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Colorectal cancer (CRC) has been most extensively studied for characterizing genetic 
mutations along its development. However, we still have a poor understanding of CRC 
initiation due to limited measures of its observation and analysis. If we can unveil CRC 
initiation events, we might identify novel prognostic markers and therapeutic targets 
for early cancer detection and prevention. To tackle this problem, we establish the 
early CRC development model and perform transcriptome analysis of its single cell 
RNA-sequencing data. Interestingly, we find two subtypes, fast growing vs. slowly 
growing populations of distinct growth rate and gene signatures, and identify CCDC85B 
as a master regulator that can transform the cellular state of fast growing subtype 
cells into that of slowly growing subtype cells. We  further validate this by in vitro 
experiments and suggest CCDC85B as a novel potential therapeutic target that may 
prevent malignant CRC development by suppressing stemness and uncontrolled 
cell proliferation.

Keywords: colorectal cancer, adenomatous polyposis coli, single cell transcriptomics, gene regulatory network, 
CCDC85B, systems biology, master regulator analysis

INTRODUCTION

Colorectal cancer (CRC) has been most extensively studied for characterizing genetic 
mutations along its development. Loss of adenomatous polyposis coli (APC) is considered 
as the first step of CRC development, which is followed by mutations of other driver 
genes such as KRAS and TP53 (Fearon and Vogelstein, 1990; Powell et  al., 1992). Gene 
alterations of APC abrogate its binding with β-catenin and result in β-catenin release, 
which in turn brings about hyper-activity of the canonical Wnt signaling pathway and 
failure of the cell-cell adhesion regulation (Valenta et  al., 2012). The disruption of APC 
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TABLE 1 | Sequences of siRNAs.

siRNA name Target gene Sense siRNA sequence (5'-3') Antisense siRNA sequence (5'-3')

siCCDC85B-1 CCDC85B GAGGUUCGAAGCUCCUAGU ACUAGGAGCUUCGAACCUC
siCCDC85B-2 CCDC85B GAUUGGCUGUCCUUCCAUA UAUGGAAGGACAGCCAAUC
siPTTG1-1 PTTG1 AGCACCAGAUUGCGCACCU AGGUGCGCAAUCUGGUGCU
siPTTG1-2 PTTG1 GUUGAAUUGCCACCUGUUU AAACAGGUGGCAAUUCAAC

ultimately leads to dysfunction in maintaining the homeostasis 
of cellular regulation and results in more chances of other 
genetic alterations. Our understanding of CRC progression 
has been advanced over last few decades, but we  still do 
not know much about its initiation process starting from 
APC deficiency. This is because there are limited measures 
for observation and analysis of cancer initiation events. If 
we unveil CRC initiation events, we might be able to identify 
novel prognostic markers and therapeutic targets for early 
cancer detection and prevention (Kaufman et  al., 2016).

In order to investigate the cancer initiation process, we need 
to utilize a tool that can monitor instantaneous and delicate 
changes of the transcriptomic landscape during the initiating 
events. Single cell RNA sequencing (scRNA-seq) can fulfill this 
demand by dissecting gene expressions at each individual cellular 
resolution. Several studies on development and oncology 
exemplified that we can capture heterogeneity in cell fate decision 
or drug response using scRNA-seq (Maamar et  al., 2007; 
Huang, 2009; Eldar and Elowitz, 2010; Petropoulos et al., 2016).

As it is not possible to analyze or understand all uncountable 
miniscule changes at an mRNA level captured by scRNA-seq, 
it is essential to find out a few key genes that might be primarily 
responsible for controlling the cell phenotypes. Such genes, 
called “master regulators,” trigger a series of gene regulation 
events which ultimately lead to critical changes in gene regulatory 
networks (Califano and Alvarez, 2017). We  note that recent 
progresses in systems biology show the importance of unraveling 
the gene regulatory network and the causal relationships among 
the gene regulations to properly understand the complex 
biological phenomena (Schmidt et  al., 2005; Kim and Cho, 
2006; Park et  al., 2006; Kim et  al., 2007, 2011; Kwon and 
Cho, 2007; Murray et  al., 2010). Previous studies report that 
master regulator analysis can successfully identify crucial genes 
for maintaining and controlling cancer gene regulatory networks 
(Wang et  al., 2009; Campbell et  al., 2016).

In this study, to understand the earliest events in CRC 
initiation, we  establish an early CRC development model by 
disrupting APC in the normal human colorectal epithelial cell 
with shRNA and conduct scRNA-seq. Interestingly, we  find 
two subtypes, fast growing vs. slowly growing populations of 
distinct growth rate and gene signatures. We  focus on how 
they work differently at the transcriptomic level and conduct 
master regulator analysis. As a result, we  find CCDC85B as 
a master regulator that can transform the cellular state of fast 
growing subtype cells into that of slowly growing subtype cells. 
We  further validate this by in vitro experiments and suggest 
a novel therapeutic strategy that may prevent malignant CRC 
development by suppressing stemness and uncontrolled 
cell proliferation.

MATERIALS AND METHODS

Cell Culture
Immortalized human colon epithelial cells (HCEC), 1CT and 
its wild type APC depleted version, 1CT-A cells are generously 
provided by Jerry W. Shay (University of Texas, Dallas, TX, 
United  States). 1CT and 1CT-A cells are cultured in basal X 
media (DMEM: M199, 4:1; WelGENE Inc., Gyeongsan, Korea), 
supplemented with epidermal growth factor (20 ng·ml−1; Thermo 
Fisher Scientific, Waltham, MA, United  States), hydrocortisone 
(1  mg·ml−1), insulin (10  mg·ml−1), transferrin (2  mg·ml−1), 
sodium selenite (5 nM; all from Sigma, Deisenhofen, Germany), 
2% FBS, and antibiotics (100 units·ml−1 of penicillin, 100 μg·ml−1 
streptomycin, and 0.25 μg·ml−1 of Fungizone; Life Technologies 
Corp., Carlsbad, CA, United States). Cells are cultured at 37°C 
in a humidified atmosphere containing 5% CO2.

Transfection and Transduction of shRNA
For lentivirus production, HEK 293T cells are transfected with 
shRNA targeting APC (shAPC; TRCN0000244294, Sigma) and 
packaging mix (pLP1, pLP2, and pLP/VSVG) using Lipofectamine 
(Invitrogen, Waltham, MA, United  States), according to 
manufacturer’s protocols. Then viral supernatants are collected 
and applied to target cells with polybrene (4  μg·ml−1; Sigma). 
Infected cells are selected with puromycin (500 ng·ml−1; Sigma) 
before harvest. 1CT cells infected with scrambled shRNA (shScr) 
are prepared as control samples, and their culture periods are 
matched with the shAPC samples.

Transfection of siRNA
Control siRNA (siControl), CCDC85B siRNA (siCCDC85B-1 
and siCCDC85B-2), and PTTG1 siRNA (siPTTG1-1 and 
siPTTG1-2) oligonucleotides (BIONEER Corporation, Daejeon, 
South Korea) are synthesized in a sense-antisense duplex form 
(Table  1). Primer sequences for ASCL2, CCDC85B, CCNE1, 
and CCNA2 were referred from OriGene Technologies, Inc. 
(Rockville, MD, United States). For siRNA transfection, mixture 
of siRNAs and RNAiMAX (Thermo Fisher Scientific) with final 
concentration of 2  μM is applied to the target cell on the 
60  mm culture dish, following the manufacturer’s protocol. 
After 24  h, transfected cells are subcultured into 24-well plates 
and 60  mm culture dish for growth curve check and RNA 
harvest, respectively.

Total RNA Extraction and qRT-PCR
Total RNA is extracted from cells by using RNA-spin™ Total 
RNA Extraction Kit (iNtRON Biotechnology, Gyeonggi, South 
Korea), according to the manufacturer’s protocol, and treated 
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with RNase-free DNase I  (Thermo Fisher Scientific) to remove 
contaminating genomic DNA. cDNA is then synthesized from 
total RNA by reverse transcription (RT) using a DiaStar RT 
kit (Solgent, Daejeon, Korea) and the PCR system (Veriti 96-well 
Thermal Cycler; Applied Biosystems, Waltham, MA, 
United  States). Quantitative reverse transcription PCR (qRT-
PCR) analysis is performed using the QuantStudio 5 real-time 
PCR system (Applied Biosystems) with the corresponding 
primers (Table  2).

Bulk RNA Sequencing
RNA sequencing experiments are performed using tools from 
the commercial microarray service Ebiogen, Inc. (Seoul, Korea). 
Total RNA is extracted from 1CT and 1CT-A cells using 
RNA-spin™ (iNtRON) according to the manufacturer’s 
instructions. The isolated RNA is amplified and subjected to 
cDNA microarray (Ebiogen).

Single Cell RNA Sequencing
HCEC-1CT cells infected with shAPC and their matched cells 
infected with shScr are harvested at 3- and 7-days after 
transduction, and stored on ice in PBS before the single cell 
library preparation. scRNA-seq is performed using the 10x 
Genomics Chromium V3 kit, following the manufacturer’s 
protocol (Zheng et  al., 2017). We  align the scRNA-seq dataset 
along hg38 with CellRanger 3.0.0, and process with Seurat 3.1 
R toolkit (Butler et  al., 2018; Stuart et  al., 2019). We  perform 
initial quality control with Seurat, following the standard 
preprocessing workflow for scRNA-seq data (Ilicic et al., 2016). 
Dying cells and multiplets are excluded under the assumption 
that unhealthy cells tend to have either very few genes (<200) 
or low unique feature counts (<500; Supplementary Figure S1 
and Supplementary Table S1).

For batch correction, we use ComBat from surrogate variable 
analysis (sva) package (Johnson et  al., 2007; Leek et  al., 2012) 
on Trimmed Mean of M-values (TMM) normalized data. In 
addition, we  check the consistency of the batch correction 
results by comparing the results of ComBat and the different 
method called canonical correlation analysis (CCA; 
Supplementary Figure S10).

Then we  additionally conduct data imputation using deep 
count autoencoder (DCA) in order to denoise scRNA-seq 

datasets (Eraslan et  al., 2019), and compare the scRNA-seq 
datasets before and after denoising process with DCA 
(Supplementary Figure S8). By using another data imputation 
tool, Adaptively-thresholded Low Rank Approximation (ALRA), 
we  check the consistency of the imputation performance 
(Linderman et  al., 2018; Supplementary Figure S9).

Single cell gene expression levels are scaled, so that the 
mean is equal to zero and the variance is equal to one, and 
the effects of cell cycle heterogeneity are ruled out by cell 
cycle score regression according to Seurat manual.

Clustering of Fast Growth and Slow 
Growth Subpopulations
We perform unsupervised clustering of single cell dataset 
using shared nearest neighbor (SNN) modularity optimization 
using FindClusters function of Seurat with resolution of one. 
These clusters are visualized using uniform manifold 
approximation and projection (UMAP) dimensionality 
reduction (McInnes et  al., 2018).

We assign cell cycle score to each cell using the 
CellCycleScoring function of Seurat, which quantifies G2M 
and S phase scores of single cells based on the scoring strategy 
and the cell cycle marker genes suggested from previous studies 
(Kowalczyk et  al., 2015; Tirosh et  al., 2016). Then, each cell 
is classified as a cell in G2M, S, or G1 phase according to 
its cell cycle score.

The arrest signature score of each cell is quantified with 
AddModuleScore of Seurat along the cell cycle arrest related 
gene sets extracted from MSigDB (Subramanian et  al., 2005; 
Liberzon et  al., 2011, 2015). It is the gene set from Gene 
Ontology (GO) term, GO_REGULATION_OF_CELL_CYCLE_
ARREST, that shows the most general coverage (Ashburner 
et  al., 2000; The Gene Ontology Consortium, 2019). This gene 
set comprises 107 genes related with any process that modulates 
the rate, frequency, or extent of cell cycle arrest, the process 
in which the cell cycle is halted during one of the normal 
phases. Single cells are labeled as “arrested (Arr)” if their arrest 
signature scores are ranked higher than one-fifth of those of 
the whole single cells, otherwise labeled as “non-arrested (NArr).” 
If the ratio of Arr cells to NArr cells in a cluster is over 0.8 
or less 0.2, then the cluster is labeled as “Arr” or “NArr,” 
respectively. A cluster with the average APC expression level 

TABLE 2 | Sequences of qRT-PCR primers.

Target gene Forward primer sequence (5'-3') Reverse primer sequence (5'-3')

β actin AGAGCTACGAGCTGCCTGAG AGCACTGTGTTGGCGTACAG
APC GCCCACGAATTCTAAAACCA TTGTCCTGCCTCGAGAGATT
MYC GTCAAGAGGCGAACACAC TTGGACGGACAGGATGTA
CCDC85B TCATGCAGGAGGTGAATCGGCA AGTCCAGGAAGCAGCAGAGGTC
PTTG1 GGACCCCTCAAACAAAAACA GAGAGGCACTCCACTCAAGG
CCNA2 CTCTACACAGTCACGGGACAAAG CTGTGGTGCTTTGAGGTAGGTC
CCNB1 TTGGTGTCACTGCCATGTTT CCGACCCAGACCAAAGTTTA
CCND1 GCTGCGAAGTGGAAACCATC CCTCCTTCTGCACACATTTGA
CCNE1 TGTGTCCTGGATGTTGACTGCC CTCTATGTCGCACCACTGATACC
LGR5 CTCCCAGGTCTGGTGTGT GAGGTCTAGGTAGGAGGTGAAG
ASCL2 CGCCTACTCGTCGGACGA GCCGCTCGCTCGGCTTCCG
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smaller than the first tertile is labeled as “low APC,” otherwise 
it is labeled as “high APC.” Then a cluster with both “low 
APC” and “Arr” is defined as slow growth subpopulation (SG) 
and clusters with “low APC” and “NArr” are defined as fast 
growth subpopulations (FG).

In addition, we  investigate on differential markers of the 
identified clusters using FindMarkers function in Seurat package 
(Butler et  al., 2018; Stuart et  al., 2019), by setting log fold 
change threshold to 0.25 (Supplementary Table S3). We  also 
characterize the cell type change of shAPC single cell RNA-seq 
samples with differentially expressed genes (DEGs) between 
1CT and 1CT-A to examine whether there is any new cell 
type appeared, but no distinctive patterns are observed. The 
DEGs between 1CT and 1CT-A are determined with two-fold 
change and 0.01 cutoff of value of p using two-tailed t-test.

Characterization of Slow Growth 
Subpopulation
Apoptosis signature scores of SG cells are measured in the 
same way as the arrest signature score described in “Clustering 
of Fast Growth and Slow Growth Subpopulation” section, 
according to the cell apoptosis related gene set, GO_
EXECUTION_PHASE_OF_APOPTOSIS (Ashburner et al., 2000; 
The Gene Ontology Consortium, 2019).

Stemness signature scores of SG cells are quantified using 
TCGAanalyze_Stemness function provided by TCGAbiolinks 
R toolkit, which generates mRNAsi stemness index described 
in the previous study (Malta et al., 2018). The stemness signature 
used here is PCBC_stemSig which is the default stemness 
signature obtained using the data from Progenitor Cell Biology 
Consortium (PCBC). We analyze whether there are subclusters 
within FG or SG along with the signature score, but the groups 
along with signatures are not clearly discriminated in the 
activity inference (Supplementary Figure S7).

Protein Activity Inference Using VIPER
meta-Virtual Inference of Protein-activity by Enriched Regulon 
(metaVIPER) analysis is conducted to investigate the master 
regulators which control the fate determination of FG and SG 
(Alvarez et  al., 2016). Since the single cell dataset lacks a 
tissue context, we use here metaVIPER which infers a regulatory 
network without tissue-specific regulatory information (Ding 
et  al., 2018). First, the network of CRC cell is inferred using 
the patient expression dataset obtained from The Cancer Genome 
Atlas (TCGA) by the RTN package (Fletcher et al., 2013; Castro 
et  al., 2016). Then, metaVIPER analysis is performed upon 
this CRC network with inputs composed of those genes of 
interest. The input gene lists used here are the list of DEGs 
between FG and SG (1.5-fold change, p  <  0.01), and regulon 
lists generated by single-cell regulatory network inference and 
clustering (SCENIC).

Reconstruction of Gene Regulatory 
Networks Using SCENIC
Single-cell regulatory network inference and clustering analysis 
is performed to generate the gene regulatory networks of SG 

and FG as described in the original paper using pySCENIC 
version 0.9.19 (Aibar et  al., 2017). The corresponding auxiliary 
datasets used for SCENIC analysis are human cisTarget of 
100  bp down, 500  bp up, and 10  kb up and down with the 
genome version of hg38, human TF binding motif provided 
by cisTargetDB of version 9, and the list of curated human 
TF comprising 1,390 genes. The resulting regulon lists are 
collected and used for the metaVIPER analysis to compute 
the activity difference between SG and FG.

Selection of Targets
Target candidates generated from metaVIPER are filtered by 
t-test between SG and FG (p < 0.01). Then hierarchical clustering 
is performed with these genes to select a gene group 
downregulated in SG. The candidates are ranked along with 
the difference of average activity and expression level between 
SG and FG. The candidates of the top largest difference are 
selected for the next step analysis. At this point, since the 
expression level shows less clear discrimination between SG 
and FG, the threshold for expression difference is set to 
be  one-third while that for activity difference is set to 
be  one-sixth.

Next, the filtered target candidates are screened by how 
they are closely related to APC under the rationale that the 
target should cover the effect of APC in order to keep SG. 
Therefore, we investigate the shortest path length between APC 
and the target candidate by using the input list comprising 
APC, CTNNB1, WNT, candidate itself and its downstream 
target gene list produced by SCENIC in STRING DB version 
11 (Szklarczyk et  al., 2019). In addition, how much target 
genes a candidate shares with APC is quantified from the 
gene regulatory network inferred from CRC patients in TCGA 
database described in “Protein Activity Inference Using VIPER” 
section.

Then, interactions within target candidates are explored by 
MINDy to reconstruct a network composed of candidate TFs 
and their modulators (Wang et  al., 2009). The most densely 
connected TF with others is considered as the most important 
master regulator.

Networks are visualized using Cytoscape version 3.7.1 
(Shannon et  al., 2003).

RESULTS

Slowly Growing and Fast Growing 
Subpopulations Are Found From the 
scRNA-seq Dataset of APC-Deficient 
Normal Colon Epithelial Cells
In order to investigate complex events occurring during the 
cancer initiation, we establish an early CRC development model, 
perform scRNA-seq, and analyze the scRNA-seq dataset 
(Figure  1). scRNA-seq is conducted at 3- and 7-days after 
transduction of shAPC or shScr on HCEC-1CT (1CT) cells. 
We  examine the relative gene expression levels of APC and 
its downstream targets by performing qRT-PCR of remaining 

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Choi et al. Cell-Fate Transition in Colon-Cancer Development

Frontiers in Genetics | www.frontiersin.org 5 October 2020 | Volume 11 | Article 570546

FIGURE 1 | The scheme of single cell RNA-sequencing (scRNA-seq) experiment and analysis. scRNA-seq experiment and analysis comprise five steps: 
single cell experiment, preprocessing, clustering, interaction inference, and in vitro validation. Samples for scRNA-seq are prepared by transduction of shRNA 
targeting APC (shAPC) or scrambled shRNA (shScr) in HCEC-1CT cells, and scRNA-seq is performed using 10x chromium platform. Then we take 
preprocessing steps such as alignment, initial quality control, and data imputation. The single cell data points are clustered, and each cluster is scored 
according to gene signatures. Then, interactions within distinct clusters are inferred using Virtual Inference of Protein-activity by Enriched Regulon (VIPER) 
and single-cell regulatory network inference and clustering (SCENIC) to produce master regulators for the clusters. These master regulators are validated 
using siRNA transfection in 1CT-A cells.
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FIGURE 2 | Clustering of slow growth and fast growth subpopulation in scRNA-seq dataset. (A) Relative adenomatous polyposis coli (APC) gene 
expression of single cell samples in quantitative reverse transcription PCR (qRT-PCR). (B) APC gene expression of single cell samples in scRNA-seq dataset. 
(C) Growth curve of HCEC-1CT with shScr and shAPC transduction during the short initial period of time (~7 days after transduction). The shAPC samples 
grow slightly slower than shScr samples. (D) Growth rate of HCEC-1CT with shScr and shAPC transduction (16 days after transduction). The shAPC 
samples grow faster than shScr samples. Distribution of arrest signature after APC knockdown (E) at day 3 scRNA-seq dataset and (F) at day 7 scRNA-
seqe dataset. (G) Unsupervised clustering of scRNA-seq dataset. (H) APC gene expression level of scRNA-seq dataset. (I) Binarized arrest signature score 
of scRNA-seq dataset. (J) Cluster labels of scRNA-seq dataset. The criteria are designated to each cluster according to the combination of the APC level 
and arrest signature score: HFG for APC High and Fast Growth; LFG for APC Low and Fast Growth; LSG for APC Low and Slow Growth; and None for the 
remainders.
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cells after single cell library preparation (Figure  2A and 
Supplementary Figure S2A), as well as by investigating the 
expression levels from scRNA-seq (Figure 2B and Supplementary 
Figure S2B). We  confirm that the level of APC is dropped 
to at least 50% in shAPC samples compared to shScr samples 
in both bulk and single cell data.

Interestingly, we find that APC knockdown of 1CT decreases 
the cell growth mildly during a short initial period of time 
(about 7  days elapsed after shAPC transduction; Figure  2C) 
but eventually increases the cell growth at a later time (16 days 
elapsed after shAPC transduction; Figure 2D). This relationship 
between depletion of APC and the relatively slow cell growth 
is partially supported by a previous study reporting that APC 
loss drives the growth arrest or senescence program in the 
premalignant renal tumor (Cole et  al., 2010). Since this trend 
is not observed in bulk qRT-PCR results (Figure 2C), we assume 
that it might be  originated from rare and hard-to-observe 
events during CRC initiation.

To check out this assumption, we  initially analyze changes 
in the arrest signature score between APC deficient cells and 
others, and find that the arrest signature score is increased 
in shAPC samples compared to that of shScr samples 
(Figures  2E,F and Supplementary Figure S3). This shift of 
the arrest signature score appears in both day3 and day7 
samples, and becomes clearer in day 7 samples.

In order to figure out the source of driving this increased 
arrest signature in APC downregulated cells, we  investigate 
the characteristics of clusters in shAPC single cell samples by 
assuming that there might be  a subpopulation responsible for 
this phenomenon. Eleven clusters are identified and labeled 
according to four criteria (HFG for APC High and Fast Growth; 
LFG for APC Low and Fast Growth; LSG for APC Low and 
Slow Growth; and None for the remainders) based on arrest 
signature and APC level (Figures  2G–J and Supplementary 
Table S2). There are one cluster of HFG (Cluster 7), three 
clusters of LFG (Clusters 2, 5, and 8), and one cluster of LSG 
(Cluster 9). It is remarkable that the population of LSG is 
about one-sixth of LFG population, which is the reason why 
bulk analysis could not capture the characteristics originated 
from LSG (Supplementary Table S4 and Supplementary 
Figure S2A). Since our interest lies on the cells affected by 
APC downregulation, we exclude the HFG cluster in downstream 
analysis and take only LFG and LSG for further analysis. The 
labels of LFG and LSG are shortened hereafter as FG (Fast 
Growth) and SG (Slow Growth), respectively.

SG and FG Have Different Phenotypical 
Characteristics and Gene Regulatory 
Networks
We further examine the characteristics of SG and FG to see 
whether they actually differ in phenotypical biological processes 
such as apoptosis and stemness besides the arrest signature. 
As a result, we  find that SG has a higher apoptosis signature 
and a lower stemness signature than FG (Figure  3A and 
Supplementary Figure S4), implying that SG has a fate to go 
through apoptosis without developing further malignancy.

Since SG is assumed to eventually diminish while FG is 
to progress into advanced cancer, we perform master regulator 
analysis to identify transcription factors that can drive FG to 
SG such that the majority of APC deficient cells undergo 
apoptosis. We  perform metaVIPER (Alvarez et  al., 2016; Ding 
et  al., 2018) analysis with 848 DEGs between 1CT and its 
wild type APC depleted version, HCEC-1CT-A (1CT-A), and, 
as a result, we  find 412 master regulators present in either 
SG or FG.

For further master regulator analysis, we  examine the gene 
regulatory networks of FG and SG using SCENIC (Aibar et al., 
2017) in order to determine whether the two subpopulations 
have differently organized gene regulation structures. Here, 
we  define SG regulons and FG regulons as those genes shared 
by both regulons inferred from SCENIC and the master regulators 
found from DEG metaVIPER. It turns out that FG regulons 
comprise seven transcription factors such as E2F7, FOXN2, 
TFAP4, FOXK2, NFIX, RARA, and HMGA1 (Figure  3B), 
whereas SG regulons comprise nine transcription factors such 
as ARNTL2, YBX1, ZNF513, HINFP, PPARG, TEF, TEAD4, 
ZNF766, and NR1D1 (Figure  3C).

We expand the list of regulons up to 1,411 genes by merging 
SG regulons, FG regulons, and their target genes. Then, 
we  perform metaVIPER again with this list of regulons to 
find out the master regulators that can drive FG into SG 
(Figure  3D). Genes downregulated in SG with statistical 
significance (two-tailed t-test, p  <  0.05) are taken and they 
are filtered again according to the level of difference in their 
expressions and activities across SG and FG (Figures  4A,B).

CCDC85B and PTTG1 Are the Most 
Important Master Regulators Responsible 
for the Difference Between SG and FG
In order to narrow down the final targets, we  examine the 
interactions between APC and target candidates or within target 
candidates (Figures  4A,B). First, the shortest path lengths 
between candidates and APC are investigated using STRING 
DB (Szklarczyk et  al., 2019), resulting in three groups of genes 
which have any connection to APC: HDAC2, RUVBL1, and 
RUVBL2 for a length of two; CCDC85B, ELOB, ELOC, ILF2, 
PFN1, and PTTG1 for a length of three; DNTTIP2 and PA2G4 
for a length of four (Figure  4C). In addition to the shortest 
path lengths, we investigate the number of genes which candidates 
share with APC, and CCDC85B is found to be  one of the 
most densely APC regulon sharing genes (Figure  4D).

Since HDAC2 is known to have many redundant functions, 
it is classified as a less attractive marker for early cancer 
development (Jurkin et  al., 2011). Considering that 1CT cell 
line has hTERT manipulation, genes related with telomerase 
such as RUVBL1 and RUVBL2 might be  screened as 1CT 
context specific targets. Therefore, the genes with the length 
of three are considered as more promising targets instead of 
those with the length of two, and their interactions via 
modulators are probed using Modulator Inference by Network 
Dynamics (MINDy; Wang et al., 2009; Figure 4E). As a result, 
we  find that only CCDC85B and PTTG1 have a direct 
cross-modulation relationship among six candidate genes.  
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Assuming that tightly bound master regulators are more likely 
to control the biological process that is distinct in each of 
SG and FG, we  conclude that CCDC85B and PTTG1 can 
be  the final target candidates.

Since CCDC85B and APC share 124 genes (Figure  4F) 
and their shared genes are participants of essential biological 

processes such as regulation of macromolecule biosynthetic 
process and regulation of RNA metabolic (Supplementary 
Table S5), we  select CCDC85B as a primary target candidate.

To validate that CCDC85B and PTTG1 are relevant with 
the characteristics of SG, the correlation between their expressions 
or activities and the apoptosis or arrest signature are further 

A

B

D

C

FIGURE 3 | Differently organized gene regulatory networks of slow growth subpopulation (SG) and fast growth subpopulation (FG). (A) Apoptosis and stemness 
signature scores of SG and FG. Gene regulatory networks of (B) FG and (C) SG. (D) Master regulator analysis heatmap for SG and FG. SG and FG have different 
patterns of master regulator expressions.
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investigated (Supplementary Figures S5, S6). Both activity and 
expression of CCDC85B have a negative correlation with arrest 
and apoptosis signature scores, implying that its downregulation 

might slow down the cell cycle. The relationship of the expression 
or activity of PTTG1 and the score of apoptosis or arrest is 
similar to that of CCDC85B.

A

B

C

E F

D

FIGURE 4 | Prioritization of target candidates according to interactions with APC and the interactions among the candidates. (A) Gene expression levels and (B) 
protein activity levels of target candidates. (C) The shortest path length from each target candidate to APC. (D) Ratio of shared regulons between target candidates 
and APC. (E) Modulatory interactions within six target candidates. (F) Shared target genes of CCDC85B and APC.
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A

E F

B C

D

FIGURE 5 | Growth curve and gene expression level after CCDC85B or PTTG1 interference in 1CT-A cells. Growth rate of 1CT-A cells after interfering with (A,C) 
CCDC85B or (B,D) PTTG1. Relative gene expression levels of 1CT-A cells after interfering with (E) CCDC85B or (F) PTTG1.

In vitro Knockdown of CCDC85B Shows 
Significant Influences on Both Stemness and 
Cell Cycle as Predicted by Network Analysis
To validate whether the candidate targets can actually interrupt 
cancer progression, we perform in vitro knockdown of CCDC85B 
and PTTG1 using siRNA and examine the changes of the 
growth rate and transcriptomic levels. The cell growth rate of 
1CT-A is dramatically decreased with the transfection of siRNA 
targeting CCDC85B (siCCDC85B; Figures  5A,C). The relative 
mRNA levels of APC and MYC are not affected by siCCDC85B 
transfection, whereas those of CCDC85B and PTTG1 are 
decreased a lot (Figure  5E). We  investigate the changes in 
the level of various cyclins to figure out which cyclins CCDC85B 
has affected. Since siCCDC85B decreased the relative mRNA 
levels of Cyclin A2 and Cyclin B1, we can infer that CCDC85B 

might act on G2/M phase (Figure 5E). Interestingly, it coincides 
with the cell phase where the majority of SG stays in our 
single cell data (Supplementary Table S2).

Next, we  examine the effects of PTTG1 interference using 
siRNA (siPTTG1) in 1CT-A on cell cycle and stemness since 
PTTG1 is considered to function with CCDC85B according 
to MINDy analysis. The cell cycle is arrested by siPTTG1 
transfection, and the primarily affected cyclins are Cyclin A2 
and Cyclin B1 as in the case with the siCCDC85B results 
(Figures  5B,D). siPTTG1 transfection reduces only PTTG1 
significantly not CCDC85B, whereas siCCDC85B transfection 
reduces the level of both CCDC85B and PTTG1. We  need to 
note that stemness markers for colon cells such as LGR5 and 
ASCL2 show a non-significant change when PTTG1 is perturbed 
unlike CCDC85B perturbation experimental results (Figure 5F).
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DISCUSSION

In this study, we investigate master regulators the downregulation 
of which can lead to suppression of early CRC progression by 
analyzing scRNA-seq data. We establish the early CRC development 
model by interfering with APC using shRNA in normal colon 
epithelial cells, 1CT, and then we  conduct scRNA-seq to capture 
small and heterogeneous changes that occur during the earliest 
events in CRC initiation. Since increment of arrest signature 
after APC downregulation is observed, we  assume that there 
might be  subpopulations responsible for this shift. We  find out 
two subpopulations with different growth rates, and define one 
subpopulation with a relatively slow cell cycle as the slow growth 
subpopulation (SG) and the other with a relatively fast cell cycle 
as the fast growth subpopulation (FG). Through further analysis, 
we  find that SG and FG differ in their organization of gene 
regulatory networks, as well as cell growth rates. Interestingly, 
SG has a low stemness signature and a high apoptosis signature, 
whereas FG has a high stemness signature and a low apoptosis 
signature. Although there is no direct experimental evidence 
presented in this study, it is highly likely that SG eventually 
goes through apoptosis instead of developing malignancy by 
acquiring stemness contrasting to the opposite fate of FG. Hence, 
we  presume that transforming the FG into the SG might be  a 
useful strategy of restraining early CRC development as it pursues 
diminishing the cell population of a malignant fate.

From the master regulator analysis, we  identify CCDC85B and 
PTTG1 as the two most promising master regulators that can 
discriminate SG and FG and validate that both can lower cell 
growth rates by knockdown experiments using siRNA. In particular, 
knockdown of CCDC85B lowers the expression level of stemness 
markers such as ASCL2 and LGR5  in addition to the level of 
cyclins, whereas knockdown of PTTG1 lowers only the expression 
level of cyclins. Both CCDC85B and PTTG1 affect Cyclin A2 
and Cyclin B1, which are known to act at G2/M phase. This 
might be  a predictable result since PTTG1 is previously reported 
to act as a master regulator that controls the cell cycle at G2/M 
phase (Quereda and Malumbres, 2009; Liang et  al., 2011). It is 
noteworthy that HDAC2 is one of the differential master regulators 
between SG and FG besides CCDC85B and PTTG1, since it 
implies that chromatin regulation plays a role in the discrimination 
of SG and FG. Considering that APC is known for its contribution 
in the chromosomal instability seen in many colon cancer cells, 
it seems natural for chromatin regulation to appear as one of 
the controlling mechanism of the earliest events of cancer 
development. A further study on this relationship between chromatin 
regulation and characteristics of SG and FG would add more 
value to the understanding on the earliest events in CRC initiation.

We infer that CCDC85B regulates stemness and cell cycle 
via β-catenin and PTTG1, respectively, based on literature 
survey and our own experiments. It is known that CCDC85B 
is overexpressed in the tumor sample of non-small cell lung 
cancer patients and that CCDC85B takes a crucial part in 
activation of β-catenin (Feng et  al., 2019). Therefore, we  can 
infer the decreased level of colon epithelial stemness markers 
after CCDC85B knockdown might be a result of the decreased 
active β-catenin induced by CCDC85B knockdown.

We show that CCDC85B knockdown decreases the relative 
mRNA expression levels of both CCDC85B and PTTG1, and 
that CCDC85B and PTTG1 has similar effects on the identical 
cell cyclins such as Cyclin A2 and Cyclin B1. Thus, we  can 
infer that CCDC85B affects cell cyclins through PTTG1.

In summary, we  suggest CCDC85B as a novel potential 
therapeutic target for restraining early CRC progression by 
lowering both the cell growth rate and stemness through the 
regulation of PTTG1 and β-catenin.
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