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Introduction: Deep brain stimulation is a safe and effective neurointerventional

technique for the treatment of movement disorders. Electrical stimulation of subcortical

structures may exert a control on seizure generators initiating epileptic activities. The aim

of this review is to present the targets of the deep brain stimulation for the treatment of

drug-resistant epilepsy.

Methods: We performed a structured review of the literature from 1980 to 2018 using

Medline and PubMed. Articles assessing the impact of deep brain stimulation on seizure

frequency in patients with DRE were selected. Meta-analyses, randomized controlled

trials, and observational studies were included.

Results: To date, deep brain stimulation of various neural targets has been investigated

in animal experiments and humans. This article presents the use of stimulation of

the anterior and centromedian nucleus of the thalamus, hippocampus, basal ganglia,

cerebellum and hypothalamus. Anterior thalamic stimulation has demonstrated efficacy

and there is evidence to recommend it as the target of choice.

Conclusion: Deep brain stimulation for seizures may be an option in patients with

drug-resistant epilepsy. Anterior thalamic nucleus stimulation could be recommended

over other targets.

Keywords: anterior thalamic nucleus, electrical stimulation, neuromodulation, neurostimulation, refractory

epilepsy, target

INTRODUCTION

Deep brain stimulation (DBS) is a neurointerventional technique that involves implanting
electrodes and a pacemaker-like device to deliver pulses of electricity to specific areas of the brain.
Although the mechanism of action remains to be fully elucidated, it is suggested that DBS acts
via focal modulation of specific functional circuits within the brain (1, 2). The fact that the same
DBS parameters and targets can benefit different neurological disorders suggests that DBS does not
act against the pathophysiology of any specific disorder, but rather modulates existing and active
pathologic brain circuits and it is well-tolerated (3).
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The success of DBS for the treatment of Parkinson’s disease
(PD), in conjunction with the benefits of being adjustable,
reversible, and exhibiting a good safety profile, has prompted
investigation into the potential utility of neuromodulation via
DBS for other diseases (4). Tens of thousands of patients
suffering from different forms of neurological disorders have
been treated with DBS worldwide (5), including tremor, dystonia,
obsessive–compulsive disorder, depression, Tourette’s syndrome,
headache, chronic pain, eating disorders, and epilepsy (6). Anti-
epileptic drugs (AEDs) can control seizures in most patients
with epilepsy. However, at least 30% of adults with epilepsy
do not achieve seizure control with AEDs (7) and surgery
to remove or disconnect the epileptogenic zone is not always
an appropriate option (8). These patients may be candidates
for neurostimulation.

The number of potential neural targets in drug-resistant
epilepsy (DRE) has increased over the years. The majority of
available literature suggests targeting the anterior thalamic
nucleus (ATN). In the following sections, we review the clinical
outcomes for the most commonly chosen targets for the
treatment of epilepsy. We included the ATN, centromedian
thalamic nucleus (CMTN), hippocampus, basal ganglia
(caudate nucleus, subthalamic nucleus), posterior hypothalamus
and cerebellum.

MATERIALS AND METHODS

We performed a literature search of the Medline R©, Embase R©,
Index Medicus R©, Scopus, and Cochrane databases from January
1980 to October 2018 that incorporated Medical Subject
Headings and text words for literature related to “deep brain
stimulation” and “drug-resistant epilepsy.” We also searched
bibliographies of pertinent reviews: original articles reference
lists, book chapters and relevant conference proceedings to find
additional documents. We included original retrospective and
prospective studies assessing the impact of DBS on seizure
frequency in patients with DRE regardless of language or country
of origin. Children were classified as subjects younger than 18
years. Systematic reviews, meta-analyses, randomized controlled
trials, and observational studies were included. We also included
studies on experimental, animal or molecular models in search of
an integrative review (basic and clinical science). The following
outcomes were assessed: seizure reduction; seizure freedom;
and time of follow-up. Discrepancies were solved by consensus.
Categorical data were expressed as percentages and quantitative
data as mean, standard deviation, and range. All statistical
analyses were performed with SPSS statistical software package
(SPSS for Mac, v.21, SPSS, Inc., Chicago, IL).

RESULTS AND DISCUSSION

Of the 429 abstracts identified by the search, 145 were reviewed
as full-text articles. Seventy-two articles fulfilled eligibility criteria
and described outcomes in 826 patients. The majority of patients
were diagnosed with generalized or secondary generalized
seizures (75%), while 7.2% included exclusively patients with

focal seizures. Age ranged between 5 and 66 years, with a median
of 30 years. All patients included in the studies had DRE.

Historical Perspective
The beginnings of DBS date back to the late 19th century.
Several authors identified the functional anatomy of the brain
using animal models that went against the established beliefs and
dogmas of the time (9). Horsley and Clarke (10) were pioneers in
the development of stereotactic frameworks for experimental use
in animals. Subsequently Spiegel et al. (11) developed the use of
X-ray pneumoencephalography in 1947 allowing to visualize the
living brain more accurately. As well, this enabled the creation
of stereotactic atlases to guide surgeries. In 1950s we saw the
introduction of neuro-ablative techniques for the treatment of
Parkinsonian tremor, with the study of Albe Fessard et al.
(12). They were the first to report the use of high frequency
electrical stimulation (∼100–200Hz) targeting the intermediate
ventral thalamic nucleus with clinical improvement in tremor
severity (12). The emergence of levodopa as a highly effective
pharmacological treatment for PD in the 1960s limited the
development of DBS, although several authors such asHosobuchi
et al. (13) and other research groups continued their studies
in other pathologies, such as chronic pain and disorders with
impaired level of consciousness with encouraging results.

As further evidence accumulated through the 1980s in regards
to adverse effects of levodopa, such as dyskinesias, and patients
who were resistant to treatment, a better understanding of
the basal ganglia (14) emerged. Furthermore, the subthalamic
nucleus (STN) was identified initially as a central locus of PD
(15) and therefore represented an important potential surgical
target (16). This was eventually introduced into clinical practice
by Pollak et al. (17). Shortly thereafter, they identified the globus
pallidus interna (GPi) as another target in 1994 (18).

From these advances, the use of DBS expanded to other
pathologies such as epilepsy. The first studies investigating
the anti-epileptic effects of DBS in epilepsy were published in
the 1970s and 1980s (19–21). Since then, numerous studies
have been published evaluating the effectiveness and safety of
DBS in epilepsy; however, most studies have limitations as
generally report small number of patients with variable results.
To date, only one large randomized control clinical trial has been
published (22), generating modest evidence of benefit.

Pathophysiology
The basic rationale for DBS as an effective anti-epileptic
therapy is similar to what has been postulated for movement
disorders: potential cellular inhibition or excitation (neuro-
modulation) within the target structure (23). The stimulation
will then either help to disrupt seizure propagation or raises
the overall seizure threshold. If appropriately coordinated, low
frequency stimulation (LFS) has been shown to restore normal
neuronal electrical activity, while high frequency stimulation
(HFS) is typically more effective at disrupting the propagation
of synchronous neuronal activity (24). In hippocampal rat slice
models, HFS enhances the inhibitory tone of the network and
prevents the synchronization and propagation of epileptiform
burst discharges (25).
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There are three different theories behind the selection of
targets: the stimulus can be: (1) directly applied to the suspected
seizure onset zone; (2) applied in deep subcortical structures to
interrupt epileptic networks or; (3) applied over deeply located
fiber bundles, which are connected to different structures within
the brain (1, 2). The direct stimulation of the epileptogenic
zone alters the tissue excitability and neuronal synchronization
and can have an inhibitory effect, without causing functional
deficits (1). Direct targets include the hippocampus, amygdala,
hypothalamus or specific cortical zones. The indirect stimulation
of deep structures may suppress neuronal circuits that favor
seizure emergence. These targets include the cerebellum, basal
ganglia and thalamus (2). Stimulation of fiber bundles in
structures such as fornix or corpus callosum alter the threshold
of seizure induction by modulation of neuronal circuits
which are located in different but connected brain structures
(26) (see Figure 1).

Networks
Papez circuit links hippocampal output via the fornix and
mammillary nuclei to the ATN. Projections from the ATN then
travel through the cingulum bundle to the parahippocampal
cortex and complete the circuit by returning to the hippocampus.
Animal studies have supported the role of this circuit as being
important in seizure occurrence (27, 28). Alterations in Papez’
circuit have been observed in multiple forms of epilepsy. The
cerebellum, STN, and CMNT all have projections to the circuit
of Papez and have therefore been considered as potentially
therapeutic DBS targets for seizure reduction (29).

Another important network is the cortico-thalamo-cortical
loop, which has been associated with absence epilepsy (30) and
motor seizures (31) in animal models. Lesional studies in non-
human primates with focal epilepsy showed almost complete
suppression of seizures with thalamotomy (32). More recent
studies using optogenetic techniques have shown that both
thalamic and cortical neurons can trigger seizures, contrary to
previous hypotheses (33–35). It has been proposed that the
thalamocortical pathway acts as a ”choke point” in the disruption
of seizure propagation (30).

Basic Mechanisms
The mechanism of action underlying DBS remains poorly
understood. Its action on neuronal circuits is likely multifactorial
and complex. The initial DBS study suggested that its effect
was inhibitory (36). This inhibition could be explained by either
the blockade of depolarization and inactivation of voltage-gated
currents, or, alternatively, by activation of GABAergic afferents
in the stimulated nucleus (37). It is not completely clear if
the therapeutic effects of DBS occur due to the stimulation
of neurons, glial cells, passage fibers or afferent inputs to
target neurons (38). Some studies have identified that activation
thresholds were lowest in myelinated axons, and sequentially
increased in unmyelinated axons, dendrites, and cell bodies (39,
40). In addition to orthodromic activation of efferent axons,
multiple studies conducted in animal models and humans with
PD have shown that DBS excites afferent axons in an antidromic
manner (41, 42).

Other studies have shown that DBS stimulates neurons
and astrocytes, producing a release of glutamate, D-serine
and ATP (43). The activation of astrocytes leads to neuronal
modulation through brain flow and neurovascular factors (44,
45). In addition, a “microlesion effect” has been proposed.
It is demonstrated by clinical improvement in patients prior
to turning the device ON, which favors the astrocytes
activation hypothesis (46). Electrotaxis, the mechanism by which
progenitor cells migrate through the electric current produced
by DBS (47), seems to be based on inducing synthesis of growth
factors and gene expression, which enhance neuroplasticity and
neurogenesis (48, 49).

Neurostimulation is classified according to the method
of stimulation (50). An open-loop neurostimulation system
applies chronic, intermittent or continuous stimulation to
inhibit epileptiform activity without reference to the patient’s
clinical symptoms or ongoing electroencephalogram (EEG)
activity. Using an implanted seizure detection device, closed-
loop stimulation provides more efficient treatment by adjusting
the stimulation settings in response to EEG changes, before
application of electrical stimuli (2). A burst of stimulation
is applied, with the intention of terminating the detected
bioelectrical change (51). Recent evidence supports the concept
that closed-loop stimulation (feedback-controlled) can be
more effective than open-loop therapy (52). The responsive
neurostimulator system (RNS, NeuroPace, Inc., Mountain-view,
CA, USA) is a prime example of a closed-loop system and has
been approved by the FDA for use in epilepsy. This system applies
electrical stimulation to a previously defined seizure-onset zone,
triggered by detection of electrophysiological signatures of a
seizure in real-time (53). RNS has demonstrated efficacy in the
reduction of epileptic seizures in long-term studies, increases in
quality of life scores and acceptable safety (51, 54).

TECHNIQUE

The DBS procedure consists of three steps: (1) preoperative
planning, (2) surgical implantation, and (3) postoperative
assessment. Prior to surgery, stereotactic coordinates for the
target region are obtained by merging magnetic resonance
imaging (MRI) of the patient’s brain with a brain atlas (55).
DBS for DRE is carried out with the patient under local or
general anesthesia. The surgical procedure typically takes up
to seven hours to complete and involves a multidisciplinary
team of surgeons, epileptologists, and technical device staff.
First, the exact placement and trajectory path for the electrode
lead is determined. Next, burr holes are carefully drilled at
the planned entry points for the electrodes. Region-specific
neuronal activity, as a functional landmark, is used to verify
the target structure during surgical procedure. One or more
permanent microelectrodes are inserted into the brain using
imaging guidance. Intraoperative fluoroscopy and postoperative
MRI or computed tomography (CT) scans are acquired to
confirm electrode placement. Finally, lead extenders are tunneled
subcutaneously down the neck to below the clavicle, in which the
pulse generator is implanted.
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FIGURE 1 | Targets of deep brain stimulation.

Old frame-based systems utilize a fixed frame that surrounds
the patient’s head entirely. New frameless systems are essentially
skull-mounted aiming systems. The patient’s head is registered
to a scan containing the planned trajectory using intraoperative
imaging, and a neuro-navigation system is then used to align the
surgical trajectory with the plan. Compared to their frame-based
counterparts, the new frameless systems provide benefits, such as
increased patient comfort and shorter operating times. A recent
American meta-analysis found a clinically insignificant loss of
accuracy with frameless methods, they can therefore represent a
reasonable alternative to frame-based methods (56).

DBS Parameters
Stimulation parameters in epilepsy have been chosen empirically
in the last 40 years, based on investigator experience in
other pathologies, (primarily movement disorders), and center
preferences. In some centers, epilepsy specialists even use
electrodes that have been developed specifically for the treatment
of PD (57). It is difficult to draw conclusions from existing studies
suggesting parameters and predictors of efficacy, as they have
been done with a small number of patients.

The evidence is scarce and often contradictory. The SANTE
study found no favorable parameters for frequency, voltage,
current, or pulse width after a long term follow up (22). There is
no clear difference between cycling and continuous stimulation
(58), or unilateral and bilateral stimulation (57). To date, usual
stimulation parameters are: frequency≥100Hz and voltage at 1–
10V for stimulation of the ANT; frequency ≥130Hz and voltage
at 1–5V for hippocampal and STN stimulation; HFS at voltage
1–10V for stimulation of the CMNT; and low (10Hz) or high
(200Hz) stimulation for the cerebellum (59). However, as there
are currently no clinical randomized control trials comparing
the different stimulation paradigms, the optimal parameters for
epilepsy remain unknown.

Most DBS systems use a continuous, high frequency (100–
250Hz) pulse train (55). After surgery, several postoperative
outpatient sessions are conducted over the course of 3–6 months,
by a clinician who optimizes stimulation parameters based on
patient feedback and seizure control (60). Often the clinician is
a neurologist or an epilepsy nurse, who determines the optimal
parameters including amplitude, frequency and pulse width.

TARGETS OF STIMULATION

Thalamus
Anterior Thalamic Nucleus (ATN)
The ATN is the most widely used target for DBS in treatment of
DRE (22). It has been preferred because of its size, its distance
from vascular structures (24), and its extensive connections.
Several studies have indicated that the anterior thalamic region
is crucial to the maintenance and propagation of seizures (61).
This is explained by its connections to the limbic system
through the fornix and mammillothalamic tract with widespread
and extended projections to the cingulate, entorhinal cortex,
hippocampus, orbitofrontal cortex, and caudate, all of which have
been implicated in the pathogenesis of focal epilepsy (62).

Small open-label, uncontrolled, pilot studies have shown
clinical benefits. A 49% reduction of seizure frequency was
reported in four patients after 44 months of follow-up (58).
Similarly, a mean reduction of 75% was observed in four patients
with mesial temporal lobe epilepsy (TLE) after treatment with
DBS-ATN (63). Lee and colleagues investigated 15 patients with
DRE, who underwent placement of bilateral DBS electrodes
in the ATN. They showed a significant decrease (70%) in
seizure frequency and it was concluded that the short-term
outcome of ATN-DBS directly reflects the long-term outcome
(64). Additionally, Kerrigan et al. (65) reported four out of
five patients with significant reductions in the frequency and
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severity of seizures after a 36 month follow-up, without any
complications. Hodaie et al. (61) reported a mean reduction of
54% in seizure frequency during a 15 month follow-up, also
without adverse effects. Finally, Andrade et al. (66) described
five of six patients (83%) with at least 50% improvement in
seizure frequency over a mean follow-up period of 5 years. Sleep
disruption and neuropsychiatric symptoms have been reported
as a voltage-dependent adverse effect of DBS in ATN in patients
with epilepsy (67).

These studies led to a randomized clinical trial in 2010 called
Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy
(SANTE) (22). This study was amulticenter, double blind, clinical
randomized control trial investigating the use of bilateral DBS of
the ATN for the treatment of localization-related epilepsy. One
hundred and ten patients with focal or secondarily generalized
seizures, intractable to drug treatment, were divided into two
groups. Half of the participants received stimulation, and half
of the patients received no stimulation over a 3-month blinded
phase. Subsequently, all patients received un-blinded stimulation.
This trial reported significant improvement in seizure frequency,
especially in focal seizures with altered awareness and severe
seizures after 25 months of follow-up. Of the 110 patients
initially enrolled in the study, 81 (74%) completed the follow-
up period. Among these patients, the median decrease in seizure
frequency was 56%, ranging widely from a 26% increase in
frequency to complete seizure freedom (six patients). Median
seizure frequency reduction continued to improve over the 3
years of the trial, with a 41%, 56%, and 68% median seizure
frequency reduction at 1 year, 2 years, and 3 years of DBS,
respectively, with 29% greater reduction in seizure attacks in
the stimulated group compared to the control group, observed
during the last month of treatment (22).

No surgery-related symptomatic hemorrhages or deaths were
reported, although two participants had transient, stimulation-
induced seizures. Other adverse events included paraesthesias at
the implant site in 18%, local pain in 11%, and infection in 9% of
cases. Depression and memory impairment were more frequent
in the stimulated group compared with the controls. Patients
with temporal lobe seizures showed a greater benefit during
the blinded phase compared with those with extratemporal or
multifocal seizure onsets (62). Some studies have suggested
that bitemporal mesial epilepsy may be the most responsive to
ATN stimulation (22). Direct targeting in the ATN using high-
resolution MRI is likely superior to indirect targeting due to
extensive individual variation in the location of the ATN and
may therefore improve the efficacy of DBS (68). Furthermore,
performance of ATN-DBS parameters with simultaneous EEG
recording during the ATN-DBS has been suggested to improve
the therapeutic efficacy by monitoring of EEG desynchronization
(69). As demonstrated in previous studies, DBS had a better effect
over time.

Centromedian Nucleus of Thalamus
(CMNT)
Dense cluster of axons project from CMNT, a midline
thalamic structure, to the dorsolateral part of putamen. The

CMNT also projects to the cerebral cortex, principally to the
motor and premotor cortices (70). Anatomical patterns of
CMNT connections support its role in the pathophysiology
of generalized seizures. Animal studies have demonstrated the
CMNTs role in the initiation of seizures (71, 72) as well as in
improvement of level of postictal consciousness after stimulation
of the CMNT (73).

Stimulation of the CMNT in humans for treatment of DRE
was first performed by Velasco and colleagues (74). CMNT
stimulation appears to be more suitable for the control of absence
and generalized seizures, especially in patients with primary or
secondary Lennox Gastaut syndrome (LGS) with up to 80%
of patients showing a good response. It does not appear to
be effective for the treatment of focal seizures with altered
awareness (74). Targeting the parvocellular division of the CMNT
bilaterally, Velasco et al. (75) observed a reduction in seizure
frequency in 13 patients with LGS. However, this was an open-
label uncontrolled case series. In the only controlled pilot study
of CMNT stimulation, preformed in seven patients, Fisher and
colleagues found a 50% reduction in seizure frequency in three
patients, treated with 24 h/day continuous stimulator trains (76).

Eleven patients with generalized or frontal lobe DRE
epilepsy were recruited at King’s College Hospital (London,
United Kingdom) and at the University Hospital La Princesa
(Madrid, Spain) (77). They underwent bilateral DBS targeting the
CMNT. Among the eleven patients, seven (64%) demonstrated
improvement. Among the five patients with frontal lobe epilepsy,
only one patient (20%) had significant improvement (more
than 50% of reduction in seizure frequency) during the blind
period; and two (40%) during the long-term extension phase.
However, all six patients (100%) with generalized epilepsy had
significant improvement in seizure frequency during the blind
period; and in the long-term extension phase, five of the six
(83%) patients showed more than 50% improvement in the
frequency of seizures. Among patients with generalized DRE
epilepsy, DBS implantation and stimulation of the CMNT
appeared to be effective and safe. One patient (9%) had the
device removed 6 months after implantation due to infection
and one patient (9%) reported a transient agraphia in the first
4 days following implantation. Improvement in seizure attacks
was observed during months 3 to 50 with the DBS device turned
OFF (77). Additional large and well-controlled studies for CMNT
stimulation are needed to identify the efficacy, mechanism and
the target population (Table 1).

Hippocampus
TLE is the most frequent focal epilepsy syndrome in humans
and is frequently associated with hippocampal sclerosis and DRE.
Temporal lobe resection is the optimal therapy for patients with
refractory mesial TLE (97). Unfortunately, this is contraindicated
in a considerable number of patients, including those whose
seizures originate in both temporal lobes, those at risk for
a postoperative decline in memory, cognitive function and
language, and those who have had a previous temporal lobectomy
but continue to have seizures originating from the contralateral
temporal lobe (98).
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TABLE 1 | Clinical studies of Bi-ATN and CMT-DBS for the treatment of Epilepsy.

Author/year Mean age

(years)

Design n Seizure type (s) Follow up

(months)

Average seizure reduction (range)

BI-ATN

Upton et al. (21) 24 Open label 6 CPS >36 4/6 had “significant clinical control”

Sussman et al. (78)

(Abstract)

NR Open label 5 CPS, SGTC 12–24 60% showed “improvement”

Hodaie et al. (61)

Andrade et al. (66)

30 Single blind 5 (+1) GTC, DA, CPS, AA, SGTC, PM 4–7 years 55% (24–89%)

Kerrigan et al. (65) 36 Open label 5 SPS, CPS, SGTC 20.4 (6–36) 48% (−57–98%) of “serious seizures”

Lee et al. (79) (&

Bi-STN)

22 Open label 3 TS, DA, HM, AM, SGTC 6 (2–10) 75.4% (50–90.6%);

3/3 RR

Lim et al. (58) 27 Open label 4 G, P, STGC 24 49% (35–76%);

1/4 RR

Osorio et al. (63) 31 Single blind 4 (Bi- MTLE)

SGTC, CPS, SPS, DA

36 75.6% (53–92%);

4/4 RR

Andrade et al. (80) 29, 45 Open label 2 (DRA)

SGTC, MYO, CS, GTC

120 98% of SGTC in one; 66% total in

other

Fisher et al. (22)

(SANTE)

36 Clinical trial

(Double blind,

randomized,

parallel group)

54 55* CPS, SGTC 24 26% above controls after 2 months;

56% median reduction after 2 years

Lee et al. (64) 31 Open label 15 CPS, GTC, SPS 39 (24–67) 70.5% (0–100%);

13/15 RR

Oh et al. (81) 33 Open label 9 CPS, SGTC 34.6 (22–60) 57.9% (35.6–90.4%);

7/9 RR

Van Gompel et al. (82)

(& Bi-HC)

26, 32 Open label 2 SPS, CPS, SGTC 3 80% in one; 53% in other;

2/2 RR

Piacentino et al. (83) 38 Open label 6 (LGS), CPS, SGTC >36 3/5 RR**

Voges et al. (67) 37 Case-Cohort

study, Open

label

9 CPS, SGTC 28 7/9 RR

Lehtimaki et al. (84) 35 Open label 15 NR 25.2 (9–52) 10/15 RR

Salanova et al. (85)

(SANTE)

NR Clinical trial 83 SANTE study 61 69%

Krishna et al. (86) 32 Open label 16 SPS, CPS, SGTC, GTC, MYO, DA 52 65% (−500–99%) at 3 y;

11/16 RR

Franco et al. (87) 51, 48 Open label 2 (SBH)

CPS, SGTC

18, 12 61% in one, 75% in other;

2/2 RR

Valentin et al. (88) 15 Open label 1 SPS 12 >60%

Nora et al. (89) 30 Open label 1 GTC 40 87%

Piacentino et al. (90) 48 Open label 1 CPS, GTC 60 100%***

Jarvenpaa et al. (91) 38 Open label 16 NR 24 12/16 RR

CMNT

Velasco et al. (92) 18 Open label 5 GTC, CPS, MYO, DA 6–37 80–100% GTC;

60–80% CPS

Fisher et al. (76) 28 Clinical trial

(Double blind,

cross over)

6 GTC 9 30%

Velasco et al. (74) 19 Clinical trial

(Open label)

13 (LGS)

AA, GTC, CPS, SGTC

41.2 (12–4) 81.6% (53.1–100%) LG;

57.3% (13–98.6%) SGTC

Chkhenkeli et al. (93) (&

HCN, CDN)

21–40

range

Single blind 5 of 54 SPS, GTC, CPS, SGTC, TS, PM ≤18 4/5 “worthwhile improvement”;1/5 no

improvementU

Velasco et al. (75) 13 Open label 13 (LGS) AA, GTC 46 (23–132) 80% (30–100%)

Andrade et al. (66) NR Open label 2 GTC, SPS, CPS, SGTC ≤7 years 0/2 RR

Cukiert et al. (94) 29 Open label 4 DA, AA, MYO, TS, TC, TA 18 (12–24) 80% (65–98%)

Valentin et al. (95) 27 Open label 1 RSE 6 100%

(Continued)
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TABLE 1 | Continued

Author/year Mean age

(years)

Design n Seizure type (s) Follow up

(months)

Average seizure reduction (range)

Valentin et al. (77) 37 Single blind 11 G or FLE 24 (12–66) 82% (40–100%) G;

49% (0–92%) FLE;

6/6 RR in G;

1/5 RR in FLE

Son et al. (96) 29 Open label 14 (LGS) SPS, CPS, GTC, G, DA,

MYO, AA

18.2 68% (25–100%);

11/14 RR

Valentin et al. (88) 10, 8 Open label 2 GTC, TS, TA, DA, MYO 48, 18 >60% in one; no significant reduction

in other

Seizure types: G, Generalized; P, Partial; CS, Clonic; SPS, Simple partial seizure; CPS, Complex partial seizure; DA, Drop attack: atonic; DIA, Dialeptic; GTC, Generalized tonic-clonic;

AA, Atypical absence; SGTC, Secondarily generalized; PM, Partial motor; TS, Tonic; TC, Tonic-clonic; TA, Typical Absence; HM, Hypermotor; AM, Automotor; MYO, Myoclonic; RSE,

Refractory status epilepticus; DRA, Dravet Syndrome; SBH, Subcortical band heterotopia; LGS, Lennox-Gastaut Syndrome.

Targets: ATN, Anterior thalamic nucleus; CMNT, Centromedian nucleus of thalamus; HCN, Head of caudate nucleus; CDN, Cerebellar dentate nucleus.

Seizure onset: Bi, Bilateral; Uni, Unilateral; TLE, Temporal lobe epilepsy; MTLE, medial temporal lobe epilepsy; FLE, Frontal lobe epilepsy.

Outcomes: RR: Responders rate (Seizure reduction ≥50%); Serious Seizures: Potentially injurious seizures (SGTC or CPS associated with falls).

Other: NR, Not report.
*SANTE trial control patients (22).
**One died, not related to DBS (83).
***The patient had long-term significant reduction in seizure frequency even with an absent electric stimulation (90).
UEngel Classification (93).

Twenty years ago, hippocampal LFS [2-Hz pulses −500 µA
base to peak, 1ms duration biphasic square-wave pulses] was
used to trigger seizures in experimental models (99). Recently,
studies done in rat models of TLE have demonstrated that
LFS applied at a frequency of 1Hz, significantly reduced the
excitability of the neuronal tissue, resulting in decreased seizure
frequency (100). Remarkably, hippocampal HFS can protect
hippocampal neurons against kainate neurotoxicity in macaques,
likely via the inhibition of apoptosis (101).

Continuous electrical stimulation, especially with high
frequencies (130Hz), has been shown to completely inhibit
picrotoxin- and high-K+-induced epileptiform activity in
animal in vivo models of epilepsy (102, 103). Several clinical
investigations support the anti-seizure effect of electrical
stimulation of the hippocampus. Direct stimulation over the

suspicious epileptogenic zone within the hippocampus is applied
in this procedure. Two studies describe a decrease in interictal

epileptiform discharges (93, 104). Téllez-Zenteno and his group

reported a 15% seizure frequency reduction in four patients
after unilateral DBS in the hippocampus (98). Boon et al.
(105) studied the effect of DBS in medial temporal lobe in 10
patients with DRE. After mean follow-up of 31 months, one
patient was seizure free, one demonstrated a more than 90%
reduction in seizure frequency; five of 10 patients had ∼50%
seizure-frequency reduction; two had a reduction of 30–49%;
and one remaining patient was a non-responder, with no change
in seizure frequency. No serios clinical adverse effects (except
an asymptomatic intracranial hemorrhage in one patient) or
alterations in clinical neurological testing have been reported.
In another study, McLachlan et al. (106) studied the effect of
continuous bilateral electrical stimulation of the hippocampus
in two patients with seizures originating from bilateral mesial
temporal lobes. Seizure frequency decreased by 33% in both
patients during stimulation and remained 25% lower for the 3
months after stimulation was turned off. No consistent changes

were seen in objective or subjective measures of memory. No
other adverse effects were reported. More surprisingly, Vonck
et al. (107) described three patients with neuromodulation of
the amygdala-hippocampal junction who exhibited a 50–90%
decrease in seizures. The larger prospective, controlled, double-
blind study evaluating the effects of Hippocampus-DBS in 16
TLE patients has shown that HFS (130Hz) is effective in reducing
seizure frequency in patients with refractory TLE. Fifty-percent of
this cohort became seizure-free (108).

To evaluate anatomical and functional changes in amygdala-
hippocampal function after DBS in TLE patients, several studies
have been conducted. Velasco et al. (109) found that by extending
the period of follow-up from 18 months to seven years, patients
could be divided into two groups: patients with normal and
abnormal MRI studies. Ninety five percent of patients with non-
lesional epilepsy exhibited more than 95% of improvement, while
only 50–70% of patients with hippocampal sclerosis identified
on MRI showed improvement with DBS. None of these patients
exhibited neuropsychological deterioration. Micro-lesions have
been reported in a few epileptic patients, following the diagnostic
implantation of depth electrodes in the temporal lobe (110, 111).
Altogether, DBS appears to be a safe and valuable option for
patients who suffer from drug-resistant TLE in whom resective
surgery is contraindicated. Hippocampal DBS has also been
found to be a relatively safe procedure. No irreversible cognitive
or psychiatric deficits were encountered (112). However, even
with the potential benefits, hippocampal stimulations cannot
be considered as a first line therapy, in lieu of a resective
procedure (Table 2).

Basal Ganglia
Caudate Nucleus (CN)
The CNmay represent a deep target for the treatment of epilepsy.
Low frequency electrical stimulation has been found to be
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TABLE 2 | Clinical studies of HC-DBS for the treatment of Epilepsy.

Author/year Mean age

(years)

Type of study n Seizure type (s) Follow up

(months)

Average seizure reduction (range)

HC

Velasco et al. (113, 114) 24 Open label 10 (TLE) CPS, SGTC 2 weeks 100% after 6 days

Vonck, 2002 (115) 33 Open label 3 (MTLE) CPS, GTC 5 (3–6) 77% (50–94%)

Vonck et al. (116) NR Open label 7 (TLE)

NR

14 (5.5–21) 43% (0–100%)

Tellez-Zenteno et al. (98) 32 Clinical trial

(Double blind,

cross over)

4 (MTLE)

CPS, SGTC

6 blind 26% (ON) vs. −49% (OFF)

Boon et al. (105) NR Open label 10 (MTLE)

CPS, SPS, SGTC

31 (15–52) 50% (<30–100%)

Velasco et al. (109, 117) 29 Clinical trial 9 (MTLE)

CPS, SGTC

18 (1 blind) 83% (50–100%);

9/9 RR

McLachlan et al. (106) 45, 54 Clinical trial

(Double blind,

cross over)

2 NR 3 33% (ON) vs. 4% (OFF)

Boex et al. (110)

Bondallaz et al. (118)

34 Open label 8 (MTLE) CPS, SGTC 44 67% (0–100%);

6/8 RR

Tyrand, 2012 (119) 32 Open label 12 (TLE)

NR

0 58.1%*

Morrell et al. (53) (RNS trial)

Heck et al. (54) (RNS trial)

34.9 (18–66) Clinical trial 95 of 191 SPS, CPS, SGTC 3 blind

48

38% (ON) vs. 17% (OFF)

53%,

55% RR

Vonck et al. (107) NR Open label 11 (MTLE)

CPS, SPS, SGTC

96 (67–120) 70% (0–100%);

8/11 RR;

Cukiert et al. (57) 37 Single blind 9 (TLE) CPS, SPS, SGTC 30.1 61% (−50–100%); 7/9 RR

Jin et al. (120) NR Open label 3 CPS, SGTC 35 93% (91–95%)

Lim et al. (121) 35 Open label 5 CPS, SGTC 38 45% (22–72%); 3/5 RR

Cukiert et al. (108) 38.4 Clinical trial

(Double blind,

randomized)

16 SPS, CPS 8 (6 blind) 3/14 RR in CPS, 7/16 RR in SPS

Seizure types: P, Partial; CS, Clonic; SPS, Simple partial seizure; CPS, Complex partial seizure; DA, Drop attack: atonic; DIA, Dialeptic; GTC, Generalized tonic-clonic; AA, Atypical

absence; SGTC, Secondarily generalized; PM, Partial motor; TS, Tonic; HM, Hypermotor; MYO, Myoclonic; PME, Progressive myoclonic epilepsy.

Targets: ATN, Anterior thalamic nucleus; VIM, Ventral intermediate nucleus of thalamus; STN, Subthalamic nucleus; HC, Hippocampus.

Seizure onset: Bi, Bilateral; Uni, Unilateral; TLE, Temporal lobe epilepsy; MTLE, medial temporal lobe epilepsy; FLE, Frontal lobe epilepsy.

Outcomes: RR: Responders rate (Seizure reduction ≥50%).

Other: NR, Not report.
*Outcome: Reduction of interictal activity with biphasic stimulation in Hippocampal sclerosis (119).

efficacious when targeting the caudate (112). Interestingly, high
frequency (30–100Hz) stimulation of the head of the caudate
nucleus (HCN) caused enhancement of epileptiform spikes
from the ipsilateral hippocampus and amygdala while, on the
contrary, LFS of the caudate reliably produced inhibitory effects
bilaterally. The caudate loop is a functional entity comprised
of the HCN, thalamus and neocortex. Activation of HCN is
associated with hyperpolarization of cortical neurons, suggesting
that suppression of seizure activity may be a result of stimulation-
induced inhibition of the cortex (122).

Trials studying the effect of caudate stimulation on patients
with epilepsy have not been systematically conducted and have
yielded only marginal results. Sramka and Chkhenkeli (123)
published a study of 74 patients showing reduced interictal
epileptiform activity with both caudate and dentate nucleus
stimulation. Chkhenkeli et al. (93) stimulated the ventral HCN
at low frequency (4–8Hz) in 38 patients, producing seizure

freedom in 21 patients, while improving 35 patients overall
(92%). This group was the first to describe benefit with striatal
stimulation in cases of drug-resistant TLE. Their study was based
on a pathophysiological hypothesis related to the balance of
output between pro-convulsant and anti-convulsant structures,
however, their work suggests that LFS of the CN is anti-epileptic
(124). These results highlight the ability of the basal ganglia to
modulate cortical epileptogenicity. Controlled clinical studies are
necessary to determine efficacy and safety of this anatomical
location. Currently, the CN is not the most frequently targeted
structure in the treatment of DRE.

Subthalamic Nucleus (STN)
STN DBS has been explored as an option to treat motor seizures
through the disruption of pathological cortical synchronization.
Inhibition of the STN may potentially release the inhibitory
effect of the substantia nigra pars reticulata on the dorsal
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midbrain anticonvulsant zone, thus raising the seizure threshold.
This mechanistic rationale has arisen from observations in
animal models (125, 126). The compact and distinct anatomical
structure of the STN makes it a superior surgical target for
electrode stimulation, which has been previously demonstrated
in DBS-STN for treatment of PD.

Benabid et al. (127) reported a series of three patients with
DRE who were implanted with STN-DBS. All patients were
reported to exhibit important reductions in seizure frequency
with stimulation; the first two patients exhibited reductions of
83 and 50%. Afterwards, the group reported a case describing
a 5-year-old girl with DRE caused by focal centroparietal
dysplasia, followed for 30 months. She had a 81% improvement
in the number of seizures. This was most substantially reflected
in reduction in cluster seizures (89%) and diurnal seizures
(88%) (128).

Small studies have been conducted in severely impaired
patients with severe DRE. Chabardes et al. (129) demonstrated a
mean of 60% seizure frequency reduction in 80% of patients (4/5).
They included patients aged from 5 to 38 years (17.6 ± 12.7).
The stimulation was well-tolerated and appeared to demonstrate
efficacy, however there were some complications related to the
procedure in 40% (2/5) of patients; namely, a device infection
in one patient, and a post-implantation subdural hematoma in
a second patient, requiring re-operation.

Forty percent (2/5) of patients who underwent STN-DBS
at the Cleveland Clinic Foundation reported a seizure rate
reduction of 60% at 10 months of follow-up and 80% at 16
months (130). STN/substantia nigra DBS resulted in 30–100%
reduction in seizure frequency of five patients with drug-resistant
myoclonic epilepsy (131). STN-DBS may be a favorable target
in certain epilepsy syndromes, but controlled, blinded trials are
required to demonstrate efficacy and safety.

Cerebellum
The cerebellar nuclei have been some of the oldest targets in DBS,
with initial uncontrolled trials in the 1970s (20) demonstrating
potential efficacy in the treatment of epilepsy. Nuclear activation
of inhibitory Purkinje cells, likely results in the suppression
of excitatory cerebellar output to the thalamus and therefore,
decreased excitatory thalamo-cortical projections, resulting in
overall decreased cortical excitability (132). Disrupting thalamo-
cortical activity has proven to be a useful approach to
stop generalized spike-and-wave discharges in mice. It has
been demonstrated that cerebellar nuclei are modulators of
pathological oscillations during absence seizures (133).

Seventy six percent of epileptic patients (87/115) treated
with cerebellar nuclei modulation demonstrated benefit with a
reduction in seizure frequency. Overall, 27% reported seizure
freedom and 49% reported reduction in seizure frequency and
severity. Those patients with generalized tonic-clonic seizures
benefited the most (134).

Velasco et al. (135) conducted a double blind, randomized
control pilot study with five DRE patients with motor seizures.
They implanted stimulating electrodes on the supero-medial
cerebellar cortex and evaluated the efficacy and safety. After
6 months of stimulation, all patients reported a seizure rate

reduction, on average 41% (14–75%) compared with the control
group. At the end of 24 months, the three (60%) patients who
completed follow up reported a further seizure reduction of
24% (11–38%) (135). In regards to the safety profile of the
intervention, 60% of patients required another procedure owing
to electrode migration, and 20% (one patient) suffered a severe
local infection that finally resulted in long-term antibiotic therapy
and removal of the entire stimulation system (136). After these
preliminary studies, cerebellar stimulations have not been used
in recent studies.

Hypothalamus
Due to the presence of epileptiform activity during depth
electrode recordings of the mammillary bodies, the posterior
hypothalamus has been suggested as a DBS target (137). The
mammillo-thalamic tract stimulation has been used to treat
gelastic seizures secondary to hypothalamic hamartomas, and
has shown an improvement in seizure frequency and severity
(138). A report of two patients by Franzini et al. (139) showed
a reduction up to 80% in seizure frequency from baseline after
9 months of follow-up. This target may be unfavorable due
to consequences of potential hemorrhage in this region during
electrode implantation, as well as possible alterations in sleep-
wake cycle (140). A recent study targeting the posteromedial
hypothalamus reported nine patients with DRE, associated with
intractable aggressive behavior, achieved a significant decrease
in the frequency of epileptic seizures after up to 5 years of
follow-up, achieving an average seizure reduction of 89.6% (141).
Current experience with hypothalamic stimulation is too limited
to draw firm conclusions. Other targets such as the caudal zona
incerta, nucleus accumbens and fornix have been also explored
(see Table 3).

ADVERSE EFFECTS

There are well-known side effects and potential complications
associated with DBS, which have been mainly elucidated by the
literature regarding DBS in the treatment of movement disorders
(153). The overall complication rate for DBS surgeries in patients
with PDwas 7%, which includedmechanical complications (3%),
hemorrhage or infarction (1%), lead removal (1%), hematoma
(0.4%), and infection (0.4%) (154). Comparatively limited
information is available regarding the specific complications of
DBS in patients with epilepsy. The most common stimulation-
related side effects in the SANTE studies were mainly those
expected from implanted electrodes, including stimulation-
related paresthesias (22.7%), implant site pain (20.9%), implant
site infection (12.7%), and subclinical bleeding around electrodes
(22). Other known complications include: wound infection;
lead or extension fracture; erosion; lead tract fibrosis; electrode
migration; external interference with other devices; equipment
infection; pain; transient worsening or new seizures; and
dizziness (59); skin complications [such as abrasions, ulcerations
and aseptic necrosis (155)]; hardware discomfort; ineffective
product (85, 156); and peri-electrode edema (157) that may
produce disorientation, gait instability, headache, seizure or acute
confusion (155).
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TABLE 3 | Clinical studies of STN, Cerebellum (CB), HNC, CZI, pHT, NA, and Fornix -DBS for the treatment of Epilepsy.

Author/year Mean age

(years)

Type of study n Seizure type (s) Follow up

(months)

Average seizure reduction (range)

STN

Benabid et al. (128) 5 Open label 1 SPS 30 80.7%

Chabardes et al. (129) 18 Open label 5 TS, CS, GTC, HM 18 (8–30) 51.4% (0–80.7%)

Shon et al. (142) 23, 22 Open label 2 (FLE) TS 18, 6 86.7% in one;

88.6% in other

Handforth et al. (143) 45, 46 Open label 2 P 26–32 50% and 33%

Lee et al. (79) (& ATN) 20 Open label 3 DIA, SGTC, TS 18, 30, (1 loss) 49.1% (20–71.4%)

Vesper et al. (144) 39 Open label 1 (PME), GTC, MYO 12 50% MYO,

100% GTC

Wille et al. (131) (& VIM) 32 Open label 5 (PME), GTC, MYO 24 (12–42) 30–100%

Capecci et al. (145) 35, 30 Open label 2 PM, GTC, DA, CPS, AA 48, 18 65% in one and 0% in other

CB

Cooper et al. (20) 29 Open label 15 CPS, SGTC, GTC, MYO, TA 27 10/15 “improved”

Van Buren et al. (19) 27 Double blind, cross

over

5 CPS, SGTC, GTC, MYO 15–21 range No significant reduction

Levy et al. (146) 29 Open label 6 GTC 7–20 range 2/6 RR

Bidznski et al. (147) NR Open label 14 NR 10–16 days 13/14 “improved”; 1/14 no change

Wright et al. (148) 30 Clinical trial (Double

blind, cross over)

12 GTC, DA, A, MYO, CPS 6 blind No statistically significant; 11/12 patients

felt it helped

Davis et al. (149) NR Open label 27 Spastic seizures 17 years 23/27 improved; 4/27 no improvement

Chkhenkeli et al. (93) (&

HCN, CDN)

21–40 range Single blind 11 of 54 GTC, CPS, SGTC, TS, PM ≤18 5/11 seizure free;

5/11 “worthwhile improvement”;

1/11 no improvement*

Velasco et al. (135) 26 Clinical trial (Double

blind, cross over)

5 GTC, TS, DA, MYO, AA 24 (3 blind) 67% (ON) vs. 7% (OFF);

76% (62–89%) GTC; 57% (24–90%) TS

HCN

Chkhenkeli et al. (124) NR Open label 57 NR NR Unclear

Chkhenkeli et al. (93) (&

CDN)

NR Open label 38 of 54 GTC, CPS, SGTC, TS, PM ≤18 21/38 Seizure free;

14/38 “worthwhile improvement”;

3/38 no improvement*

CZI

Franzini et al. (139) (&

pHT)

26 Open label 2 (RS)SPS, SE 6, 48 85% in one, and

remission of SE in other;

2/2 RR

Anderson et al. (150) 20 Open label 3 (NSPM)GTC, MYO, TA 4.3 years (3–6) 3/3 “improved”

pHT

Franzini et al. (139) 20, 36 Open label 2 DA, MYO, CPS 9, 60 75% in one and 80% in other;

2/2 RR

Benedetti et al. (141) 21 Open label 5 SPS, CPS, GTC, AA, DA, 5 years 89.6% (25–100%);

5/5 RR

NA

Schmitt et al. (151) 42 Open label 5 SPS, CPS, GTC 6 37.5% median; no significant changes in

mean frequencies;

2/5 RR of DS

Kwoski et al. (152) 37 Clinical trial (double

blind, cross over)

4 SPS, CPS, SGTC 15 (6 blind) 17.2% (ON) vs. −1,6 (OFF) of DS at 28

days;

3/4 RR of DS

FORNIX

Koubeissi et al. (26) 41 Open label 7 (MTLE), SPS, CPS 1–9 days Seizure odd reduced by 92% for day 1–2

Seizure types: SPS, Simple partial seizure; CPS, Complex partial seizure; TA, Typical Absence; GTC, Generalized tonic-clonic; SGTC, Secondarily generalized; SE, Status epilepticus;

DA, Drop attack: atonic; AA, Atypical absence; MYO, Myoclonic; PM, Partial motor; TS, Tonic; RS, Rassmusen syndrome; NSPM, North Sea Progressive Myoclonic Epilepsy.

Targets: CB, Cerebellum; HCN, Head of caudate nucleus; CZI, Caudal zona incerta; pHT, Posterior hypothalamus; NA, Nucleus accumbens; CDN, Cerebellar dentate nucleus.

Seizure onset: Bi, Bilateral; Uni, Unilateral; MTLE, medial temporal lobe epilepsy.

Outcomes: RR: Responders rate (Seizure reduction ≥50%); DS: Disabling seizures (CPS+ GTC).

Other: NR, Not report.
*Engel Classification (93).
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Psychiatric Side Effects
Depression and Suicide
A large variability in the use of diagnostic scales measuring
depression is noted in the existing literature regarding DBS. It is
therefore difficult to directly compare the results of the studies.
Anterior thalamic DBS was initially reported to be associated
with higher rates of memory deficits and depression (158);
however, 5-year (85) and 7-year follow-up (156) of the SANTE
study population found no significant deterioration in cognition
or depression scores. Randomized multicenter and observational
studies have shown improvement in depression and anxiety
scores after DBS in patients with PD (159, 160). However, higher
prevalence of depression after STN-DBS has also been reported
(158, 161). PD patients treated with STN-DBS were also found
to have a higher suicide rate, in a paper published a decade ago.
Suicidal behavior was frequently associated with postoperative
depression and altered impulse regulation (162, 163). A recent
randomized controlled trial did not find a direct association
between suicide and DBS (164). This may be indicative of
improved patient selection criteria in recent years. This is further
complicated by the fact that suicide after DBS has occurred not
only with different anatomic targets (particularly with thalamic
and GPi stimulation) but also with other diseases (dystonia and
essential tremor) (165). Although the evidence is contradictory
and scarce in epilepsy, all patients should be carefully screened
for suicide risk as part of the presurgical workup for DBS surgery.
Additionally, patients should be monitored closely for depression
and suicidality post-operatively.

Apathy
Apathy has been frequently reported as a possible adverse effect
of STN-DBS, however the existing literature is controversial.
Some authors have found significant worsening of apathy scores
3–6 months after surgery (166). They hypothesized a direct
influence of STN-DBS on the limbic system by diffusion of
stimulus to the medial limbic compartment of STN. Recently, a
metanalysis assessing apathy following bilateral DBS of the STN
in PD concluded that the reduction of dopaminergic medication
after surgery may be the cause of worsening apathy in this patient
population (167). Other authors have failed to find significant
differences in apathy prevalence or severity between surgical and
non-surgical patients (168). On the contrary, some publications
have stated positive psychiatric side effects of DBS (169). Results
of STN stimulation in patients with PD in a Polish study
confirmed the positive effects of stimulation on drive and ability
to feel pleasure. The authors demonstrated improvement of
mood, sleep and apathy following the first month after initiation
of stimulation, which was seen independently of improvements
in motor symptoms (170).

Cognitive Deterioration
Cognitive decline reported after DBS mainly affects frontal
subcortical cognitive functions, such as verbal fluency, processing
speed, attention, learning, and working memory (171). Worse
cognitive outcomes after surgery remained unchanged, regardless
of DBS settings or “on” and “off” motor states, suggesting the
cause might be related to lead trajectory or location (172).

Some psychiatric side effects have been also described, such as
psychosis (for example, delusions of marital infidelity resembling
Othello syndrome), and impulse control disorders, such as binge
eating, hypersexuality, hypomania, and secondary increase in
body weight (155).

Other Side Effects
Other less mentioned and more infrequently encountered,
but nonetheless important complications include post-surgical
headache, instability and gait disorders with falls (170, 173),
as well as speech disorders (dysarthria, intelligibility, pitch
variation in speech, worsening hypophonia, stuttering, and
speech articulation problems) (155, 174). When the device is
less frequently used, the complications are higher, for instance,
bilateral cerebellar stimulation has been associated with re-
operation in 60% and serious complications in 20% of the
patients (136).

EPILEPSY COMORBIDITIES

People with epilepsy in the general population have a two to five-
fold risk of somatic comorbid conditions compared to people
without epilepsy. Thus, there is a clear need for an integrated
approach in patients with epilepsy, especially in those with DRE
who are good candidates for electrical stimulation. The process of
localizing DBS targets is undergoing continuous evolution. The
clinical effects of DBS are likely due to the activation of complex,
widespread neuronal networks, directly and indirectly influenced
by the stimulation of a single isolated target. The delivery of such
stimulation may aid in the discovery of strategically combined
targets for electrical stimulation to treat additional neurological,
psychiatric, cognitive and somatic disorders. Computational
modeling (experimental and clinical), engineering designs, and
neuroimaging techniques play a critical role in this process (175).

Depression
Depression is the most common comorbidity of epilepsy,
affecting between 10% to 60% of patients with seizures (176).
Different targets have been used in patients with refractory
major depressive disorder, such as subcallosal cingulate gyrus
(Brodmann area 25), ventral capsule/ventral striatum, medial
forebrain bundle, and the nucleus accumbens. The overall effect
sizes have shown a significant reduction in Hamilton depression
rating scale scores after DBS stimulation in these four regions
(177). Selected patients with refractory depression and DRE
could benefit from stimulation of these targets.

Obesity
There is some evidence that obesity may be more common
in people with epilepsy than in the general population (178).
The pathophysiology of obesity is complex, involving both
altered patterns of eating and satiety, as well as compulsive
behavior surrounding food intake. Proposed stimulation targets
to treat obesity therefore include the hypothalamus and nucleus
accumbens (179). To date, experience with DBS for the treatment
of obesity is limited. Although surgery has been proven to be
safe, no definitive conclusions can be made as to whether it is
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effective. There is an opportunity to study this further in patients
with epilepsy and obesity, especially in those with gelastic seizures
secondary to hypothalamic hamartomas. Further work is needed
to address target selection, the kinetics of DBS, and the ideal
stimulation parameters in this population.

Psychogenic Non-epileptic Seizures
Psychogenic non-epileptic seizures (PNES) are one of the most
common differential diagnoses of epilepsy. PNES are involuntary
episodes of any combination of altered movement, sensation,
or awareness that bears resemblance to epileptic seizures,
but are not accompanied by epileptiform electrical discharges
(180). Unfortunately, PNES are an exclusion criterion for DBS
candidates in most of the epilepsy centers. There are few reports
of the experience with psychogenic movements disorders and
DBS. This literature suggests that DBS does not produce side
effects in patients with psychogenic disorders. One patient with
psychogenic parkinson-like disorder underwent HFS of the STN
for approximately 5 years without side effects, prior to the
device being turned off (181). Similarly, authors from Bethesda
described two cases of psychogenic dystonia who underwent DBS
in the GPi, after initially being thought to have organic dystonia
(182). DBS did not lead to any benefits or side effects for these
patients. These reports further highlight the safety of DBS in
neuronal tissue.

LIMITATIONS

Many of the available publications are non-randomized,
unblinded, uncontrolled small studies. Therefore, the evidence is
susceptible to major biases:

a) Regression to mean: patients are typically implanted when
there is high seizure burden. In all chronic diseases, phases
of high activity and lower activity are observed, thus seizure
burden may have returned to baseline without any therapy.

b) Placebo effect: even in some controlled studies, there is
no “sham-surgery” arm that would allow for estimation
of the effect of an invasive procedure on the subjective
seizure assessment.

c) High expectations of both investigator and patients, resulting
highly suggestible results.

As well, in most studies, concomitant drug changes were allowed,
but were usually not reported; therefore, the effect of stimulation
cannot be accurately measured. Finally, stimulation paradigms
were frequently chosen not on a pathophysiological basis, but
rather on convenience and/or chance: e.g., the 50Hz and pulse
in STN stimulus is based on previously chosen paradigms for
PD treatment. There are usually four or five different stimulation
variables that are freely combined, resulting in hundreds of
different combinations. Further investigations are necessary to
solve these limitations in this promissory area.

FUTURE DIRECTIONS

The scope of DBS is increasing rapidly in parallel with the
understanding of brain circuitry dysfunction inmany pathologies

(183). Investigators are only just beginning to realize the
full potential of this growing field (184). The future of DBS
depends on technological advances in the area: the focus
should be the improvement of clinical knowledge as well as
improved practicality (smaller size devices, increased battery
life, greater tolerance and safety profiles, improved software).
Further understanding of the mechanisms underlying cerebral
circuits in epilepsy and its comorbidities is required, in order to
further define specific criteria and predictors in the selection of
patients who could benefit from DBS. This will be only possible
investing resources in basic research, essential as it forms the
foundation upon which translational research and clinical trials
are built on. The poor results of DBS treatment in some patients
as reported in the literature, may be mitigated in the future with
improvement in patient selection, better target identification, and
the development of more effective stimulation paradigms, such as
closed-loop stimulation (184).

The identification of optimal targets for specific subgroups of
patients, including patients with comorbidities, especially those
with psychiatric disorders, is crucial for further development
(185). Basic science studies have been fundamental in advancing
the understanding of the complexity of alterations in neuronal
networks and continue to provide valuable information
for researchers and clinicians, allowing for further clinical
developments, particularly in the identification of these practical
targets. Modern methodologies such as EEG-fMRI studies are
allowing for the delineation of epileptogenic neuronal networks,
which is increasingly accepted over the classic concept of
the epileptogenic zone (186). Analysis of epileptic neuronal
networks will help guide treatments in a more precise way,
hopefully resulting in more efficacious treatments.

Advances in surgical procedures may include the
implementation of new electrodes to treat a single symptom
synergistically or multiple symptoms at once, which would
additionally allow for the establishment of different stimulation
parameters for each electrode contact.

Finally, optogenetics rests on the use of genetically-encoded,
light sensitive proteins, such as opsins, to modulate neuronal
activity, intracellular signaling pathways, or gene expression
with spatial, directional, temporal, and cell-type specificity (187).
Epilepsy is one the disorders that has been widely explored in
this regard. The ability to inhibit or activate different neurons
with high specificity and resolution has turned it into an
exciting research tool and a possible therapeutic intervention
targeting neurons with abnormal activity (188). Studies in several
animal models have shown a reduction in seizure activity both
electrographically and clinically (189–191). Even so, there are
still several limitations that must be overcome prior to its
application in humans, particularly the ∼1000-fold difference in
brain volume between the rodent models and the much larger
human neuronal circuits that makes optogenetic control difficult.

CONCLUSION

DBS is one of the most remarkable interventions in the history
of functional neurosurgery. Whether it will significantly improve
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the outcomes of DRE patients remains to be seen. DBS tends
to have better results in patients with generalized epilepsy,
although it has been used with success in some patients with
focal-onset seizures. The best DBS targets for each epileptic
syndrome, as well as the optimal combination of stimulation
variables for each target remains speculative, however ATN
stimulation has been performed in the highest number of patients
and with the most rigorous study protocol allowing it to be
recommended over the other targets. Results in hippocampal and
frontal stimulation are suboptimal and should be reserved only
for patients in whom resective procedures are contraindicated.
Surgery should be recommended before potential hippocampal

or frontal stimulation is considered. Targets, such as the CN and
cerebellar nuclei, needmore exploration. There is a need for large,
well-designed randomized control trials to validate and optimize
the efficacy and safety of DBS.
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