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We rehearse the processes of innovation and discovery in general terms, using as

our main metaphor the biological concept of an evolutionary fitness landscape.

Incremental and disruptive innovations are seen, respectively, as successful

searches carried out locally or more widely. They may also be understood as

reflecting evolution by mutation (incremental) versus recombination (disrup-

tive). We also bring a platonic view, focusing on virtue and memory. We use

‘virtue’ as a measure of efforts, including the knowledge required to come up

with disruptive and incremental innovations, and ‘memory’ as a measure of

their lifespan, i.e. how long they are remembered. Fostering innovation, in the

evolutionary metaphor, means providing the wherewithal to promote novelty,

good objective functions that one is trying to optimize, and means to improve

one’s knowledge of, and ability to navigate, the landscape one is searching.

Recombination necessarily implies multi- or inter-disciplinarity. These prin-

ciples are generic to all kinds of creativity, novel ideas formation and the

development of new products and technologies.
Nothing is original. . . all creative work builds on what came before.
(Kleon, A: Steal like an artist. New York: Workman, 2012.)

The amount of eccentricity in a society has generally been proportional to the amount
of genius, mental vigour, and moral courage which it contained. That so few now dare
to be eccentric marks the chief danger of the time.

(John Stuart Mill, On Liberty, 1896.)
1. Introduction
The popularity of innovation as a buzzword can be traced back to the 1990s [1]

and it has become one of the most overused terms, with a very clear trend to

add it to any project, idea or description: companies mentioned some form

of the word ‘innovation’ 33 528 times last year based on the analysis of their

annual and quarterly reports, which was a 64% increase from 5 years previou-

sly (http://on.wsj.com/1aF6gpx), and (based on a search at www.amazon.

com) more than 750 books with ‘innovation’ in the title have been published

in the last three months.

Strictly speaking, innovation is not just finding a new way of doing some-

thing or discovering a new insight; it is about a translation of this insight

into a specific application that would have either social or commercial

impact: ‘an innovation is something original, new, and important in whatever

field that breaks in to a market or society’ [2]. The study of innovation is an

emerging interdisciplinary field with new journals, professional associations

and university departments focusing on the study and breadth of the phenom-

enon [3]. For the purpose of this review, we wish to look at the essence of

coming up with new and meaningful insights, be it an outcome of academic

research and/or product development in industry. In addition to this, to illus-

trate the difference between disruption and incremental innovations, we have

decided to approach this via conceptual basics and by going back to the ancient

Greeks and in particular to Plato. This is because the fifth and fourth centuries

BC in Athens were periods of extraordinary innovation in several fields: art,

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.1183&domain=pdf&date_stamp=2014-12-10
mailto:dbk@manchester.ac.uk
http://on.wsj.com/1aF6gpx
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Figure 1. A ‘mind map’ [55] summarizing the contents of this review. (Online version in colour.)
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literature, architecture, political institutions, rhetoric, science

and philosophy. As a result, Plato (like many other intellectuals

of his time) attempted to explain the process of innovation

(creativity) [4]. In doing so, he forged certain ideas that have

had potency ever since. In this particular instance, we would

like to reapply the term virtue as a description of a positive

quality and in the context of a quality of generating new

meaningful insights independently of where they are being

generated—the virtue of innovation.

Given the sheer desirability (one might even say the

‘inevitability’ in Western culture) of innovation, whether in

science, technology or any other field of human endeavour,

we thus take it that the better we can understand those path-

ways of innovation, the more easily we can foster it and attain

(acquire) the virtue of innovation.

Many metaphors for the process(es) of innovation are

possible. However, in common with authors such as

Schumpeter [5], Campbell [6], Nelson & Winter [7], Kauff-

man [8,9], the authors of a volume edited by Ziman [10]

(and see [11]), Rivkin [12,13], Goldberg [14], Olsson & Frey

[15], Frenken & Nuvolari [16,17], Khanafiah & Situngkir

[18,19], Baldwin et al. [20], Hodgson [21,22], Arthur [23],

Fleming & Szigety [24], Valverde et al. [25], Ganco & Hoetker

[26], Caminati & Stabile [27], Geisendorf [28], Simonton

[29,30], Johnson [31], Vermeij & Leigh [32], König et al. [33],

Wagner [34], Solé et al. [35] and Gabora [36], we find that

an evolutionary metaphor captures all of the necessary hall-

marks of innovation in an accessible and accurate manner,

and we set it out here. For example, both technologies and

scientific discoveries follow evolutionary trends in the form

of change, typically improvement, with time. A recent article

in this journal [37] develops a similar theme, featuring nine

separate hallmarks or commonalities of biological and other

evolution, and in some ways, this article might be seen as a

complement to it. The ‘now’ is caused by the ‘before’ and

also influences what the ‘after’ will look like—these evol-

utionary stages are intimately connected. In systematic

innovation, these progressions are referred to as trends of

engineering system evolution (TESE). TESE postulates that

all technological systems, from soap to aircraft engines,

develop according to the same objective trends. In other

words, the evolutionary paths for all different kinds of
technologies are actually similar [38]. The ‘laws’ of technical

systems evolution were discovered by G.S. Al’tshuller after

reviewing thousands of USSR invention authorship certifi-

cates and foreign patent abstracts. Al’tshuller studied the

way technical systems have been invented and modified

over time and developed the theory of inventive problem-

solving (TRIZ in Russian and TIPS in English) [39–42]. The

TRIZ ideas sit very easily with the evolutionary metaphor,

because TRIZ implies that most inventions are in fact ‘recom-

binations’ of existing principles, a theme that is a core focus of

this article. (Biomimicry provides a similar and related

example [43].)

We note that evolution comes in various forms, includ-

ing natural (e.g. cosmological, biological) evolution,

directed evolution (a term often used in improving molecules

for biotechnology, see below), in computational modelling

(e.g. mathematical algorithms known as evolutionary or gen-

etic algorithms [44–46], including in improving software

itself [47–49]), in cultural evolution [50] and even in the

evolution of (scientific or other) ideas [51,52], in problem-

solving [53] and in the diffusion of best clinical practice

[54]. While we shall speak to many of these below, they all

share some important, common features, and we begin

with those. Figure 1 gives an overview of the manuscript.
2. The hallmarks of evolutionary systems
For a system to exhibit the kinds of evolutionary behaviour

we have in mind, which has been referred to as a ‘universal’

[56] or ‘generalized’ [57] Darwinism, the following six

components must be present or pertain (figure 2).

— A population of individuals (entities), not all of whom are

destined to survive (and none indefinitely), where each

of whom inhabits some kind of bounded environment

or ecosystem or universe (also known for some purposes

as a ‘search space’).

— A ‘genetic’ encoding that is part of, and/or describes,

the heritable properties of those individuals (entities).

This will typically be in the form of a string of letters

(such as nucleic acid bases in biological evolution),
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Figure 2. The chief attributes of any evolutionary system involving the creation of diversity, its fitness-based selection and the further production of diversity in
subsequent generations.

Table 1. Examples of hallmarks of evolutionary systems in biological and product development systems.

attributes biological system product/technology

the population of individuals a population of individual organisms candidate configurations within a platform product

technology

a genetic encoding the genome sequence the main elements of the architecture of the

technology, e.g. polymer structure

an objective function (a goal or a

fitness)

survival purposely driven innovation—a need to deliver a

specific benefit, e.g. better cleaning

selection scheme natural selection market success

repurposing moving to a new ecosystem/environment reapplication of a technology in different areas,

e.g. Nintendo—reapplication from the car industry

to gaming

means of creating diversity as part

of the reproductive process

mutation (changing an element in an individual

chromosome) or recombination (swapping parts

of chromosomes between two or more parents)

different product lines/next generation

(e.g. iPhone 1, 2, 4, baby nappies! disposables,

analogue! digital)
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referred to as a chromosome, though other encod-

ings, such as ‘tree-like’ encodings (discussed below) are

also possible.

— An objective function, also known as a goal or a fitness that

allows one to score the desirability or quality of the

solution represented by the individual.

— A selection scheme or step that favours (but not exclusively)

the survival of those that have ‘more’ of it or are closer to

it. (There may sometimes be more than one objective

function.)

— The ability to perform reproduction to create a new genera-

tion of individuals from those who survive long enough

to reproduce.

— Means of creating diversity as part of the reproductive process,

such that not every individual in a subsequent genera-

tion is identical to its parent or parents. Reproduction

may be sexual (involving two or more parents) or asexual

(involving only one). Typical means of creating diversity

(in the genetic encoding) involve mutation (changing an

element in an individual chromosome) or recombina-

tion (swapping parts of chromosomes between two or

more parents). Reproduction (if sexual) may also be
panmictic—any two individuals may mate—or more

restricted (by ‘geographical’ or other means) such that a

specific individual may mate only with a defined (more

‘local’) subpopulation.

Examples of how these six components may be represented

in two different domains are given in table 1.

All of this is commonplace in the realm of natural Darwi-

nian-style evolution. What is less recognized is that it maps

generally onto the processes of engineering design and of

evolution sensu lato. Here, it is useful to spend a little time

on the concept of the ‘search space’ or universe that the

individuals’ ‘states’ may inhabit, in this case, the universe

of all possible individuals. In the biological case, typically

these are uncountably large, as they scale exponentially

[52,58] with the number of possibilities of each ‘genetic’

element of the individual that can have different values or

states. Thus, if the ‘universe’ is the list of all possible strings

(i.e. sequences) of nucleic acids that are just 30 letters

long (rather than say the human genome of approximately

3 000 000 000 bases or letters), and each position can have

one of four letters (e.g. A, T, G and C), the ‘universe of
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Figure 3. The fitness landscape metaphor for evolutionary search. In a Cartesian conception, ‘where’ one is in the (evolutionary) search space is encoded via the
XY-coordinates, whereas fitness is encoded as the height or Z-coordinate. (Online version in colour.)
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possibilities’ is 430 which is about 1018 [59], slightly greater

than the lifetime in seconds of the known physical universe

(ca 1017) [60]. Under these circumstances, we are unlikely to

be able to assess every individual (sequence) that could exist.
ranking individuals based on
fitness

no

yes

selection

creating a new generation and
introducing diversity via mutation

and recombination

individuals with the required
fitness(es)

has selection met the required
fitness criteria?

Figure 4. A flowchart describing a typical evolutionary algorithm. (Online
version in colour.)
3. The landscape metaphor and the search space
‘Landscapes’ as three-dimensional objects are easy to visualize

in terms of two distinguishable properties (figure 3), namely

where you are in XY space, used, for instance, to encode the

genetic properties of an individual, and how high you are (in

Z space, used to encode the fitness). Thus, it is assumed that

the landscape reflects a metric in which things that are close

to each other in XY space are close to each other in genetic

sequence. In natural evolution, the landscape metaphor derives

from Wright [61]. Although the landscape metaphor is not

entirely perfect (e.g. how it looks or functions does depend

upon what kinds of ‘moves’ or means of transport are available

[62], and it does not easily reflect more than one fitness (there is

only one ‘height’), we do find it extremely helpful in under-

standing the essential issues of evolutionary search and

improvement, as well as being relevant for both academic

and industry domains, and we shall retain it. Of course for

non-biological domains, such as product innovation, see

below, the non-fitness axes of the landscape reflect some more

generalized ‘distance’, whether conceptual or technological.

Thus, we propose to use the landscape to represent the

‘universe of possibilities’, and individuals, whether they be

ideas, products, biological organisms or anything else

(table 2), each occupy a particular (XY) position in that

space, and that position has an associated fitness (height). If

then the aim is to create (or breed) an individual with a

greater fitness or height, and all one knows is the places

that other individuals have occupied and what their fitnesses

are [63], the ‘game’ is to search around the landscape for

places with a greater height, and to do so in the shortest

time (i.e. using the fewest individuals or the lowest number

of attempts; figure 4). This also leads to three interlinked con-

cepts. The first is that locally landscapes are reasonably

smooth: if one goes in a certain direction and one goes up a

slope (i.e. becomes fitter), a second move in the same
Cartesian XY-direction is also likely to be (further) up. In

terms of the product/technology innovation, this concept

translates into a gradual improvement of a specific product

property, for example development of better absorptive

materials. An improvement of absorbent materials could be

considered in a three-dimensional space in terms of thickness

of material (X ), flexibility (Y ) and absorbent capacity (fitness,

Z ). Absorbency is a key function in diapers or nappies. There

were a number of different shifts along the landscape that led

to progress from the nineteenth century. The earliest from these

times consisted of a cotton material, held in place with a fasten-

ing; this led to a two-part system of a disposable pad (cellulose

wadding covered with cotton wool) and an outer plastic,

adjustable garment with press-studs/snaps) developed by

Valerie Hunter Gordon in 1947 (http://bit.ly/1zLHe19) and

to today’s technology based on superabsorbent polymers

with multiple absorption zones [64].

http://bit.ly/1zLHe19
http://bit.ly/1zLHe19


Table 2. Landscape metaphor and search space.

landscape metaphor biological system product/technology

concepts defining a landscape

1. Local landscapes relationship between genotype and phenotype

for closely related organisms, typically from

the same species

improvement of a specific parameter, e.g. looking

for a way to improve absorbent properties

(absorbency landscape)

2. The limitations (boundaries) within

the function changes (it cannot

continue indefinitely)

limitations of a particular material being evolved

(e.g. bone)

boundaries to property improvement, e.g. a

reduction of weight of packaging will have a

limit (no weightless materials)

3. Rugged landscapes Sewall Wright’s fitness landscape [61] many products that are quite similar in performance

may be based on very different technologies

navigation through the landscape

4. Exploitation local changes in genome and phenotype,

typically by mutation

continuous (incremental) product improvements

5. Exploration more substantial changes in genotype and

phenotype, e.g. by recombination, horizontal

gene transfer

seeking radically different products or product

designs from other industries or application fields
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The second concept is that this ‘local’ improvement cannot

continue indefinitely, such that in time one reaches the top of

a local peak (Snowdon, if you will; for non-UK readers, this is

a hill of some 1085 m height), somewhat equivalent to a

‘dominant design’ in the product world [65]. The develop-

ment (up to a limit) in a property’s improvement can be

illustrated by a rising trend in a reduction of weight of packa-

ging materials to improve sustainability; however, there will

be a limit to a weight reduction (there are no weightless

materials). Another well-known example of this concept is

a reduction of transistors’ dimensions to improve their per-

formance, and reduce power and cost per transistor—in the

past three decades, the size of the transistor has moved

from microscale to nanoscale—3 mm in 1980 to 22 nm in

2010 (http://intel.ly/1nMLOqM).

Clearly (staying with the ‘actual’ landscape, the biosphere

of planet earth), there are higher peaks such as Mont Blanc

(4810 m) in the Alps or Everest (8848 m) in the Himalaya,

but one can only get to them by passing through regions of

lower fitness (‘reculer pour mieux sauter’ [66]). Thus, the

third key feature is that landscapes are ‘rugged’, involving

many local optima, and that it may indeed be possible to

characterize that ruggedness. Staying with the product

packaging landscape, there could be a number of ways of

how to improve this, for example using (i) lighter materials;

(ii) better dispensing system; (iii) multi-functional packag-

ing materials (e.g. packaging materials with antibacterial

properties, smart packaging materials, etc.). The landscape

ruggedness describes or reflects the trade-offs involved.

Finally, it is important to note how we search a landscape.

Searching a landscape necessarily involves a blend between

exploitation (‘going upwards’, in case you are on the slopes

of Everest and not Snowdon) and exploration (looking

further afield, possibly with a greater risk of failure but also

perhaps with a greater chance of a notable success). Explora-

tion and exploitation also involve a judicious blend between

hypothesis-dependent and data-driven strategies [67]. This
distinction between exploitation and exploration also argu-

ably reflects the distinction between incremental and disruptive
innovation (see later; table 3).
4. Incremental versus disruptive innovation
In the previous sections, we looked at the process of inno-

vation as an evolutionary process and also used the

landscape metaphor to demonstrate differences between the

processes leading to incremental and/or disruptive inno-

vations. Taking into account these differences before

beginning a project, it is very important to define what

type of innovation one would like to pursue as it will help

to develop a relevant research plan, select appropriate meth-

odologies and also build the right expectations, both in terms

of time and appraisal (recognition). In a way, it is similar to

choosing a good problem to work on [68] as it can lead to

generating new knowledge, technologies or/and actionable

insights. Alon’s paper [68] provides a very eloquent frame-

work (the ‘feasibility-interest diagram’) to assist with

problem selection, and also highlights the importance of dis-

cussions between teachers (supervisors) and students

(researchers). Discussions, for example dialogues between

teacher and student and/or between scholars, have been a

part of the learning process (knowledge dissemination)

since ancient times and throughout different cultures. One

of best exemplifications of this is Plato’s dialogues that

were used in more than 30 of his works [69]. The dialogues

as a form have been used to teach a range of disciplines,

including philosophy, religion, ethics, logic, mathematics,

etc. [70]. The above has prompted us to consider the develop-

ment of a framework based on a philosophical metaphor that

could help with choosing a type of innovation for the

research project. This framework is designed using two

axes (variables). The first variable deals with the essence of

the innovation type and the second one is the function time.

http://intel.ly/1nMLOqM
http://intel.ly/1nMLOqM
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To describe the essence of different types of innovation,

we decided to use Plato’s deliberations on virtues, in particu-

lar his work ‘Meno’, in which Socrates and Meno discussed

what human virtue is in general, rather than particular vir-

tues, such as justice or temperance and whether it can be

taught [71]. Our choice of using ‘virtue’ to dimensionalize

innovation in the philosophical context was driven by the fol-

lowing factors (argument). On the one hand, virtues are

positive qualities and the foundation of good moral being;

in a similar way, innovation, independently of being disrup-

tive or incremental, is a positive trait indicating some success

of the research programme. From another side, it provides an

opportunity to differentiate between incremental and disrup-

tive innovation via different types of knowledge that would

be required to attain virtue. In Meno, Plato looks at virtue

as a form of knowledge and then develops it into a more hol-

istic concept where virtue encompasses knowledge and

‘something less—true belief’ [71]. True beliefs can be useful

as knowledge, but they often fail to ‘stay in their place’ and

must be ‘tethered’ by what he calls aitias logismos (the calcu-

lation of reason, or reasoned explanation) [72]. Thus, virtue

can be viewed variously as true virtue and ordinary or

civic virtue. True virtue is based on knowledge and gets it

right all the time, i.e. true virtue knows why it is right,

whereas ordinary virtue is based on habit. In regard to inno-

vation, disruptive innovation can be compared with true

virtue that requires both knowledge and time to acquire it,

whereas incremental innovation can be associated with

civic virtue that is based on conditioning and could be subject

to change. Attaining true virtue could be a lengthy process:

incremental innovation is often referred to as ‘continuous

improvement’, with releases occurring in under a year,

whereas it typically takes more than a decade to develop a

breakthrough piece of research into a translational outcome

[73] or to come up with a disruptive technology, for example

it took more than a decade of research from the recognition

that restriction enzymes could be used to make recombinant

DNA [74], which arguably initiated the era of modern bio-

technology, until the availability of recombinant insulin, the

first main biotech product [75]. Similarly, it took Dyson more

than 10 years (http://bit.ly/1tUDFFz) to redefine vacuum

cleaner technology, following his recognition of the potential

of cyclones.

To distinguish between disruptive and incremental inno-

vations as a function of time, we have turned to another

philosophical text by Plato, The Symposium. The Symposium

is also written in the form of a dialogue, which takes place at a

symposium or drinking party in the house of the tragedian

Agathon at Athens where a group of men, including Socrates

examined the subject of love in a sequence of different

speeches [76]. In particular, we would like to focus on Socra-

tes’s speech where he retells his conversation with Diotima,

a female philosopher and priestess [77]. In her speech, she

links the desire of immortality with the nature and function

of love. Immortality in the true sense can be achieved only

by gods, and humans can have only ‘surrogate immortality’

by leaving something to be remembered after death—‘a con-

tinuation of our existence after death’ with memory is the

primary vehicle to achieve immortality [4]. For example, phys-

ical immortality is remembrance through having children;

remembrance for various achievements, for example inventors,

poets, legislators, etc., and remembering for wisdom. While

the first two categories deal with human memory, the third
category, remembering for wisdom, includes not only

humans, but also gods and, because gods are immortal, such

memory is forever secure [4]. The group that achieves the

latter immortality is philosophers that give birth to ‘true’

virtue. This memory construct can be applied to differentiate

between two types of innovation. Disruptive innovation has

a longer life cycle than incremental innovation and hence is

associated with a longer memory and the potential to achieve

immortality, for example, how long one would remember

new packaging or a new flavour of soft drink (incremental inno-

vation) versus breakthrough products, for example pill cameras

‘PillCams’ (http://bit.ly/UbSp2i) or synthetic detergent

technology [78] (disruptive innovation).

There are of course hundreds of examples of the lengthy

time between a rather abstract or fundamental scientific or

mathematical discovery and its true exploitation. Thus,

Dirac first brought e-spin into the logical structure of quan-

tum mechanics, and after the best part of a century, his

equation (once seen as a piece of mathematical research

with no relevance to everyday life) has become the theoretical

basis of the multi-billion dollar electronics industry [79],

whereas the positron, simply postulated as part of the anti-

matter necessary for the theory, is now widely used (via

positron-emission tomography) in non-invasive diagnostic

imaging procedures [79].

There is also a clear distinction between incremental and

disruptive innovation within the framework of the landscape

metaphor. ‘Incremental’ innovation involves local improve-

ments that do not stray far from the previous generation

while improving their fitness slightly. By contrast, disruptive

innovation typically involves a substantial change in both

the ‘genotype (i.e. the nature of the individual/product) and

its fitness’. In the book ‘The innovator’s dilemma’ [80], Christen-

sen describes two major types of innovations—(i) those based

on ‘sustaining’ technology and (ii) those based on ‘disruptive’

technology. Sustaining technology innovations are character-

ized as providing superior performance, having strong

customer or consumer focus and being based on either existing

or new technology in the company. Disruptive technologies

have new performance measures, different value elements

and are often not ‘needed’ by current customers.

In science, the distinction between what he called ‘normal’

(incremental) and ‘revolutionary’ (disruptive) science is of

course the cornerstone of Thomas Kuhn’s famous analysis of

‘the structure of scientific revolutions’ [81]. This said, the ‘revo-

lutionary’ changes in the Kuhnian scheme do not necessarily

occur ‘quickly’; they sometimes follow a timely evolutionary

‘landscape’ of their own. It is also possible to argue, or at

least to recognize, that the iterative interplay between theory

and experiment driving scientific advances also involves a

certain kind of recombination.
5. Product innovation in the evolutionary
metaphor

Applying these ideas to the design of a new product (table 3),

it is easy to see the objective functions or fitnesses as these are

set (and evaluated) by the experimenter (developer). Thus,

the ‘fitness’ of a new product is likely to involve profits

from increasing the share of an existing market or from pene-

trating novel markets, and may include subobjectives that

lead to it, such as cost reduction of manufacture for

http://bit.ly/1tUDFFz
http://bit.ly/1tUDFFz
http://bit.ly/UbSp2i
http://bit.ly/UbSp2i
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undiminished quality. In a similar vein, as nicely set out by

Goldberg [14], what a competent strategy requires follows

precisely from this analysis. First, we need to decompose

hard problems into easier ones (‘building blocks’), ensure

by selection and artful decision-making both that we have a

plentiful supply of quality (i.e. ‘solved’) versions of these,

then recognize that the production of novelty overall relies

heavily on the assembly of these preformed components in

novel ways. We also note the literature of product develop-

ment that recognizes that the need for incremental versus

disruptive innovation is itself a function of the external

operating conditions [82].

In a similar vein, and while the distinction is somewhat

arbitrary, it is possible to argue that incremental innovation

is more akin to mutation (a local change involving only one

‘parent’), whereas disruption requires the introduction of

new material or ideas from afar, thus involving recombination

(more than one parent and a ‘sexual’ element).

For example, three-dimensional printing started in the

1990s as a way of rapid prototyping development, where

computer-generated three-dimensional models can be trans-

formed into physical objects using a layer printing process

[83]. It started with the ‘printing’ landscape with the fitness

function being a production of three-dimensional objects.

Advances in technology development in the areas of additive

manufacturing machinery, material development and tissue

engineering have enabled us to reduce the costs of three-

dimensional printing and move it to the commodity

domain as well to add versatility of different applications.

This led to expanding the original ‘printing’ landscape to a

number of different landscapes including ones where the fit-

ness has become an ability to produce nanoscale-size objects

[84] or tissue-like biological constructs [85]. Thus, the new

landscape presents a combination of individual landscapes

that are not ‘close’ in any real sense to what went before.

This, however, is not the case for incremental innovation

that typically operates within a single (and narrower part of

the) landscape. For instance, sports drinks represent a fast-

growing consumer category, and flavours play an important

role in designing novel sports drinks. Staying hydrated

during and after physical exercise is seen as an important

factor for one’s overall health [86], and thus the desire to

ensure that this is done. This in turn leads to an increase in

the variety of different flavours that are introduced. However,

within the landscape metaphor, this variety of flavours is

constrained to a single fitness function and generally the

rest of the product is not changed. The search for novelty is

local and incremental.

We here give some examples of the kinds of innovation

that clearly come from optimizing and recombining elements

from different disciplines or domains of knowledge, or even

different domains of the same area.

5.1. Innovation through recombination
5.1.1. Systematic DNA sequencing
As is well known, following the development of systematic

DNA sequencing [87–89], there was an explosion in our

ability to sequence nucleic acid bases that increased for

many years at a rate similar to that of Moore’s Law until

another disruptive innovation, Solexa or Illumina sequen-

cing [90], was invented. This brought together three

essential, known, ideas (i) the ability to immobilize single-
stranded DNA [91], (ii) the ability to incorporate fluorescent

versions of nucleic acid bases during DNA sequencing-by-

synthesis [92,93], and (iii) the ability to measure fluorescence

from very small numbers of spatially separate molecules

[94,95]. Rates of nucleic acid sequencing are tens of orders

of magnitude greater (or costs per base equivalently

lower) than those in 1977 [96–98], and they are likely to

increase further as nanopore-based sequencing comes in

[99,100].

5.1.2. Synthetic fibre
Innovation can be facilitated by combining expertise from

different domains (industries), for example, creating a new

fibre by bringing together petroleum-based fibre expertise

and biotechnology expertise. DuPont and Genencor col-

laborated to develop a biotechnological process in which

bacteria were made to produce a required material. The

gene-engineered bacteria converted glucose into propanediol

which was used by DuPont to make the new fibre, Sorona,

and create a more environmentally sustainable process by

using starch instead of petrochemicals [101,102]. The same

is true for bioisoprene [103].

5.2. Innovation through directed evolution
5.2.1. Directed evolution of proteins
A particularly clear example of innovation as evolution

comes from the field known as directed evolution. In biology,

genes encode proteins according to a fixed mapping (the

‘genetic code’) whereby particular triplets of bases, known

as codons, encode the sequence of a protein that is then

made by suitable hosts cells. There are 43 ¼ 64 triplets and

20 natural amino acids, so in some cases, more than one tri-

plet encodes a particular amino acid, whereas three of the

64 codons, known as stop codons, encode a signal to stop

reading the DNA. The aim, as ever, is to move round the

search space by creating variance in the sequence while

measuring the fitness in terms of properties such as the ability

to catalyse, as ever, greater rates of a particular (bio)chemical

reaction. (Other objectives, whose values also vary with the

sequence, might include the ability to resist ‘high’ temperature

or to tolerate non-aqueous solvents.)

The innovation necessarily follows directly from the vast-

ness of the search spaces. As rehearsed previously [52], using

only the 20 ‘common’ amino acids, the number of sequence

variants for M substitutions in a given protein of N amino

acids is 19 M.N!/(N 2 M )!M! [104]. For a protein of 300

amino acids with changes in just one, two and three amino

acids this is 5700, ca 16 million and ca 30 billion. Even for a

very small protein of N ¼ 50 amino acids, the number of var-

iants (2050) is some 1065! The same combinatorial formula

applies to finding the subset of k enzymes out of n that one

might wish to change for some benefit; if n is 1200 (a reason-

able, even slightly low, number for metabolism [105–107]),

for k ¼ 1, 2, 3, 4, 5 and 6, these numbers are 1200, 719 400,

2.87 � 108, 8.6 � 1010, 2.06 � 1013 and 4.1 � 1015. Thus, there

is very little chance that any individual protein has been

made during natural evolution.

What distinguishes natural evolution from directed evol-

ution is that the selection is not done on the basis of any

biological survival ability of the host organism but simply

on the value to an external agency (the human experimenter)

seeking a better biocatalyst (or whatever the product may
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be). While this is of course equally true in the human breed-

ing of organisms whether say for agricultural purposes

[108] or as domestic animals, it is probably the ‘molecular

breeding’ or molecular evolution of proteins and other

macromolecules that provides the clearest example of how

evolution links to innovation.

Thus, we have examples of the role of recombination

[109–111], fitness landscapes [110,112–114] and landscape

ruggedness [110,115–117], neutrality [118,119], epistasis

[113,120–127], optimal mutation rates [128], the benefits of

genotypic knowledge [129,130] and diminishing returns [131].

The ability to synthesize proteins in a principled manner via

the methods of synthetic biology opens up many possibilities

here [132–134]. This said, as well as recombination or horizontal

gene transfer, a hallmark of natural evolution is the production

of random mutations; whether they are useful (selected) or not

may be seen as a form of serendipity.
 2:20141183
5.2.2. Directed evolution of a synthetic detergent
Although the concept of ‘directed evolution’ is usually

applied to proteins, at least in biology, similar phenomena

can be observed in the ‘evolution’ of novel substances or

recipes of other kinds [37]. The invention of synthetic deter-

gents was driven by the need for a cleaning agent that

would address the drawbacks linked to soap use, i.e. (i) the

formation of a residue (‘curds’) that was a result of the reac-

tion of soap with minerals salts, and (ii) the need for an

alternative raw material to fats—indeed, the shortage of fats

during the First World War drove German scientists to

develop the first synthetic detergents. These detergents

were of the short-chain alkyl naphthalene sulfonate type

which were originally used in the textile industry as wetting

agents. P&G scientists recognized the opportunities for using

these agents and in 1932 P&G negotiated a licence to develop

and market alkyl sulfates as synthetic detergents in the

household and laundry fields. This technology led to the

launch of a new synthetic detergent (‘Dreft’) in 1933. It was

an innovative but limited laundry detergent, in that it did

clean clothes well in hard water but was not able to clean

heavily soiled clothes. Over much of the 1930s scientists

worked to address this issue and developed alkyl-sulfate-

based detergents capable of heavy cleaning: they tried build-

ing the surfactant with numerous compounds, they mixed

soaps with synthetic detergents, they heated, cooled,

extruded, pulverized and flaked any number of formulas,

none of which proved satisfactory. Despite repeated frustra-

tions, David Byerly refused to shelve the research and

persisted. His efforts were further hampered by the outbreak

of World War II, which led to shortages of raw materials, and

the need to convert some processes to military supply and to

reformulate many products because of rationing. Despite

this, by 1941, Byerly had concluded that the best ‘builder’

(chemical compounds that soften water by removing cations)

was sodium tripolyphosphate and had a counterintuitive

breakthrough. All previous research on soaps and detergents

had shown that reducing the amount of builder in a formula

yielded a less harsh product (and it was the harshness of pro-

ducts with builder that hamstrung the project for so many

years). Like his predecessors and colleagues, Byerly at first

tried to keep the proportion of surfactant—the actual clean-

ing agent—as high as possible. But when he inverted the

ratio by boosting the level of builder well above the
amount of surfactant, he got a surprising result: the detergent

cleaned well without leaving clothes stiff and harsh. Byerly

determined that the correct formula was one part active

detergent, alkyl sulfate, to three parts builder, sodium tri-

polyphosphate. This was a turning point and by mid-1945,

a new formula and process were developed; Tide was

chosen as the name of the product that was introduced to a

test market in the US in 1946 [135].
6. A role for serendipity in innovation
The word ‘serendipity’ was coined by Horace Walpole from

the Persian fairy tale The three princes of Serendip (Serendip

is an ancient name for what is now Sri Lanka), whose

heroes ‘were always making discoveries, by accidents and

sagacity, of things they were not in quest of’. In modern

terms, it might be seen as obtaining a finding that was not

part of the expected outcome of a hypothesis-dependent

experiment [52,67,136]. There are many well-known exam-

ples in science [34,137], although the pathway of innovation

can be tortuous. From an evolutionary perspective, serendipi-

tous events may be seen as random and fortuitous mutations

or recombinations. The example of penicillin is illustrative

[138]. Following a chance observation by Fleming [139] of the

antibacterial activity of a contaminant mould spore, it was

more than 10 years before the chemists Chain and Florey

(with others) developed an effective production process for

the active principle, including the equally serendipitous dis-

covery of the role of corn-steep liquor in improving its yield.

However, as pointed out before [138,140], the concept of anti-

biosis of bacteria by penicillia was not at all novel, having

been observed 58 years previously by both Burdon Sanderson

[141] and Lister [142], whereas a book by Papacostas & Gaté

[143] had just been published containing a 60-page section,

headed ‘Antibiosis’, on the extensive subject of bacterial

inhibition by moulds and by other bacteria, devoted to pre-

viously published observations on this phenomenon and

with several hundred historical references! From the perspec-

tive of an evolutionary metaphor, we recognize that part of

the serendipitous process involves an actual recognition of a

different fitness function from that originally used to construct

the landscape (‘chance favours the prepared mind’ [144]), and

how one might progress across the evolutionary landscape

accordingly (i.e. by changing not only the XY-coordinates

but also the fitness functions), as per ‘innovation by analogy;’

as discussed above under TRIZ.

Certainly, at least two significant scientific discoveries or

innovations made by one of us (D.B.K.) came from experiments

done with entirely different goals in mind. The first—a radio-

frequency dielectric biomass probe [145,146], leading to the

founding of a successful company (Aber Instruments, www.

aber-instruments.co.uk)—came about through a search for

experiments that might help one detect lateral ion trans-

port along the surfaces of biological membranes, as part of a

programme to test competing theories of membrane bioener-

getics [147–151]. The second, the discovery of a bacterial

cytokine or ‘wake-up molecule’ [152–156], came from studies

on what happens to non-sporulating bacteria when we starve

them [157–163], and certainly with no expectation that they

might enter true dormancy [164] or secrete ‘wake-up’ signals

such as the ‘Rpf’ factor that we found [152]; however, given

http://www.aber-instruments.co.uk
http://www.aber-instruments.co.uk
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its strongly antigenic nature [165], it is now under test as a

vaccine candidate against mycobacteria.

Another example of a serendipitous discovery by the

second author was the synthesis of novel hydroxyl-benzyl

amino acid derivatives when by mistake instead of an

omega-amino acid that was believed to be the right molecule

to study membrane interactions, its alpha-derivative was

used. This new compound proved to be a potential useful

diagnostic tool to study secretory kidney function [166,167].

In addition to serendipity in scientific discoveries, some of

the world’s most iconic products happened by accident—such

stories include for example pharmaceuticals and the food

sector. Proscar was designed to treat the benign enlargement

of the prostate. After 5 years on the market in the 1990s, it

became clear that one of the side effects of Proscar was hair

growth on bald men and this was immediately recognized as

an opportunity to launch a new product, Propecia, to treat

male-pattern baldness. Pfizer developed sildenafil as a treatment

for hypertension, angina and other symptoms of heart disease.

However, phase I clinical trials revealed that while the drug

was not great at treating what it was supposed to treat, male

test subjects were experiencing a rather unexpected side effect:

erections. A few years later, in 1998, it was marketed as Viagra

in the USA as a treatment for ‘erectile dysfunction’ and

became an overnight success. It now turns over an estimated

$1.9 billion dollars a year. The recognition of the frequency of

drug promiscuity [168] is now a major and purposive activity,

referred to as ‘drug repurposing’ [169–171].

Brandy started off as a by-product of transporting wine.

About 900 years ago, merchants would essentially boil the

water away from large quantities of wine in order both to

transport it more easily and to save on customs taxes,

which were levied by volume. After a while, a few of these

merchants, bored perhaps after a long day on the road,

dipped into their inventory and discovered that the concen-

trated, or distilled, wine actually tasted rather good and

that is how brandy was born. Another food beverage, this

time non-alcoholic, was originally invented as an alternative

to morphine addiction, and to treat headaches and relieve

anxiety. Coke’s inventor, John Pemberton—a Confederate

veteran of the Civil War who himself suffered from a mor-

phine addiction—first invented a sweet, alcoholic drink

infused with coca leaves for an extra kick. He called it Pem-

berton’s French Wine Coca. It would be another two

decades before that recipe was honed, sweetened, carbonated

and eventually, marketed into what it is today Coca Cola.
7. So how can we foster innovation? ‘Directed
evolution’ in innovation

7.1. What would it take to attain the virtue
of innovation?

Serendipity is welcome, but is probably not the best stra-

tegy to rely upon. The question then becomes what type of

innovation virtue (Platonic ‘ideal’) do we need to nurture—

virtue or true virtue, incremental or disruptive innovation?

There could be different schools of thoughts, with a tendency

to concentrate only on disruptive innovation. However, we

believe that it would be beneficial to have and foster both,

and to be explicit about their pros and cons. The pros of incre-

mental innovation are that it can generate news relatively
quickly, be it via a scientific publication or the launch of a

new product version. In addition to this, in dialectic terms,

quantity can lead to quantity and when a critical number of

incremental innovations are achieved, it can result in a

major breakthrough. The cons of incremental innovation

include that it can have a limited impact and may not last

for very long (has limited memory) and will quickly be

superseded by new developments. Disruptive innovation can

though have a major impact and become a spring board for

new developments, but because disruptive innovations are

(almost by definition) rarer, disruptive innovation does require

more time and ‘skill’ to develop. There are a number of ‘direc-

tive’ elements that can be applied for both incremental and

disruptive innovation.

7.1.1. Constructing the landscape
If we accept the metaphor of all kinds of ‘innovation’ as being

equivalent, at least in part, to search on an ‘adaptive’ or

‘evolutionary’ landscape for improved fitness, it becomes

comparatively easy to map the elements of what we need to

do to improve such searches (and there is of course a consider-

able literature on the role of ‘genetic’ searches in all kinds of

single and multi-objective optimization [14,44–46,172–188]).

We thus need to consider the elements of evolutionary

systems (as above) from the perspective of their mapping

onto real-world phenomena.

7.1.2. Selection and fitness
Equally important to the evolutionary process, and not

entirely separable from the question of the maintenance of

diversity in that it can contribute to it, is the nature of the

selection regime. Peer review of grant applications and pub-

lications (leading to success in funding or publication) is an

obvious example of selection in the academic world (and

‘alternative metrics’ implying different selection or fitness

regimes are widely discussed), whereas product successes

in the market place are a metric of success for product inno-

vation. It is also reasonable to consider the generation of

novelty as ‘science push’ and the selection of that novelty

as ‘market pull’.

While the fundamental elements are the same in achiev-

ing both types of virtues (incremental and disruptive

innovations), the difference comes from the ‘landscape

scope’ (diversity of the landscape) and the ‘how’ (how to

navigate through the landscape).

7.1.3. Landscape scope
Any breakthroughs require ‘out-of-the-box’ thinking that can

be manifested in different ways. This even includes the con-

struction or understanding of the landscape, for example an

ability to construct a diverse landscape with the right fitness.

The maintenance of diversity to prevent premature con-

vergence to suboptimal solutions is a well-known means of

avoiding becoming trapped in local optima, and relates to

the exploration/exploitation trade-off discussed above. This

diversity is in both fitness (which is normally always

measured) and in ‘genotype’ (which frequently is not [129]).

If much of the search involves changing or swapping the

various components necessary for a good result, it is first and

obviously necessary to have many of them, as well as means

of retaining the best ones and creating new ones [14]. So one
recommendation is that to innovate one must read and experiment
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widely and try many combinations to achieve success [189].

(This route, in fact, is part-and-parcel of Plato’s suggestion

of manipulating existing knowledge to various ends.) This

implies a need for multi- and inter-disciplinarity, whether

within individuals or in teams. There is also an implication

that one should try multiple parallel experiments before

selecting too early that which might prove most productive.

There is evidence that this was the strategy used by Microsoft

in the early development of what became the WINDOWS

operating systems for personal computers [190].

7.1.4. Navigation through the landscape
Incremental innovation is typically characterized by local

search, using exploitation to search the landscape, whereas dis-

ruptive innovation involves exploration (looking further afield,

possibly with a greater risk of failure but also perhaps with a

greater chance of a notable success). How best to navigate the

landscape is in some sense a function of its ‘ruggedness’. ‘Rug-

gedness’ is a term that is hard to define exactly, but if there is a

good correlation between fitness and ‘distance’ a landscape is

said to be (relatively) smooth, whereas if fitness and distance

are weakly correlated—with lots of mountains and valleys

appearing seriatim as distance varies—then the landscape is

more rugged. From this perspective, exploitation makes

more sense for smooth landscapes, whereas exploration

makes more sense for rugged landscapes.

The ability to broaden the landscape and a high degree of

exploration creates opportunities to challenge the existing

dogma and thus to lay the path to new discoveries. ‘History

is replete with tragic and comic confrontations between

experts fanatically attempting to enclose knowledge within

a definitive representation of the world and discoverers stub-

bornly attempting to open, enlarge and disrupt it. This

confrontational need to oppose dogmas and consecrated

knowledge in order to achieve momentous discoveries did
not always originate from improved hypotheses about the

natural world. Certain major findings were not only made

in spite of a misconception, sometimes they happened

precisely because of it’ [191].
8. Concluding remarks
This is a broad subject, and in a short article, we cannot poss-

ibly hope to be comprehensive. However, we find that the

evolutionary metaphor is indeed extremely (and possibly

surprisingly) useful for understanding diverse processes of

innovation both in science and industry. It is important to

recognize from the beginning which path one wants to

pursue—disruptive or incremental innovation. If one would

decide to engage in the development of a disruptive inno-

vation, be it in industry or science, two key aspects should

be taken into consideration: time and landscape. As dis-

cussed in the article, disruptive innovation will have a

bigger impact but it could take a long time, for example the

recognition of most breakthrough innovations came many

years later [192]. In terms of the landscape, incremental inno-

vation follows a more gradual and specific path within given

boundaries, while disruptive innovation, possibly in a way

similar to so-called blue sky research starts ‘along a path

but being free to branch out’ [192] and explore beyond the

local landscape. Such a recognition implies that one can

seek to promote creativity and innovation by adopting and

adapting such evolutionary principles. While many centuries

separate Plato and Darwin, it seems that Platonic virtue or

true virtue may be evolved as well as attained.
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35. Solé RV, Valverde S, Casals MR, Kauffman SA,
Farmer D, Eldredge N. 2013 The evolutionary
ecology of technological innovations. Complexity 18,
15 – 27. (doi:10.1002/Cplx.21436)

36. Gabora L. 2013 An evolutionary framework for
cultural change: selectionism versus communal
exchange. Phys. Life Rev. 10, 117 – 145. (doi:10.
1016/j.plrev.2013.03.006)

37. Wagner A, Rosen W. 2014 Spaces of the possible:
universal Darwinism and the wall between
technological and biological innovation. J. R. Soc.
Interface 11, 20131190. (doi:10.1098/rsif.2013.1190)

38. Sigalovsky IS. 2009 Trend of information
coordination: new subtrend and its mechanism. In
Proc. TRIZ-Fest 2009, Saint Petersburg, 27 – 29 July.
See http://triz-summit.ru/file.../TESE%20and%20
Medical%20Imaging%201IS.doc.

39. Al’tshuller GS. 1984 Creativity as an exact science.
London, UK: Gordon & Breach.

40. Hua Z, Yang J, Coulibaly S, Zhang B. 2006 Integration
TRIZ with problem-solving tools: a literature review
from 1995 to 2006. Int. J. Bus. Innov. Res. 1,
111 – 128. (doi:10.1504/IJBIR.2006.011091)

41. Sheng ILS, Kok-Soo T. 2010 Eco-efficient product
design using theory of inventive problem solving
(TRIZ) principles. Am. J. Appl. Sci. 7, 852 – 858.
(doi:10.3844/ajassp.2010.852.858)

42. Gadd K. 2011 TRIZ for engineers: enabling inventive
problem solving. Chichester, UK: Wiley.

43. Lurie-Luke E. 2014 Product and technology
innovation: what can biomimicry inspire? Biotechnol.
Adv. 32, 1494 – 1505. (doi:10.1016/j.biotechadv.
2014.10.002)

44. Goldberg DE. 1989 Genetic algorithms in search,
optimization and machine learning. London, UK:
Addison-Wesley.

45. Holland JH. 1992 Adaption in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence.
Cambridge, MA: MIT Press.
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178. Bäck T, Fogel DB, Michalewicz Z. 2000 Evolutionary
computation 1: basic algorithms and operators.
Bristol, UK: IOP Publishing.
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