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Unconstrained Vital Sign 
Monitoring System Using an Aortic 
Pulse Wave Sensor
Naoki Hagiyama   1, Harutoyo Hirano   2, Akihisa Mito1, Zu Soh   3, Etsunori Fujita4, 
Yumi Ogura4, Shigehiko Kaneko5, Ryuji Nakamura   6, Noboru Saeki   6, Masashi Kawamoto6, 
Masao Yoshizumi7 & Toshio Tsuji   3*

This paper proposes a novel unconstrained monitoring system that measures heart and respiratory 
rates and evaluates autonomic nervous activity based on heart rate variability. The proposed system 
measures the aortic pulse waves (APWs) of a patient via an APW sensor that comprises a single 
microphone integrated into a mattress. Vital signs (i.e., heart rate, respiratory rate) and autonomic 
nervous activity were analyzed using the measured APWs. In an experiment with supine and seated 
participants, vital signs calculated by the proposed system were compared with vital signs measured 
with commercial devices, and we obtained the correlations of r > 0.8 for the heart rates, r > 0.7 for 
the respiratory rates, and r > 0.8 for the heart rate variability indices. These results indicate that 
the proposed system can produce accurate vital sign measurements. In addition, we performed the 
experiment of image stimulus presentation and explored the relationships between the self-reported 
psychological states evoked by the stimulus and the measured vital signs. The results indicated that 
vital signs reflect psychological states. In conclusion, the proposed system demonstrated its ability to 
monitor health conditions by actions as simple as sitting or lying on the APW sensor.

In 2013, 25% of the population of Japan was aged 65 or older, and it is expected to exceed 30% in 20251. This rapid 
increase in the aging population increases the need for the daily monitoring of the health conditions of elderly 
and bedridden patients. Numerous researchers reported that monitoring vital signs such as heart rate, heart rate 
variability (HRV) indices2, and respiratory rate during daily life is effective for the early detection of disease3–5. 
This indicates the usefulness of home care systems that monitor heart rate, respiratory rate, and HRV indices.

To this end, wearable devices were developed to facilitate the measurement of vital signs such as heart rate and 
respiratory rate, and to monitor acute deterioration6–8. However, most of these devices require the use of sensors 
directly attached to the body, which induces stress during long-term measurement.

Therefore, unconstrained health monitoring methods have been proposed to solve the above issue9–17. Systems 
that embedded capacitive electrodes9–12 and microwave radar13,14 in locations such as chairs and beds enabled 
continuous heart monitoring in daily life. Pulse waves have been extracted with high accuracy from the change in 
the brightness of images for human skin owing to advances in photonics technology17. Some studies also reported 
that HRV indices can be calculated using the cardiovascular blood volume pulse extracted from recorded video 
images of human skin15,16. These previous systems could measure vital signs with minimal burden on users. 
However, the highest sampling rate of the video analysis system (200 Hz)14–16 was below the recommended sam-
pling rate (over 250 Hz) for accurately calculating HRV indices.
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We thus focused on an aortic pulse wave (APW) sensor with 1000 Hz sampling frequency that was previ-
ously fabricated by our research group18–20. The APW sensor is integrated into a mattress constructed using 
3D-NET19,21, a fabric that can simulate the mechanical characteristics of human muscle. As a result, the mattress 
can appropriately distribute the body weight, and thus, prevent decubitus. The sensor includes a capacitor-type 
microphone and an intrinsic oscillator, such that aortic pulse waves resonated by the oscillator are measured by 
the microphone. Measured aortic pulse waves are considered to contain cardiac, vascular, and respiratory infor-
mation20; however, their extraction algorithms have not been established.

Against this background, this paper presents a novel algorithm for extracting the indices related to HRV and 
respiratory rate; additionally, artefacts caused by body movements are removed using mechanical and digital 
filters. To verify the accuracy of the proposed algorithm with both supine and seated patients, we compared the 
extracted indices against measurements obtained using commercially available instruments. Further, we per-
formed image simulation experiments to test whether the extracted indices could be used for evaluating psycho-
logical conditions.

Materials and Methods
Figure 1(a) shows an overview of the proposed system, consisting of a measurement component that measures 
APW, a signal processing component that extracts vital signs from measured APWs, and a display component 
that displays extracted results. Study participants are in a supine or sitting position while their APWs are meas-
ured with the APW sensor. The details of the proposed system are described below.

APW sensor.  Figure 1(b) shows an overview of the APW sensor used in the measurement component. The 
APW sensor includes a capacitor-type microphone sensor and consists of three layers. The first and third layers 
are constructed using 3D-NET, a three-dimensional solid knitted fabric19,21. The thicknesses of these layers are 
10 and 7 mm, respectively. 3D-NET has mechanical characteristics similar to those of human muscle. It deforms 
significantly when local pressure is applied, and resists surface deformation when widespread pressure is applied; 
thus, it reduces the burden on the peripheral circulatory system. The pile density of the third layer is higher than 
that of the first layer, which allows APWs to be measured without causing discomfort to the patient. The sec-
ond layer consists of a seat frame of polypropylene bead foam, an intrinsic oscillator with a centre frequency of 
approximately 20 Hz, and a capacitor-type microphone sensor. The surface of the second layer is covered with a 
sheet of polyester elastomeric film. The intrinsic oscillator is composed of 3D-NET monofilaments, and the bead 
foam sheet functions as a resonance box. Moreover, the bead foam sheet acts as a low-pass filter whose cutoff 
frequency can be expressed as

π
=f k

m
1

2
,

(1)0

where the spring constant k and mass m of the bead foam sheet are 1279 kN/m and 3.4 g, respectively. The calcu-
lated cutoff frequency of the bead foam sheet is 96 Hz19. The sheet thus attenuates high-frequency (about 100 Hz 
or greater) disturbances. The signals originating from cardiovascular oscillation are propagated to the second 
layer via clothes, skin, muscle, and fat. The propagated signals, with a frequency of approximately 20 Hz, are 
amplified in the second layer by the intrinsic oscillator. The amplified signals are measured with the microphone 
sensor in the second layer. 3D-NET allows the measurement of APWs with high sensitivity.

Figure 1.  The proposed system: (a) overview of the proposed system, (b) structure of the APW sensor, and (c) 
algorithm for extracting vital signs from the measured APWs.
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Proposed algorithm for extracting vital signs.  This section describes the signal processing component. 
Figure 1(c) shows an overview of the proposed algorithm for extracting vital signs from the measured APWs. The 
processing methods are described below. In the present study, the second-order Butterworth bandpass filter is 
applied to the APW signal.

Preprocessing.  To obtain vascular information, the measured APWs are filtered through a band-pass filter (low 
cutoff: 10 Hz; high cutoff: 30 Hz). To extract the cardiovascular information from the filtered waves, first-order 
differentiation and full-wave rectification are applied to the filtered APWs.

Heart rate.  The method for extracting the heart rate (HRAPW) is described below. To obtain the pulse wave 
PULSEAPW, a bandpass filter with cutoff frequencies of 0.5 Hz and 3.0 Hz is applied to the filtered full-wave recti-
fication waveforms described in Fig. 1(c),a-(ii). PULSEAPW has a peak corresponding to the heartbeat. The peak 
time, ti, of PULSEAPW is detected using the MATLAB function “findpeaks22”. Here, the minimum time interval 
between the adjacent peaks were set to be 400 ms for denoising. To eliminate peak time outliers, the Smirnov–
Grubbs test23 is applied to the amplitudes of PULSEAPW at the obtained peak times. This is necessary because 
the amplitudes of PULSEAPW that overlap disturbances, such as those caused by body movement, may be sub-
stantially higher than those of normal pulse wave PULSEAPW. The significance level of the test is set at p < 0.05. 
After the disturbances are eliminated, the peak-to-peak timings of PULSEAPW are calculated as the time interval 
(RRIAPW = ti+1 − ti) corresponding to the R-R interval of the electrocardiogram. Next, RRIAPW is tested with the 
Smirnov–Grubbs test to detect outliers caused by the algorithm error. RRIAPW are resampled at a frequency of 
4 Hz24 by applying the three-dimensional spline interpolation method. HRAPW is expressed as

= .HR 60
RRI (2)APW

APW

Heart rate variability.  The autonomic nerve consists of the sympathetic nerve and the parasympathetic nerve. 
The sympathetic nerve, which becomes activated during times of pain or stress, increases the heartbeat. The par-
asympathetic nerve, which becomes activated during times of relaxation or sleep, decreases the heartbeat. HRV 
indices are useful for the analysis of autonomic nervous activity. Previous studies reported that low-frequency 
(LF) power (0.04–0.15 Hz) reflects both parasympathetic and sympathetic nervous activity, high-frequency (HF) 
power (0.15–0.40 Hz) reflects parasympathetic nervous activity, and LF:HF ratio (LF/HF) reflects sympathetic 
nervous activity2. We thus calculated the power spectral density (PSD) of RRIAPW. The periodogram method25, a 
common method for calculating PSD, was applied in this study. A previous study reported that the PSD analysis 
on the window size of the RR interval should be 50 s or greater to ensure reliability26. Therefore, we applied the 
Hamming window with the window size of 60 and the overlap time of 50 s. Based on the obtained PSD of RRIAPW, 
low-frequency power and high-frequency power are determined and denoted as LFAPW and HFAPW, respectively. 
LFAPW and HFAPW are then standardized by the following Eqs (3) and (4)27. In addition, LF:HF ratio is calculated 
by Eq. (5).
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Respiratory rate.  The method for extracting the respiratory rate (RRAPW) is described below. To obtain RESPAPW, 
a bandpass filter with cutoff frequencies of 0.15 Hz and 0.40 Hz is applied to the full-wave rectification waveforms. 
To extract the respiratory rate, the peak time, ti, of RESPAPW is detected using the MATLAB function “find-
peaks22”. Here, the minimum time interval between the adjacent peaks were set to be 2500 ms for denoising. The 
number of peaks in RESPAPW is calculated as the respiratory rate RRAPW breaths/min.

Finally, the results obtained in the signal processing component, including HRAPW, LFnuAPW, HFnuAPW, LF/
HFAPW, and RRAPW, are displayed by the display component.

Experimental configurations.  To test the accuracy of the proposed algorithm, we simultaneously meas-
ured the HRV indices and respiratory rate using the proposed system and the commercially available sensors, and 
we compared their results. We then performed image stimulation experiments to examine the feasibility of using 
the extracted indices for evaluating the affect of participants. In accordance with the Declaration of Helsinki, 
informed consent was obtained from all study participants before the experiments were performed. The exper-
imental protocol was approved by the Hiroshima University Ethics Committee (Registration Number: E-17-2).

Experiment to verify the measurement accuracy of the proposed system.  Figure 2(a–d) show the environment 
used for verifying the accuracy of the proposed system.
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Twenty-nine healthy male participants (mean age ± standard deviation (SD): 22.9 ± 0.8 years) were recruited 
for the experiment. Sixteen participants (mean age ± SD: 22.8 ± 0.8 years) were instructed to assume a supine 
position; the remaining 13 participants (mean age ± SD: 23.0 ± 0.9 years) were instructed to assume a sitting 
position.

APW sensors measured APWs from the backs and hips of the supine and seated participants, respectively. 
Simultaneously, respiratory (RESP) waves were measured from the abdomen of the participant with a strain 
gauge28 employing a multichannel telemeter system (WEB-7000, NIHON KOHDEN), and electrocardiograms 
(ECGs) were recorded using a commercial physiological monitor (BP-608 Evolution II CS, OMRON COLIN 
Co.). All data were recorded for 180 s at a sampling frequency of 1000 Hz and stored on a PC using a data storage 
device (USB-6215, National Instruments).

To extract HRAPW, LFnuAPW, HFnuAPW, and LF/HFAPW, the measured APWs were processed using the proposed 
algorithm described in the heart rate and heart rate variability sections. In addition, the mean value of HRAPW for 
60 s (Mean HRAPW) was calculated every 10 s.

To obtain the heart rate (HR), R-peaks were detected in the ECGs. The HRs were resampled at a frequency of 
4 Hz by applying a three-dimensional spline interpolation method. To obtain reference HRV indices, LFnu, HFnu, 
and LF/HF were calculated. In addition, the mean value of HR for 60 s (mean HR) was calculated every 10 s. To 
obtain the reference respiratory rate, the number of RESP peaks was calculated, and RR was extracted using the 
method described in the respiratory rate section.

To evaluate the accuracy of the extracted indices, the correlations between the indices extracted from APWs 
and those measured by the commercial instruments described in the previous paragraph were calculated. In 
addition, to evaluate the errors in the extracted HR, mean HR, LFnu, HFnu, LF/HF, and RR, a Bland–Altman 
analysis29 was conducted.

Experiment to verify the evaluability of affect in the proposed system.  To confirm that the vital signs extracted 
using the proposed system could accurately reflect affect, APWs were measured when image stimuli were dis-
played. Figure 2(e) shows the environment used during the experiment to verify the accuracy of the proposed 
system.

Sixteen healthy male participants (mean age ± SD: 22.3 ± 1.0 years) were recruited for the experiment. All 
participants were instructed to be seated and watch a video display while wearing noise-cancelling headphones 
to reduce the impact of auditory stimuli. APWs were measured from the back of the participant using an APW 
sensor. The measured APWs were stored on a PC using a data storage device (USB-6215, National Instruments) 
at a sampling frequency of 1000 Hz.

The participants were asked to report the subjective sensation of affect based on the visual analogue scale 
(VAS)30, which ranks the level of affect in 101 increments from 0 to 100 (0 = no affect, 100 = maximum affect). 
Answers to the questionnaire were submitted using a dial input device, which is shown in Fig. 2(f). Figure 2(g) 

Figure 2.  Environment used for APW measurement experiments during rest: (a) a participant in the supine 
position, (b) the APW sensor attached to a bed, (c) a participant in the sitting position, and (d) the APW 
sensor attached to a seat; Environment used for experiment on evaluation of affect: (e) a participant during 
measurement, (f) dial input device, (g) example of questionnaire in Japanese (the instruction reads, “Please rate 
your level of arousal during the previous task”), and (h) experimental protocol.
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shows an example of the questionnaire. The questionnaire items, based on Russell’s circumplex model of affect31, 
were aroused, excited, pleased, relaxed, sleepy, bored, displeased, and irritated. Figure 2(h) shows the experiment 
protocol.

A task consisted of 6 s of image stimulation, 45 s of self-reported affect evaluation, and 12 s of rest. Six tasks 
with different image stimuli were sequentially performed. The experiment protocol was defined according to the 
following sequence: 1 min of initial rest, 45 s of self-reported affect evaluation, 12 s of rest, 6 task performances, 
and 60 s of rest. The image stimuli were selected from the International Affective Picture System32. For each par-
ticipant, three positive images were randomly selected from among image numbers 1440, 1460, 1463, 1540, 1590, 
1610, 1710, 1750, and 1920, and three negative images were randomly selected from among image numbers 3000, 
3051, 3060, 3068, 3069, 3071, 3100, 3101, and 326633. The display showed a white cross during the resting states. 
HRAPW and RESPAPW were extracted from the measured APWs using the proposed algorithm. The extracted 
HRAPW and RESPAPW were standardized to a normal distribution with mean 0 and standard deviation (SD) 1 
for the entire experiment. The mean and SD values of the standardized HRAPW and the standardized RESPAPW 
recorded during the period of rest lasting from 9 s to 3 s before the start of the image stimulus were compared 
against those from the image stimulus interval. The differences were considered significant at p < 0.05.

The self-reported affect values were standardized for each participant. Principal component analysis (PCA) 
was applied to the standardized self-reported affect values to identify components whose cumulative contribution 
rate exceeded 80%. The correlation coefficients between the extracted vital signs and the affect values (standard-
ized self-reported affect value and the extracted principal component scores) were calculated.

Results
Accuracy of vital signs extracted by the proposed system.  Figure 3 shows the measured waveforms 
for participant A. The periodic sharp peaks were confirmed at almost every 1 s from the measured APWs corre-
sponding to the heartbeat. The timing of the peaks of PULSEAPW was almost equal to that of the ECG. The shape 
of RESPAPW was also equal to the RESP waves.

Table 1 shows the relationships between the extracted indices (HR, RR, LFnu, HFnu, and LF/HF) from the 
proposed system and those from the commercial instruments. The correlation coefficients between the HR, mean 
HR, HRV indices (LFnu, HFnu, and LF/HF), and RR extracted using the proposed system and those measured by 
the commercial instruments were greater than 0.7 (p < 0.001).

Figure 4 shows the results of the Bland–Altman analysis of the HR, LFnu, HFnu, LF/HF, and RR extracted 
using the proposed system and those measured using the commercial instruments. The 95% confidence intervals 
of the indices obtained in the supine position are as follows: HR: −5.26–5.54 bpm; mean HR: −0.47–0.56 bpm; 
LFnu: −0.24–0.12 a.u.; HFnu: −0.12–0.24 a.u.; LF/HF: −1.70–1.05 a.u.; RR: −2.58–2.90 breaths/min. The 95% 
confidence intervals of the indices obtained in the sitting position are as follows: HR: −8.91–8.46 bpm; mean 
HR: −1.83–2.46 bpm; LFnu: −0.25–0.18 a.u.; HFnu: −0.18–0.25 a.u.; LF/HF: −1.34–1.14 a.u.; RR: −2.43–3.50 
breaths/min. In the Bland–Altman plots, the constant errors between extracted signals measured by the pro-
posed system and those measured by the commercial instruments were not confirmed under all conditions in 
the Bland–Altman analysis. Proportional errors were seen for HR, LF/HF, and RR in the supine position and for 
mean HR, LF/HF, and RR in the sitting position. However, both the slope of the regression lines and the corre-
lation coefficients between the averages and errors of HR, mean HR, LF/HF, and RR are small. The proportional 
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Figure 3.  Measured waveforms of (a) APWs, (b) PULSEAPW and ECG, and (c) RESPAPW and RESP from 
participant A in the sitting position.

HR Mean HR LFnu HFnu LF/HF RR

In supine position 0.96*** 1.00*** 0.90*** 0.90*** 0.93*** 0.80***

In sitting position 0.88*** 0.99*** 0.85*** 0.85*** 0.81*** 0.70***

Table 1.  Correlation coefficients of extracted indices from the proposed system and the commercial 
instruments. ***p < 0.001.
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errors can thus be small (supine position: HR, r = −0.12, p < 0.001, slope of the regression line a = −0.03; LF/HF, 
r = −0.30, p < 0.001, slope of the regression line a = −0.12; RR, r = −0.32, p < 0.001, slope of the regression line 
a = −0.23; sitting position: mean HR, r = −0.17, p < 0.001, slope of the regression line a = −0.02; LF/HF, r = 0.22, 
p < 0.01, slope of the regression line a = 0.15; RR, r = −0.18, p < 0.05, slope of the regression line a = 0.16).

Changes in extracted vital signs by affect.  Figure 5 compares the extracted signals (mean value and SD 
of HRAPW and RESPAPW) for the stimulus period and those for the rest state; similarly, it compares the extracted 
signals for the positive stimulus period and those for the negative stimulus period. The mean value of HRAPW 
during image stimulation significantly decreased compared with that at rest (p < 0.001). The SD of RESPAPW 

Figure 4.  Bland–Altman plots of (a) HR, (b) mean HR, (c) LFnu, (d) HFnu, (e) LF/HF, and (f) RR in the supine 
position; (g) HR, (h) mean HR, (i) LFnu, (j) HFnu, (k) LF/HF, and (l) RR in the sitting position.

https://doi.org/10.1038/s41598-019-53808-9


7Scientific Reports |         (2019) 9:17475  | https://doi.org/10.1038/s41598-019-53808-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

during negative image stimulation significantly decreased compared with that during positive image stimulation 
(p < 0.05).

Table 2 shows the PCA results of the self-reported VAS scores of affect. The number of extracted principal 
component scores was three, under the condition that the cumulative contribution ratio was greater than 80%. 
The first principal component (PC1) is positively correlated with aroused, bored, displeased, and irritated, and 
it is negatively correlated with excited, pleased, relaxed, and sleepy. The second principal component (PC2) is 
positively correlated with sleepy, bored, displeased, and irritated, and negatively correlated with aroused, excited, 
pleased, and relaxed. The third principal component (PC3) is positively correlated with aroused, excited, pleased, 
relaxed, and bored, and negatively correlated with sleepy, displeased, and irritated.

Table 3 shows the relationships between extracted signals and the self-reported affect VAS scores and cor-
responding images. The calculated values of HRAPW and RESPAPW are correlated to the following several 
self-reported affect values: mean value of HRAPW and relaxed (r = 0.26, p < 0.05), mean value of RESPAPW and 
excited (r = 0.23, p < 0.05), SD of RESPAPW and excited (r = 0.28, p < 0.01), SD of RESPAPW and pleased (r = 0.21, 
p < 0.05), SD of RESPAPW and relaxed (r = 0.22, p < 0.05), and SD of RESPAPW and displeased (r = −0.23, 
p < 0.05)). A significant correlation between PC1 and the SD of RESPAPW was found (r = −0.21, p < 0.05). A sig-
nificant correlation between PC2 and the SD of HRAPW was also found (r = −0.23, p < 0.05). The SD of RESPAPW 
was significantly correlated with the total degree of pleasedness/displeasedness, and the SD of HRAPW was signif-
icantly correlated with the total degree of aroused/sleepiness. There was no significant correlation between PC3 
and the vital signs.

Discussion
The authors proposed an algorithm to achieve unconstrained, simultaneous monitoring of vital signs (i.e., heart 
rate, respiratory rate, and HRV indices) using APWs measured by APW sensors. Two experiments were con-
ducted to verify the effectiveness of the proposed algorithm.

Figure 5.  Change in vital signs between the periods of rest and periods in which image stimuli were displayed: 
(a) mean value of standardized HRAPW, (b) SD of standardized HRAPW, (c) mean value of standardized RESPAPW, 
and (d) SD of standardized RESPAPW; Comparison of vital signs measured during the display of positive and 
negative image stimuli: (e) mean value of standardized HRAPW, (f) SD of standardized HRAPW, (g) mean value of 
standardized RESPAPW, and (h) SD of standardized RESPAPW.

Index PC1 PC2 PC3

Aroused 0.30 −0.47 0.39

Excited −0.39 −0.05 0.24

Pleased −0.42 −0.02 0.17

Relaxed −0.41 −0.05 0.20

Sleepy −0.30 0.47 −0.44

Bored 0.20 0.70 0.68

Displeased 0.43 0.03 −0.14

Irritated 0.32 0.24 −0.23

Cumulative
contribution ratio [%] 62.3 75.2 84.1

Table 2.  PCA.
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In the first experiment, we compared the vital signs obtained by the proposed system and those meas-
ured by commercial instruments. The results showed significantly high correlation between the systems (see 
Table 1); however, we also found that the correlations were lower for seated participants than for supine partic-
ipants. Although the reason for this remains unclear, we believe that it occurred because participants pushed 
the APW sensors downward with their backs when sitting down, and this point should be improved in future 
work. Nonetheless, the high correlations indicate that the proposed system can accurately extract vital signs from 
APWs, particularly for patients in the supine position. The proposed system provides a distinctive advantage over 
previous systems9–12 in that it embeds APW sensors inside the 3D-NET19,21, a design that prevents decubitus in 
bedridden patients. Therefore, the proposed system can be used with a wide range of users, from healthy to bed-
ridden. In addition, the high sampling rate (1 kHz) of the proposed system provides sufficiently high reliability 
for extracting HRV indices.

We performed image stimulation experiments and compared the extracted vital signs with the affect subjec-
tively rated by the participants. To this end, we performed principal component analysis on the rated affect indi-
ces (see Table 2). Using the affect list shown in Table 2, an interpretation of the extracted principal components is 
provided below. PC1 explains pleased/displeased (main positive direction: displeased and irritated; main negative 
direction: excited, pleased, and relaxed). PC2 and PC3 explain aroused/sleepiness. The positive direction of PC2 
is primarily a pleased affect, while that of PC3 is primarily a displeased affect; PC2 and PC3 are components that 
reflect aroused. The principal components extracted in this experiment were thus similar to those of Russell’s cir-
cumplex model of affect31, which expressed human affect in a two-dimensional circumplex model of arousal and 
pleasedness. This result indicates that the affect responses obtained in this experiment were reasonable.

We also confirmed that vital signs changed when image stimuli were displayed (see Fig. 5). The heart rate 
decreased when image stimuli were displayed, which is a prototypical finding in psychophysiological investi-
gations34. In particular, the heart rate significantly decreased when negative images were displayed. In previous 
studies, three types of images (positive, negative, and neutral) from the IAPS were presented to participants, and 
changes in the vital signs were confirmed. Drops in heart rates are attributed to the participant paying greater 
attention to a negative image than to a positive image35,36. The results of our study are consistent with those of 
previous studies. In addition, our study newly finds that the respiration extracted using the proposed system 
reflected the pleased/displeased affect of the participants. These results indicate that the proposed system can be 
applied to measure affect in humans.

In conclusion, this study proposed a novel unconstrained monitoring system that can measure heart rate, 
respiratory rate, and evaluate autonomic nervous activity based on HRV in supine and seated patients using a 
microphone-type APW sensor. The extracted vital signs changed depending on the affect of the participant. The 
proposed system can be installed in a chair or bed for health condition management during daily activities, and it 
can log fatigue and feelings. In future work, we will consider the implementation of long-term monitoring using 
the proposed system and incorporation into actual home health care.
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