for one week (n= 10).
The ORO images in panel c were converted to 8-bit gray scale, and mean gray value was measured using ImageJ software to quantitatively evaluate
hepatic steatosis. The expression of genes related to lipogenesis (e), energy expenditure (f), in livers as measured by q-PCR (n= 3, pool of three zebrafish
per sample). g, h Immunohistochemical analysis and quantification of hepatic C/EBPα, DGAT2, PPARα, and CPT1 levels, the scale bar is 50 μm. Data were
expressed as the mean ± SEM. Differences are considered significant at P < 0.05 (*) and P < 0.01 (**)
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COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0526-z ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:274 | https://doi.org/10.1038/s42003-019-0526-z | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


These observations suggest that bacterial products translo-
cated form BL23 EPS-altered microbiota promote a signaling
cascade in the liver and induce inflammation and injury. We
therefore tested the expression of important pattern recogni-
tion receptor (PRR) genes in the liver of BL23 EPS-treated

zebrafish, and observed enhanced expression of TLR1 and LBP
(Fig. 5a–c). BL23 EPS can directly induce expression of TLR1
in germ-free zebrafish, with no induction of inflammation and
injury (Supplementary Fig. 3d–f), suggesting that the
TLR1 signaling in the liver of BL23 EPS-treated fish was not
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triggered by transplanted bacterial products. Notably, LBP
expression was not induced by BL23 EPS treatment in either
zebrafish liver cells or germ-free zebrafish (Supplementary
Fig. 3d–f), suggesting that LBP was induced by transplanted
microbial products from the BL23 EPS-altered microbiota. LBP
is a soluble receptor that binds the endotoxin lipopolysacchar-
ide (LPS). This suggests that the LPS translocated from
intestinal lumen contributed to the liver injury effect of BL23
EPS. Consistently, we observed that the LPS level in the serum
and liver of BL23 EPS-fed zebrafish was significantly higher
than in high-fat diet fish (Fig. 5d, e). This is consistent with the
expansion of Proteobacteria in the BL23 EPS-altered micro-
biota, as the phylotypes in this phylum are major LPS
producers.

Differentiation of LGG and BL23 EPS-associated microbiomes
involves a HIF1α-AMP axis. The results above indicated that the
BL23 EPS-altered microbiota, which featured enrichment of
Proteobacteria and reduction of Fusobacteria, contributed to liver
inflammation and injury. We next investigated the mechanism
underlying the opposite differentiation of microbiota associated
with BL23 EPS versus LGG EPS. We firstly supplemented high-fat
diet with the combination of monosaccharides composed of each
EPS, with the amount and molar ratio the same as the corre-
sponding polysaccharides35,36. We observed that after feeding for
3 weeks, the monosaccharide combination of either EPS was not
able to reduce liver triacylglyceride (Fig. 6a), and led to increased
serum ALT/AST and LPS, to levels comparable to that of the
BL23 EPS group (Fig. 6b–d). Moreover, the monosaccharide

Fig. 4 The liver injury effect of BL23 EPS is mediated by the gut microbial dysbiosis. a The expression of genes related to inflammation as measured by q-
PCR in germ-free zebrafish larvae fed with sterile control diet, high-fat diet (HFD), or HFD supplemented with 1.0% BL23 EPS or 1.0% LGG EPS for one
week (n= 4, pool of 20 larvae per sample). b Liver TUNEL staining in germ-free (GF) larvae fed with sterile diets for one week. The scale bar is 50 μm.
c Total number of bacteria (log 16S rRNA gene copies/mg intestinal contents) in adult zebrafish fed with the control diet, HF diet, or HF diet supplemented
with 1.0% BL23 EPS or 1.0% BL23 EPS for 4 weeks. d The relative phyla abundance of the microbiota of adult zebrafish fed with different diets for 4 weeks.
Serum ALT (e) and serum AST (f) in adult zebrafsh fed with the control diet, HF diet, 1.0% BL23 EPS diet or 1.0% BL23 EPS supplemented with
nonabsorbable antibiotics mixture (0.25% Polymyxin B and 0.33% Neomycin) for two weeks. ALT levels (g) and AST levels (h) in GF larvae colonized with
four different gut microbiotas, and fed sterile HFD diets for seven days (n= 4, pool of 20 larvae per sample). ALT and AST levels were assayed in zebrafish
after eliminating the viscera. i The expression of genes related to inflammation as measured by q-PCR in GF larvae colonized with four different gut
microbiotas, and fed sterile HFD diets for seven days (n= 4, pool of 20 larvae per sample). j The expression of genes related to inflammation as measured
by q-PCR in GF larvae fed sterile HFD diets for seven days, and colonized with Cetobacterium YZ1 or Plesiomonas YZ2 for another 24 h (n= 4, pool of 20
larvae per sample). Data are expressed as the mean ± SEM. Graph bars labeled with different letters represent statistically significant results (P < 0.05),
whereas bars with the same letter indicates non-significant differences
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Fig. 5 The liver injury effect of BL23 EPS involved the translocation of intestinal LPS. Adult zebrafish (1-month-old) were fed with control diet, high-fat diet
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genes (b), and cytosolic PRRs (NODs) genes (c) in zebrafish livers as measured by q-PCR (n= 3 or 4, pool of three zebrafish per sample). Serum LPS (d)
and hepatic LPS (e) in zebrafsh (n= 3 or 4, pool of three zebrafish per sample). Data are expressed as the mean ± SEM. Graph bars labelled with different
letters on top represent statistically significant results (P < 0.05), whereas bars with the same letter correspond to results that show no statistically
significant differences
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Fig. 6 The microbial homeostasis associated with LGG EPS is mediated by the induction of AMPs. Adult zebrafish were fed with the HF diet, 1.0 %LGG EPS
diet, 1.0 %BL23 EPS or HF diet supplemented with 1.0% combination of monosaccharides comprised of LGG EPS or BL23 EPS at 1.0% for 4weeks.
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mean ± SEM. Graph bars labeled with different letters on top represent statistically significant results (P < 0.05), whereas bars with the same letter
indicates non-significant differences. HFD, high-fat diet
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combination of both EPS’s altered the microbiota in a way that
resembled that of BL23 EPS, which featured Proteobacteria
enrichment and Fusobacteria reduction (Fig. 6e–g). Additionally,
the monosaccharide combination of both EPS’s led to bacterial
overgrowth, similar to what was observed with BL23 EPS. These
results indicate that the differentiation of LGG EPS and BL23
EPS-associated microbiomes was not due to differences in the
fermentation substrates for the gut bacteria. We therefore hypo-
thesized that the LGG EPS can directly interact with the host,
which depends on its polysaccharide structure integrity, and the
interaction induces some host signaling that maintains microbial
homeostasis.

We next tested whether the mucus from LGG EPS-treated
zebrafish contributed to the microbial homeostasis associated
with the EPS. We observed that administration of LGG EPS-
associated mucus to in vitro culture of BL23 EPS-associated
microbiome led to a shift in the microbial composition toward
the configuration of LGG EPS microbiota (Fig. 6h), suggesting
that intestinal secretions of the LGG EPS group altered the gut
microbiota. We further found LGG EPS significantly induced the
expression of genes related to antimicrobial peptides (AMPs)
compared with either the high-fat diet or BL23 EPS groups.
AMPs were not induced in response to mucin, lysozyme, or
complement component (Fig. 6i). AMPs have been reported to
regulate microbial composition42–44. To investigate whether the
increase of AMP levels was responsible for the microbiota-
reverting effect of LGG EPS-associated mucus, we injected a
mixture of synthetic AMPs, including defb1, defb2, and
hepcidin45, to BL23 EPS-fed zebrafish. Intriguingly, injection of
AMPs changed the BL23 EPS-microbiota toward features
associated with LGG EPS (Fig. 6j), supporting our hypothesis
that the AMPs are the microbiome-modulating effectors
responsible for the microbial homeostasis associated with
LGG EPS.

HIF-1α mediates the effect of LGG EPS on AMP production.
HIF is a master transcription factor regulating a variety of genes
in the intestine, and antimicrobial peptides have been reported to
be positively regulated by HIF-1α46,47. We therefore assessed the
HIF1α expression in the intestine of zebrafish fed different diets.
We observed significantly higher expression of HIF1α in zebrafish
fed LGG EPS, compared with the BL23 EPS and high-fat diet
groups (Fig. 7a–c). To investigate the potential association
between HIF1α signaling and the differentiation of LGG EPS- and
BL23 EPS-microbiota, we took advantage of the foxo3b−/− zeb-
rafish, which has enhanced HIF activity48. We fed wild-type and
foxo3b−/− zebrafish larvae BL23 EPS-supplemented diet for
1 week. Compared with wild-type, the intestinal microbiota of
foxo3b−/− zebrafish featured marked compositional difference
which resembled that associated with LGG EPS, as manifested by
the reduction in bacterial overgrowth (Fig. 7d), the reduction of
Proteobacteria/Plesiomonas, and enrichment of Fusobacteria/
Cetobacterium (Fig. 7e–h). Accordingly, the AMP levels were
significantly increased in the foxo3b−/− zebrafish versus wild-type
(Fig. 7i).

To further confirm the involvement of HIF1α, we injected
YC-1, an inhibitor of HIF, to LGG EPS-fed zebrafish. The
enhancement of HIF expression by LGG EPS was reverted by
YC-1 treatment (Fig. 7j), and the AMP levels were significantly
decreased by the compound (Fig. 7k). Interestingly, the LGG EPS
microbiota shifted toward that associated with BL23 EPS after
YC-1 treatment, with bacterial overgrowth and an expansion of
Proteobacteria (Fig. 7l). Moreover, YC-1 treatment elevated the
level of ALT (Fig. 7m) and AST (Fig. 7n) and increased the
expression of pro-apoptotic factors (Noxa and Puma) (Fig. 7o) in

livers of the LGG EPS supplemented zebrafish. Together, these
results indicated that the differentiation of LGG EPS and BL23
EPS microbiotas involved the HIF1α-AMP axis. While both EPS’s
have the potential to lead to microbial dysbiosis via fermentation
substrates by the gut bacteria in a high-fat diet-fed fish, LGG EPS
can directly interact with the host and stimulate the expression of
HIF1α (Fig. 7p), which induces AMPs and maintains microbial
homeostasis. The BL23 EPS does not have the HIF1α-activation
effect due to structural differences in the polysaccharide, and
leads to microbial dysbiosis characterized by an expansion of
Proteobacteria and liver injury.

Structural basis for the interaction between EPS and the
receptors. We next sought to investigate how LGG EPS activated
HIF1α. We tested the expression of PRRs in the intestine of
zebrafish fed an LGG EPS diet. The expression levels of TLR4ba,
NOD3, and NOD4 were increased (Fig. 8a). Previous studies
indicated that TLR4 signaling can regulate the expression of
HIF149,50. Therefore, we investigated the role of TLR4ba in LGG
EPS induced HIF1α stimulation.

The expression of TLR4ba was decreased by treating germ-free
zebrafish with an in vivo antisense TLR4ba morpholino or with a
control morpholino. Figure 8b shows a substantial reduction in
TLR4 expression with vivo antisense morpholino oligomers.
Knocking down TLR4ba inhibited the induction of Hif1αa and
Hif1αb by LGG EPS (Fig. 8c). These results indicated that the
activation of HIF1α by LGG EPS was mediated by TLR4.

To study the structural determinants in LGG EPS responsible
for TLR4 recognition, LGG EPS was processed with β-(1→
3,4,6)-galactosidase (Sigma, G1288) to remove the branches
(Fig. 8d). We treated germ-free zebrafish with enzyme-treated
EPS, and observed that the treatment reduced LGG EPS-induced
expression of NOD3 and NOD4, with no effect on the expression
of TLR4ba (Fig. 8e). Accordingly, enzyme-treated LGG EPS
maintained its ability to activate HIF1αa and HIF1αb (Fig. 8f).
These results indicate that the main strand of LGG EPS was
responsible for TLR4ba interaction and HIF1 activation.

Butyrate contributes to differentiation of the EPS-associated
microbiota. Short chain fatty acids (SCFA) are important
metabolites of the microbiota. We tested the SCFA levels pro-
duced by BL23 EPS and LGG EPS-associated microbiota. Both
BL23 EPS and LGG EPS increased the acetate and propionate in
the intestinal content compared with the high-fat diet group
(Fig. 9a, b). However, the butyrate and isobutyrate levels were
only increased by LGG EPS, with a reduction seen in the BL23
EPS group compared with the high-fat diet group (Fig. 9c, d).
Consistently, in vitro tests indicated that the representative
Cetobacterium produces significantly more butyrate and iso-
butyrate that the representative Plesiomonas strain (Supplemen-
tary Fig. 4a–d). Butyrate has been reported to stimulate epithelial
metabolism and deplete O2, resulting in lower O2 in the intestinal
microenvironment51. Consistent with this correlation, we
observed reduced partial oxygen pressure in the gut micro-
environment of LGG EPS-treated zebrafish, while the intestinal
mucosa of BL23 EPS was associated with O2 levels higher than
the high-fat diet group (Fig. 9e, f, Supplementary Fig. 4e–h). As
hypoxia may stabilize HIF1α, the higher butyrate production by
the LGG EPS-associated microbiota may further contribute to
microbial homeostasis, while the low butyrate associated with
BL23 EPS supports the dysbiotic state.

The liver injury risk of commonly used polysaccharides. To
assess the liver injury risk of other commonly used prebiotic
polysaccharides, we collected nine natural polysaccharides with
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reported anti-steatosis effects22,25,26,29,52–56. High-fat diet-fed
germ-free zebrafish were treated with nine other natural poly-
saccharides besides LGG EPS and BL23 EPS, and the expression
of HIF1α in each group was tested. Notably, the polysaccharides
can be categorized into two groups based on their HIF1α

activation efficiency. Four polysaccharides (from Ganoderma
lucidum, Angelica sinensis, Hirsutella sinensis, and Laminaria
digitata) enhanced the expression of HIF1α similarly to LGG EPS,
while the other five polysaccharides (from Camellia sinensis,
Guar gum, Lycium chinense, Panax ginseng, and Astragalus
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membranaceus) showed no HIF1α activation effect (Fig. 10a). We
then tested the liver injury risk of the polysaccharides in adult
zebrafish. Intriguingly, the five polysaccharides with no HIF1α
activation activity all led to increased serum AST levels after
4 weeks of feeding (significant difference for CS-, GG-, and LC-
polysaccharides; numerical difference for PG- and AM-poly-
saccharides), indicating liver injury risk (Fig. 10b). In contrast, the
other four polysaccharides that caused HIF1α activation led to
unchanged (for GL-polysaccharides) or significantly decreased
levels of serum AST (for the other three polysaccharides) com-
pared with the high-fat diet group (Fig. 10b). These results sug-
gested that the liver injury risk observed in our study may be
extrapolated to other commonly used prebiotic polysaccharides,
and it is correlated with the HIF1α activation efficiency of the
polysaccharides.

Discussion
In this study, we observed unexpected liver injury by BL23 EPS,
despite its ability to ameliorate hepatic steatosis in zebrafish fed a
high-fat diet. In contrast, the LGG EPS improved liver health as
indicated by lowered inflammation and serum ALT/AST levels.
We further uncovered the mechanisms underlying the differential
phenotypes associated with the two polysaccharides, which
involved opposite differentiation of microbiota and the HIF1α-
AMP axis.

The liver inflammation and injury in the BL23-EPS group
resembles that of other liver diseases, such as alcoholic liver
disease and NASH, except that steatosis was reversed by the EPS
treatment. For both alcoholic liver disease and NASH, the liver
pathology has been associated with gut dysbiosis, and intestinal
decontamination with antibiotics has been reported to reduce
alcoholic liver disease in mice, indicating an causal relationship
between microbial dysbiosis and liver pathology57. Gut microbial
products translocated from the intestinal lumen play important
roles in the liver pathology. The development of alcoholic liver
disease involves gut-derived LPS and TLR4-mediated signaling in
the liver58. Similarly, hepatic TLR2, TLR4, and TLR9 signaling
has been reported to contribute to the pathogenesis of NASH,
with the gut bacterial peptidoglycan, LPS and CpG-containing
DNA as the corresponding ligand, respectively59–61. In our study,
we also observed that liver inflammation and injury was attri-
butable to the dysbiosis in the intestinal microbiota, as supported
by both antibiotic treatment and microbiota-transfer experi-
ments. BL23-EPS-treated zebrafish featured enhanced serum LPS,
which was consistent with induced hepatic expression of
lipopolysaccharide-binding protein. This indicates that the gut
bacterial LPS translocated from the intestinal lumen contributed
to the liver injury. Moreover, we also observed elevated TLR5

expression in the liver of BL23-EPS-treated fish, implying that the
TLR5 agonists from the gut microbiota might also be a con-
tributor to the liver pathology induced by BL23-EPS. Notably,
hepatic inflammation and injury was accompanied by steatosis in
both alcoholic liver disease and NASH. BL23-EPS improved
hepatic steatosis but induced inflammation, which are seemingly
contrasting effects. Similarly with BL23-EPS, guar gum also
induced liver inflammation and injury while improving hepatic
steatosis29. These results indicate that hepatic inflammation and
injury may occur independently of steatosis in some conditions,
suggesting a multifactorial etiology of this symptom.

Hypoxia is an important factor for HIF1α protein stabiliza-
tion14. On top of this, studies have shown that a number of
nonhypoxic stimuli increase HIF-1 in a cell-specific manner, and
some of these increases are equal or greater to that of hypoxic
induction62. However, nonhypoxic induction of HIF-1 in intest-
inal epithelial cells has been rarely reported. The key finding of
this study is that the LGG-EPS can directly induce the expression
of intestinal HIF1α, which maintains microbial homeostasis. To
our knowledge, our results for the first time demonstrated direct
stimulation of the intestinal HIF-1 by prebiotic polysaccharides.
This suggests that the microbiota-modulation effect of prebiotics
not only depends on their fermentation by the gut bacteria, but
also involves their direct interaction with the intestinal mucosa,
which depends on the polysaccharide structure of the prebiotics
as ligands. It is noteworthy that LGG EPS activated HIF1α by
increasing mRNA transcription. This is in contrast to the hypoxic
induction of HIF-1α, which relies on stabilization of HIF-1α
protein. We found that TLR4ba signaling mediated the activation
of HIF1 by LGG EPS, and the interaction of LGG EPS with
TLR4ba was mediated by the main strand of the polysaccharide.
Notably, while research suggests that zebrafish possess two TLR4
components (TLR4ba, TLR4bb), the tlr4ba and tlr4bb genes in
zebrafish are paralogous rather than orthologous to human TLR4,
and they fail to respond to LPS stimulation and subsequently
trigger inflammation63,64. Previous studies have shown that the
ERK (extracellular-signal-regulated kinase) p44/42 MAPK
(ERK1/2)65 and classical diacylglycerol–sensitive forms of protein
kinase C (PKC)66 are involved in the activation of HIF-1 by non-
hypoxic stimuli. In this study, we observed that inhibition of p44/
42 MAPK phosphorylation, but not PKCs, significantly reduced
the LGG EPS-induced expression of HIF-1α mRNA (Supple-
mentary Fig. 5a, b), suggesting that p44/42 MAPK signaling is the
downstream pathway mediating the activation of HIF-1α by LGG
EPS in zebrafish.

The regulation of intestinal microbial homeostasis by the
HIF1α-AMP axis has been implicated previously in the context of
alcoholic liver disease. However, the results were obtained by
in vitro experiments, and no direct relationship between the

Fig. 7 HIF1α-AMP axis contributed to the microbial homeostasis associated with LGG EPS in high-fat diet-fed zebrafish. a The expression of genes related
to hypoxia-inducible factors in the intestines of zebrafish fed with different diets for 4 weeks as measured by q-PCR (n= 6, pool of three zebrafish per
sample). b A representative western blotting showing the expression pattern of Hif1α in the intestines. c Intestinal Hif1α levels evaluated by
immunohistochemical analysis, the scale bar is 50 μm. Foxo3b-null zebrafish larvae (foxo3b−/−) and their wild-type siblings (foxo3b+/+) were fed 1.0%
BL23 EPS diet for 7 days. The total bacteria (d) and the relative bacterial abundance of Proteobacteria (e), Fusobacteria (f), Plesiomonas (g), Cetobacterium
(h) of the microbiota of the foxo3b-null larvae and their wild-type siblings (n= 3, pool of 20 larvae per sample). The expression pattern of genes related to
AMPs i in foxo3b-null larvae and their wild-type siblings as measured by q-PCR (n= 4, pool of 20 larvae per sample). The adult zebrafish fed 1.0% LGG EPS
for 2 weeks received intraperitoneal injection of YC-1 (an HIF-1α inhibitor; APExBIO, B7641) in dimethyl sulfoxide (DMSO) (2 mg/kg) once every 2 days for
another 6 days. The expression of HIF-1α (j), and AMPs (k), in intestines as measured by q-PCR (n= 3 or 4, pool of three zebrafish per sample). l The
number of total bacteria, Proteobacteria, and Fusobacteria in intestinal contents of zebrafish (n= 4 or 5). Serum ALT (m) and serum AST (n) in zebrafsh.
o The expression of apoptotic factors in intestines as measured by q-PCR (n= 4–6, pool of three zebrafish per sample). p The expression of genes related
to hypoxia-inducible factors as measured by q-PCR in germ-free larvae fed with sterile control diet, high-fat diet (HFD), or HFD supplemented with 1.0%
BL23 EPS or LGG EPS for 1 week (n= 4, pool of 20 larvae per sample). Data are expressed as the mean ± SEM. Graph bars labeled with different letters on
top represent statistically significant results (P < 0.05), whereas bars with the same letter indicates non-significant differences
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HIF1α-AMP pathway and the intestinal microbiota was estab-
lished17. Our results show that HIF-1α activation regulates gut
bacterial homeostasis through increasing production of anti-
microbial peptides. The regulation of gut microbiota composition
by AMPs has been reported previously42,43. Moreover, a previous
study indicated that AMPs are the direct factor downstream of

inflammasome signaling maintaining the homeostasis of the
intestinal microbiota, and an aberrant AMP program by
upstream inflammasome deficiency leads to microbial dysbiosis44.
In this study, we observed that a combination of AMPs reversed
the dysbiotic microbiota associated with BL23-EPS, indicating
that the microbial homeostasis associated with LGG-EPS was due
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to the enhanced AMP levels. Antimicrobial peptides defb1 and
IL-37 have been reported to be positively regulated by HIF-
1α46,47. Our results indicated that apart from defb1, defb2 and
hepcidin were also positively correlated with HIF-1α, implying
that they might also be regulated by HIF1α.

We observed lower partial oxygen pressure in the intestinal
microenvironment of LGG-EPS fed zebrafish as compared with
BL23-EPS group. The decreased oxygen level may be due to
higher butyrate level in the intestinal content of LGG-EPS-fed
zebrafish relative to the BL23-EPS group, as butyrate can decrease
epithelial oxygenation51. The intestinal hypoxia induced by
butyrate in LGG-EPS fed zebrafish may improve HIF1α protein
stabilization, which contributes to the maintenance of intestinal
microbiota composition associated with the LGG-EPS. Therefore,
the metabolites of LGG-EPS-associated microbiota may further
support the maintenance of the microbiota by activating the
HIF1α-AMP axis. The supportive role of microbiota-metabolites
to the maintenance of a homeostatic or dysbiotic microbiota has

been reported previously in the context of inflammasome suffi-
ciency/deficiency44, implying that this might be an important
underlying scenario in the regulation of microbiota composition
in different contexts. Furthermore, supplementation of butyrate
in parallel to BL23 EPS ameliorated the dysbiosis (Supplementary
Fig. 6), implying that butyrate may be used as an adjuvant of
prebiotic polysaccharides to avoid the risk of inducing dysbiosis
and liver injury.

Although BL23 EPS induced hepatic and intestinal inflam-
mation (Fig. 3c, Supplementary Fig. 7a, b), it should be noted that
the inflammation was induced by the microbiota. BL23 EPS does
not induce inflammation directly. Rather it exhibited anti-
inflammatory tendency when tested with zebrafish liver cells or
germ-free zebrafish (Fig. 4a, Supplementary Fig. 1e). Our results
indicated that the LGG EPS showed stronger anti-inflammatory
effect than BL23 EPS per se. Interestingly, our results showed that
the LGG EPS can inhibit the NFκB pathway, which may account
for its anti-inflammatory effect. Moreover, this effect was

Fig. 8 The structural basis for the interaction between EPS and the receptors. a The expression of PRRs genes (TLRs, NODs, MBL, CRP, LBP) in the intestines
of zebrafish fed on different diets for 4 weeks as measured by q-PCR (n= 3, pool of three zebrafish per sample). b Anti-TLR4ba vivo-morpholinos
diminished TLR4 levels in zebrafish larvae. The expression of Hif--1α (c), in germ-free (GF) larvae fed sterile high-fat diet (HFD) or 1.0% LGG EPS diet and
treated with vivo TLR4ba morpholino or control morpholino (n= 3 or 4, pool of 20 larvae per sample). d The structure of the repeating unit of the LGG EPS,
and the target sites of β-Galactosidase (Red slash). The expression of PRRs genes (TLR4ba, NOD3, NOD4) (e), and Hif-1α (f), in the GF zebrafish fed with
HFD, 1.0% LGG EPS diet, HF diet supplemented with 1.0% combination of monosaccharides comprised of LGG EPS or β-Galactosidase treated LGG EPS for
1 week (n= 3, pool of 20 larvae per sample). Data are expressed as the mean ± SEM. Graph bars labelled with different letters on top represent statistically
significant results (P < 0.05), whereas bars with the same letter correspond to results that show no statistically significant differences
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Fig. 9 Butyrate further supported the differentiated state of microbiotas associated with LGG EPS or BL23 EPS. Adult zebrafish (1-month-old) were fed with
the control diet, HF diet, or HF diet supplemented with 1.0% BL23 EPS or 1.0% LGG EPS for 4 weeks. Intestinal acetate levels (a), propionate levels (b),
isobutyrate levels (c), butyrate levels (d) in zebrafish fed different diets which was performed with gas chromatography-mass spectrometry (n= 3). e The
O2 concentration in the intestinal mucosa layer of zebrafish fed with different diets for 4 weeks (n= 3). f Representative images of hypoxyprobe
immunostaining in the intestine of zebrafish fed with different diets for 4 weeks. The scale bar is 50 μm. Data are expressed as the mean ± SEM. Graph bars
labelled with different letters on top represent statistically significant results (P < 0.05), whereas bars with the same letter corresponds to results that show
no statistically significant differences
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independent of TLR4a, but probably involved NOD3 and
NOD4 signaling (Supplementary Fig. 7c), which depends on the
branch structure of the polysaccharide (Supplementary Fig. 7d).

Finally, we found that the liver injury risk was not confined to
Lactobacillus-derived EPS, but can be broadly applicable to other
types of commonly used prebiotic polysaccharides. Intriguingly,
our data suggested that the liver injury risk of polysaccharides was
correlated with the HIF1α activation effect. These results support
the hypothesis that HIF1α-AMP axis acts as a key physiological
force maintaining microbial homeostasis against the harmful
fermentation associated with some risk-prone prebiotic poly-
saccharides in the context of a high-fat diet. The liver inflam-
mation and injury effect of guar gum has been reported in mice29.
The consistency of phenotypes of guar gum in zebrafish and mice
indicates that our results are not due to the specificity of
the zebrafish host, and may be extrapolated to mammals. The
unexpected adverse effect of prebiotic polysaccharides (fibers) has
been reported recently30. The findings in this study may provide
some insight in the mechanisms underlying the risk of prebiotic
polysaccharides, and suggest that the HIF1α-AMP axis may be
harnessed as a target to promote safe use of prebiotics.

Methods
EPS extraction and purification. L. rhamnosus ATCC53103 (LGG) and Lacto-
bacillus casei BL23 were purchased from the China Center of Industrial Culture
Collection (Beijing, China) and stationarily cultivated in de Man, Rogosa and
Sharpe (MRS) broth containing 10 g/L of tryptone, 10 g/L of beef extract, 5 g/L of
yeast extract, 10 g/L of glucose, 5 g/L of sodiumacetate·3H2O, 1 g/L of Tween-80,
2 g/L of citric acid ammonium salt dibasic, 0.2 g/L of MgSO4·7H2O, 0.05 g/L of
MnSO4·H2O, and 2 g/L of K2HPO4) at 37 °C for 48 h. Then, the bacterial cells were
harvested in a refrigerated centrifuge (12,000 rpm for 10 min at 4 °C) and washed
thrice with distilled water to remove the MRS broth.

Extraction and purification of LGG EPS was conducted as previously
reported67. Briefly, total EPS were extracted from the washed lactobacilli cells by
mild sonication (40W, 10 min) in a water bath (80 °C) for 4 h. The EPS were
precipitated by gradually adding cold ethanol to 75% (v/v) to the filtered
supernatant. The precipitated EPS material was obtained by centrifugation, washed,
and dissolved in water obtained from an Alpha-Q reagent grade water purification
system (Millipore Co., Milford, MA, USA). The aqueous solution of the EPS was
further treated with Sevag reagent at a final concentration of 25% and incubated for
2 h under gentle agitation. The precipitated proteins were removed by
centrifugation at 5,000 g for 20 min. After centrifugation, the solution containing
EPS was dialyzed (molecular weight cut-off: 10,000 Da) against 5 L of distilled
water for 2 days with three water changes per day. The EPS (8 mg/mL) was further
purified by size-exclusion chromatography (SEC) on a column of Superdex75 (10/
300 GE) (Pharmacia, Uppsala, Sweden) fitted to an AKTA FPLC system
(Pharmacia) and eluted with 0.3 M NaCl (sodium chloride) solution. The amount

of carbohydrate was estimated by the phenol-sulfuric acid method. The EPS
material eluted in the void volume was lyophilized.

Zebrafish liver cell culture and treatments. Zebrafish liver cells (ATCC number
CRL-2643) were cultured in LDF culture medium (50% Leibovitz’s L-15, 35%
Dulbecco’s modified Eagle’s and 15% Ham′s F12 media) supplemented with 5%
fetal bovine serum, 0.5% trout serum, 10 μg/mL bovine insulin, 50 ng/mL mouse
epidermal growth factor, and penicillin/streptomycin. The cells were maintained at
28 °C in a humidified 5% CO2 atmosphere. Upon reaching confluency, the cells
were treated with 100 μM oleic acid (OA) for 24 h to establish a hepatocyte fatty
degeneration model. This model is used to test the effects of EPS on the cellular
levels. The cells were treated with EPS (10 μg/mL) or equal volume of ddH2O after
the cells covered the plate, and cells were harvested 24 h after treatment.

Zebrafish husbandry and experimental diets. All experimental and animal care
procedures were approved by the Feed Research Institute of the Chinese Academy
of Agricultural Sciences Animal Care Committee, under the auspices of the China
Council for Animal Care (assurance No. 2016-AF-FRI-CAAS-001). Fatty liver
models were established by feeding the fish with a high-fat diet. Lard oil and
soybean oil were added to replace an equal quantity of dextrin in the basal diet to
make the high-fat diet (isonitrogenous diet). The content of crude fat of the high-
fat diet and the basal diet (control) for adult fish was 16% and 6%, respectively
(Supplementary Table 1), while it was 20% and 9%, respectively, for the larval
zebrafish (Supplementary Table 2).

Adult zebrafish (1-month-old) were fed with the experimental diets twice a day
(9:00, 17:00) to apparent satiation each time for 4 weeks. Adult zebrafish were
randomly assigned to 2-L tanks in a recirculating system with 18 fish in each tank.
Embryos and larvae were reared in embryo medium at 28 °C to 4 day-
postfertilization (dpf). Zebrafish larvae at 4 dpf were allocated randomly to tanks
with 100 mL of water and 80 larvae per tank. The larvae started to feed at 5 dpf for
7 days. They were fed with the experimental diets twice a day to apparent satiation
each time. Water was replaced by half every day. For EPS supplemention, the high-
fat diet for adult and larval zebrafish were mixed with 0.5% or 1.0% EPS, which
replaced the same amount of zeolite, and then ground to properly-sized particles
(Supplementary Tables 1 and 2).

Histology, immunohistochemistry, and oil Red O staining. For hematoxylin and
eosin (H&E) staining and TUNEL staining, zebrafish liver, intestine, or whole
zebrafish larvae were rinsed with sterilized PBS, fixed in 4% paraformaldehyde in
PBS, and then embedded in paraffin for H&E and TUNEL staining. For immu-
nohistochemistry, formalin-fixed and paraffin-embedded sections were blocked
with endogenous peroxidase (3% H2O2 in 80% methanol) for 20 min. Antigen
retrieval was performed in 10 mM sodium citrate in a microwave for 15 min. After
blocking nonspecific antigen with normal goat serum for 30 min, the slides were
incubated with C/EBPα (Bioworld, BS1384, 1:200 dilution), DGAT2 (Bioworld,
BS60142, 1:300 dilution), PPARα (Bioworld, BS1689, 1:200 dilution), or CPT1
(Bioworld, BS7744, 1:300 dilution) antibody overnight at 4 °C. The slides were then
incubated with biotinylated-labelled secondary antibodies (1:200, GE Health, UK)
for 30 min at room temperature. Visualization was performed using 0.1% 3,3′-
diaminobenzidine (Dako, Denmark) in PBS together with 0.05% H2O2.

For Oil Red O staining of liver, liver sections (10 μm thick) were washed with
PBS and then fixed with 4% paraformaldehyde in PBS for 1 h at room temperature.
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Fig. 10 The liver injury risks of common polysaccharides based on HIF1α. Germ-free (GF) zebrafish larvae fed sterile high-fat diet (HFD) for 1 week and
immersed in gnotobiotic zebrafish medium contained 10 μg/ml different common polysaccharides for another 3 days. The expression of Hif-1αa (a) in GF
larvae (n= 3, pool of 20 larvae per sample). b Serum AST in adult zebrafish fed on HFD, or HFD supplemented with a polysaccharide at 1.0% for 4 weeks
(n= 3 or 4, pool of three zebrafish per sample). Data are expressed as the mean ± SEM. Significant increase compared with HFD is designated as P < 0.05
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The samples were washed with PBS, stained with a filtered Oil Red O (ORO;
Sigma-Aldrich) stock solution (0.5 g ORO in 100 mL of isopropyl alcohol) for
15 min at room temperature, washed with deionized water, counterstained using
H&E, and then mounted. For ORO whole-mount analysis, whole larvae were fixed
with 4% paraformaldehyde, washed with PBS, infiltrated with a graded series of
propylene glycol baths, and stained with 0.5% ORO in 100% propylene glycol
overnight. The stained larvae were washed with decreasing concentrations of
propylene glycol, followed by several rinses with PBS, and stored in 80% propylene
glycol bath. Larvae were defined positive for steatosis when the boundary between
the liver and surrounding tissue is clear. Images were obtained using a microscope
(Leica DMIL-LED, Germany). The images were converted to 8-bit gray scale for
measuring mean gray value using ImageJ software. The intensity of images was
quantified using ImageJ and used to quantitatively evaluate fatty liver hepatocyte
steatosis.

Triacylglycerol assay. Tissues were homogenized in PBS buffer with protease
inhibitors. A chloroform/methanol (2:1) solution was rapidly added to the
homogenate, and the samples were vortexed. The samples were centrifuged at 250 g
for 10 min to separate the phases. The lower lipid-containing phase was carefully
aspirated and allowed to dry in a 70 °C metal bath with nitrogen steam. The dried
lipids were emulsified in chloroform with 5% Triton X-100. Finally, the dried
emulsified lipids with nitrogen gas were reconstituted in distilled water. Tria-
cylglyceride content was measured by enzymatic reaction according to the
instruction manual (Wako Diagnostics, Japan). For cellular triacylglyceride level,
lipids were extracted from zebrafish liver, and dissolved in isopropanol. Tria-
cylglyceride content was normalized to the protein amount of each sample.

Tissue and serum biochemical measurements. Blood samples were collected
from zebrafish as previously described68. Serum ALT and aspartate amino-
transferase AST activities were detected using commercial diagnostic kits (Nanjing
Jiancheng Bioengineering Institute, Jiangsu Province, China) according to the
manufacturer’s instructions. Serum ALT and AST activity was examined at 510 nm
according to the manufacturer’s instructions, and was expressed as enzyme activity
units per liter (U/L). LPS level was determined using the ToxinSensorTM Chro-
mogenic LAL Endotoxin Assay Kit (Genscript, Jiangsu Province, China) according
to the manufacturer’s instructions. The serum level of LPS in adult zebrafish was
expressed as LPS units per milliliter (EU/mL). The hepatic level of LPS in adult
zebrafish was expressed as LPS units per mg liver (EU/g).

Germ-free zebrafish husbandry and gut microbiota transfer. Germ-free zeb-
rafish were prepared following established protocols as described previously69,70.
To determine the direct effect of EPS on germ-free zebrafish, diets for larval
zebrafish were sterilized by irradiation with 20 kGy gamma ray (Institute of Food
Science and Technology, Chinese Academy of Agricultural Sciences, Beijing,
China). Zebrafish larvae hatched from their chorions at 3 dpf, and the yolk was
largely absorbed at 5 dpf. Germ-free zebrafish started to feed at 5 dpf for seven
days. After one week of feeding, the zebrafish were fasted for 12 h before sample
collection for RNA extraction, and for 24 h before sample collection for whole-
mount ORO staining. The transfer of gut microbiota of zebrafish to germ-free
zebrafish was performed according to Rawls et al.70 with minor modifications69,71.
The gut microbiota was added to gnotobiotic zebrafish medium (GZM) containing
3 dpf germ-free zebrafish at a concentration of 106 CFUs/mL GZM. At 5 dpf, the
zebrafish recipients were fed high-fat diet for seven days. The transfer efficiency
was confirmed by DGGE as described elsewhere69. After 1 week of feeding, the
zebrafish were fasted for 12 h followed by sample collection for RNA extraction,
and for 24 h before sample collection for whole-mount Oil Red O staining.

Quantitative PCR analysis. Total RNA was isolated from zebrafish liver and
zebrafish samples using Trizol (Invitrogen). First-strand complementary DNA
synthesis was performed using the Superscript First-Strand Synthesis System.
Quantitative real-time PCR reaction was performed using the SYBR Green
Supermix (TianGen, China) on a Light Cycler 480 system (Roche). The primer
sequences are listed in Supplementary Table 6.

Western blotting. Zebrafish intestines or larval zebrafish were lysed with ice-cold
RIPA lysis buffer mixed with 1 mM PMSF and phosphatase inhibitors (Abcam,
USA). Equivalent amounts of total protein were loaded into a 12% SDS-PAGE for
electrophoresis and then transferred onto a polyvinylidene difluoride (PVDF)
membrane (Millipore, USA). After blocking nonspecific binding with 5% non-fat
dry milk in PBS, the PVDF membrane was incubated with primary antibodies, i.e.,
antibodies against β-actin (CMCTAG, AT0544, 1:1000), HIF-1α (Bioworld,
BS3514, 1:1000), TLR4 (Cell Signaling Technology, 14358S, 1:1000). The blots were
developed using horseradish peroxidase (HRP)-conjugated secondary antibodies
(GE Health, 1:3000) and the ECL-plus system.

Gut microbiota analysis. At the end of the 4-weeks feeding period, the digesta of
adult zebrafish were collected 4 h after the last feeding. The digesta were collected
under aseptic conditions. The digesta samples from the 6 fish were pooled as a

replicate. DNA was extracted from each pooled sample using a Fast DNA SPIN Kit
for Soil (MP Biomedicals), according to the manufacturer’s instructions. The 16s
V3–V4 region was amplified by using the primers U341F (5′-CGGCAAC
GAGCGCAACCC-3′) and U806 (5′-CCATTGTAGCACGTGTGTAGCC-3′). 16s
rRNA gene sequencing was performed at the Realbio Genomics Institute
(Shanghai, China) using the Illumina HiSeq platform. Microbiota sequencing data
in this study are available from the European Nucleotide Archive under accession
number PRJEB25167.

The number of total bacteria or a specific phylotype was quantified by q-PCR.
Primer sets for universal bacteria or specific bacterial groups targeted the 16S rRNA
gene and are listed in Supplementary Table 6. 16S rRNA of each bacterial strain
was cloned into the pLB vector (Tiangen, Beijing, China) according to the
manufacturer’s procedure as a copy number standard. For each q-PCR standard,
the copy number concentration was calculated based on the length of the PCR
product and the average mass of a DNA base pair. For the adult zebrafish, results
were expressed as Log10 copy numbers of bacterial 16S rDNA per milligram of
intestinal contents. For the larval zebrafish, results were expressed as Log10 copy
numbers of bacterial 16S rDNA per larva. For the gut microbiota cultured in vitro,
results were expressed as Log10 copy numbers of bacterial 16S rDNA per ml
medium.

Morpholino knockdown. Vivo-morpholino oligonucleotides (MO) against zebra-
fish tlr4ba were designed and synthesized by Gene-Tools (Philomath, OR). The
sequences of MO used in this study are as follows: tlr4ba MO (translating block-
ing), 5′-GATGCTGCTGAGGTTTCTTCCCATG-3′; and standard control MO, 5′-
CCTCTTACCTCAGTTACAATTTATA-3′. When applying the MO, zebrafish
husbandry and all experimental procedures were the same as earlier described,
except for GZM that contained 100 nmol of tlr4ba MO, or standard control MO
during the entire 1-week treatment72,73.

Short chain fatty acid analysis. Gut content and bacteria culture medium were
collected for short chain fatty acid analysis. Gut content samples were collected
from zebrafish 4 h post the last feeding. The gut contents from 5–6 fish were
pooled. Gut content sample or 1 mL of bacteria culture medium was lyophilized
and resuspended with 0.2 or 1 mL of MeOH, respectively. Samples were mixed
vigorously with sonication for three times with 10 min for each. After sonication,
the samples were centrifuged at 12000 rpm for 10 mins, and the supernatants were
used for GC−MS analysis. GC−MS was performed on a GCMS-QP2010 Ultra
with an autosampler (SHIMADZU) and the Rtx-wax capillary column (60 m,
0.25 mm i.d., 0.25 μm film thickness; SHIMADZU). Oven temperature was pro-
grammed from 60 to 100 °C at 5 °C/min, with a 1 min hold; to 150 °C at 5 °C/min,
with a 5 min hold; to 225 °C at 30 °C/min, with a 20 min hold. Injection of a 2 μL
sample was performed at 230 °C. Helium, at a flow of 1.2 mL·min−1, was the carrier
gas. Electronic impact was recorded at 70 eV. The weight of each lyophilized gut
content sample was recorded for calibration.

Hypoxyprobe staining. Zebrafish fed for 4 weeks were injected with 10 μL of a 10
mg/mL pimonidazole solution (HP7; Hypoxyprobe) for 3 days. Then zebrafish
were anesthetized with tricaine methanesulfonate (MS222) for intestine isolation.
The isolated intestine was fixed in 4% PFA for immunohistochemical analysis.
Sections were blocked in endogenous peroxidase (3% H2O2 in 80% methanol) for
20 min. Antigen retrieval was performed in 10 mM sodium citrate in a microwave
for 15 min. After blocking nonspecific antigen with normal goat serum for 30 min,
the slides were incubated with a primary fluorescein (Dylight549)-conjugated
mouse monoclonal antibody (Mab) directed against pimonidazole protein adducts
antibody overnight at 4 °C. Then the slides were incubated with a secondary goat
anti-mouse Alexa-Fluor 647 (A-21235; Life Technologies) for 30 min at room
temperature74.

Intestinal O2 measurements using microelectrodes. A set of three zebrafish was
used to measure the profiles of O2 at each midgut. Oxygen microelectrodes (OX-25;
Unisense, Aarhus, Denmark) were used for the measurement of O2 concentration
as previously described75. Before use, the electrodes were polarized and calibrated
in water saturated with air, as well as in saturated Na2SO3 solution (zero oxygen
concentration). Before microelectrode measurements, 50 ml of low melting point
agarose consisting of 1% agarose in PBS was cast into a microchamber. A freshly
dissected gut was placed on this layer of agarose, fully extended and immediately
covered with a second layer of molten agarose at 30 °C. Measurements were per-
formed radially starting at the surface of the gut wall (0 μm) through the zebrafish
gut until the tip completely penetrated the whole tissue. All measurements were
carried out at room temperature (25 °C).

Statistics and Reproducibility. The statistical data reported include results from
at least three biological replicates. All results are expressed as the mean ± SEM. All
statistical analyses were performed in GraphPad Prism Version 6 (GraphPad
Software). Comparisons between two groups were analyzed using Student’s t-test,
and comparisons between multiple groups were analyzed using one-way ANOVA
followed by a Duncan’s test. Differences were considered significant at P < 0.05 (*)
and P < 0.01 (**).
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Microbiota sequencing data in this study are available from the European Nucleotide
Archive (ENA) under accession number PRJEB25167. The source data for all figures are
provided as Supplementary Data 1. The authors declare that all other data supporting the
findings of this study are available within the article and its supplementary
information files.
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