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Objective: To establish and validate a radiomics nomogram based on the features of the
primary tumor for predicting preoperative pathological extramural venous invasion (EMVI)
in rectal cancer using machine learning.

Methods: The clinical and imaging data of 281 patients with primary rectal cancer from
April 2012 to May 2018 were retrospectively analyzed. All the patients were divided into a
training set (n = 198) and a test set (N = 83) respectively. The radiomics features of the
primary tumor were extracted from the enhanced computed tomography (CT), the T2-
weighted imaging (T2WI) and the gadolinium contrast-enhanced T1-weighted imaging
(CE-TIWI) of each patient. One optimal radiomics signature extracted from each modal
image was generated by receiver operating characteristic (ROC) curve analysis after
dimensionality reduction. Three kinds of models were constructed based on training set,
including the clinical model (the optimal radiomics signature combining with the clinical
features), the magnetic resonance imaging model (the optimal radiomics signature
combining with the mrEMVI status) and the integrated model (the optimal radiomics
signature combining with both the clinical features and the mrEMVI status). Finally, the
optimal model was selected to create a radiomics nomogram. The performance of the
nomogram to evaluate clinical efficacy was verified by ROC curves and decision curve
analysis curves.

Results: The radiomics signature constructed based on T2WI showed the best
performance, with an AUC value of 0.717, a sensitivity of 0.742 and a specificity of
0.621. The radiomics nomogram had the highest prediction efficiency, of which the AUC
was 0.863, the sensitivity was 0.774 and the specificity was 0.801.

Conclusion: The radiomics nomogram had the highest efficiency in predicting EMVI. This
may help patients choose the best treatment strategy and may strengthen personalized
treatment methods to further optimize the treatment effect.

Keywords: rectal cancer, extramural venous invasion, radiomics, magnetic resonance imaging, computed
tomography, prediction
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INTRODUCTION

Rectal cancer is one of the major causes of cancer-related
mortality in the world, with a local recurrence rate of up to
30% related to the surgical technique (1). Local recurrence and
metastasis are the main causes of death in patients with rectal
cancer, and there is much evidence that extramural venous
invasion (EMVI) is an independent predictor of local tumor
recurrence, ectopic nodules, distant metastasis and overall
mortality (2-4). Therefore, the early identification of EMVI is
of great significance for the selection of treatment strategies.

At present, pathological examination is still the gold standard
for evaluating the EMVI status of rectal cancer, but the
pathological EMVI status can only be obtained after surgery,
which is not conducive to early treatment decisions before
surgery. Besides, preoperative neoadjuvant therapy may lead to
the underestimation of EMVI status in postoperative
pathological examination (5). In recent years, studies have
shown that preoperative imaging can improve the prognosis of
rectal cancer (6). Due to the advantages of high spatial resolution,
magnetic resonance imaging (MRI) is an excellent imaging
method to detect the adverse prognostic factors of rectal
cancer, and it is a promising and repeatable technique for the
identification of EM VL. Several studies have shown that MRI has
medium to high sensitivity and specificity in detecting EMVI
compared with pathological evaluation (7-9). However, it should
be noted that MRI may not be able to correctly identify the
invasion of small extramural and intramural vessels, which leads
to the low sensitivity of conventional MRI in the evaluation of
EMVI (10, 11). On the other hand, computed tomography (CT)
can assess the entire abdomen, pelvis and chest, allowing for local
staging and distant metastasis evaluation (12, 13). Accordingly,
modern CT techniques are better suited than MRI to search for
the local tumor extent and distant metastases in the same
imaging session (14). It is well known that EMVT is associated
with disease recurrence, especially in patients with distant
metastasis to the liver (15). Therefore, to some extent,
preoperative CT may help identify EMVI indirectly. However,
the sensitivity of CT for identifying EMVI was low due to its low
resolution in soft tissue (16).

Radiomics is a noninvasive and relatively cost-effective image
evaluation technology (17, 18). At present, radiomics technology
has been widely used in the field of rectal cancer for tumor
staging, prognosis evaluation and metastasis prediction (19).
However, to our knowledge, only Yu et al. have focused on
predicting EMVI based on radiomics (20). But their results
showed that their radiomics model had poor stability and low
sensitivity, which may be resulted from their small amount of
data and defects in the modeling method. In fact, predictive and
prognostic models are an important part of radiology (21), and
highly accurate and reliable models are needed to improve
decision support in clinical practice. Machine learning can be
helpful in this respect (22). Therefore, we hypothesized that a
radiomics model constructed based on machine learning can
improve the prediction accuracy of EMVI, thus enhancing the
application of noninvasive and cost-effective radiomics in the
preoperative prediction of EMVL

The main purpose of this study was to construct and validate
a radiomics nomogram using machine learning to provide a
convenient and quick tool to accurately predict preoperative
EMVTI in clinical practice.

MATERIALS AND METHODS
Patient Data

This retrospective study was approved by the ethics committee of
our institution, and informed consent was not required. A total
of 281 patients who underwent radical resection of rectal cancer
from April 2012 to May 2018 were included in this study, and
their preoperative clinical and imaging data were retrospectively
analyzed. The inclusion criteria were as follows: (1)
pathologically confirmed non-mucinous rectal adenocarcinoma
after surgery, and (2) completed baseline MRI and CT
examinations before surgery. The exclusion criteria were as
follows: (1) received preoperative antitumor treatment for
rectal cancer, (2) incomplete clinical, pathological or imaging
data, or (3) poor quality of CT or MRI images. All patients were
grouped into a training set (n = 198; between April 2012 and May
2016) and a test set (n = 83; between June 2016 and April 2018)
at a ratio of 7:3. The training set was used to build the radiomics
nomogram, and the test set was used for model validation.

Image Acquisition

All patients were examined by abdominal CT and pelvic
(rectum) MRI within 1 week before surgical operation. All
MRI examinations were performed with a 3.0-T MRI scanner
(Discovery 750W®, GE Healthcare, Waukesha, WI). The MRI
sequences included high-resolution T2-weighted imaging
(T2WI) (transverse, coronal and sagittal), T1-weighted imaging
(T1WI) (transverse), diffusion-weighted imaging (DWI)
(transverse) and gadolinium contrast-enhanced TIWI (CE-
T1WI) (transverse) sequences. For venous phase CE-T1WI, the
contrast agent gadodiamide (Omniscan®, GE Medical System,
NJ) was intravenously administered at a dose of 0.1 mmol/kg of
body weight with a flow rate of 3.5 ml/s using a power injector,
followed by a bolus injection of 20 ml of normal saline. Plain and
enhanced CT images were obtained using a 256-detector row CT
scanner (Revolution Xtream®, GE Healthcare, Waukesha, WI).
For enhanced CT imaging, the injection rate of the contrast
medium (Omnipaque® 350, GE Medical System, NJ) was 2.5 ml/s,
and the scan was performed after a 50-s delay. The specific scanning
parameters are provided in the additional materials.

EMVI Assessment

Pathological reports were retrieved and reviewed to obtain EMVI
status. Two experienced pathologists (pathologist A and
pathologist B, both of whom had experience of more than 10
years in the diagnosis of rectal cancer and were blinded to the CT
and MRI data) independently extracted the EMVI status from
the report. The pathological definition of EMVT is the presence of
tumor tissue in the endothelium-lined lumen, which is
surrounded by smooth muscle edges or contains red blood
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cells (23). If there was conflicting information between the EMVI
assessment and other descriptions in the pathological or surgical
report, the two pathologists would discuss the case and reach a
consensus. Finally, 125 EMVI-positive cases and 156 EMVI-
negative cases were identified.

To distinguish pathological EMVI, we defined the EMVI
status evaluated by MRI as mrEMVI. A five-point scoring
system was used for the assessment of mrEMVI (2, 8). The
details of scoring from 0 to 4 are described in the supporting
materials. A score of 0-2 was defined as mrEMVI-negative, and a
score of 3-4 was defined as mrEMVI-positive.

Segmentation and Feature Extraction of
the Primary Tumor

Region of interest (ROI) segmentation was performed on CT and
MRI images by ITK-SNAP software (http://www.itksnap.org).
For CT, segmentation was based on venous phase-enhanced
images. While for MRI, segmentation was based on T2WI and
CE-T1WI. The above segmentation was manually completed by
two experienced radiologists (radiologist A and radiologist B,
with experience of 5 and 12 years in tumor imaging, respectively)
who were blinded to the pathological information. Then, the
segmented image was imported into quantitative Analysis Kit
(AK, version 1.2, GE Healthcare) for image preprocessing,
including resampling the image to a 1 x 1 x 1 mm’ voxel size
and standardizing the image gray level to a scale of 1 to 32 to
eliminate the influence of anisotropy on the extracted features
(24). The image gray-scale intensity level was discretized and
normalized by down-sampling each image to 32 bins to reduce
image noise. Using such fixed values and number of bins the
image gray range was divided into equally spaced intervals.
Therefore, the bin size and intensity resolution of the
discretized volumes depended on the gray-scale value (i.e., four
bin sizes for each gray-level). Then, 378 radiomics features were
extracted from the preprocessed images of each mode, including
histogram features, Form Factor features, gray level co-
occurrence matrix (GLCM) features, run-length matrix (RLM)
features and gray level size zone matrix (GLSZM) features. These
features have been shown to be characteristic of cancer
heterogeneity and may reflect changes in image structure (18).
Details of the features are provided in the additional materials. In
addition, to ensure the robustness of the extracted features, we
used the most effective feature among different radiologists for
manual segmentation. The Spearman rank correlation test was
used to calculate the correlation coefficient (CC) of each feature
between feature set A (from radiologist A) and feature set B
(from radiologist B). Features with CC > 0.8 were considered
robust features (25). The feature values in this study were the
average values of feature set A and feature set B.

Establishment and Evaluation of the
Radiomics Signature

The existence of a “curse of dimensionality” usually makes data
simplification or feature selection necessary to obtain meaningful
results from pattern recognition analysis (26). Therefore, it is
necessary to reduce the dimensionality of the extracted robust

features. The process of dimensionality reduction consists
of two steps. First, the minimum redundancy maximum
correlation (mRMR) algorithm was used to reduce the
dimensionality of the robust features of the training set. The
purpose of the maximum correlation program is to select
features that are most relevant to the EMVI state. At the same
time, the minimum redundancy process ensures minimum
redundancy between the selected features to obtain the optimal
features with a high correlation and a low redundancy (27).
After that, the least absolute shrinkage and selection operator
(LASSO) algorithm was used to select the features for
constructing the radiomics signature from the best feature sets.
Finally, logistic regression was used to construct the radiomics
signature. In addition, to quantify the accuracy of the signature
constructed by different modes (enhanced CT, T2WI and CE-
TIWI), we calculated the EMVI-positive probability score of
each case using the radiomics formula of the training set, which
was defined as the rad score. Moreover, a receiver operating
characteristic (ROC) curve was used to visualize the
experimental results using data from the test set, and the area
under the curve (AUC) values of the training and test sets were
calculated to quantify the prediction performance of the
radiomics signature. In addition, to further select the optimal
radiomics signature, we used the DeLong test to compare the
performance of signatures from different modes.

Construction and Evaluation of the
Radiomics Nomogram

The clinical characteristics of the training set, including gender,
age, tumor location, carcinoembryonic antigen (CEA), degree of
pathological differentiation, and mrEMVI, were analyzed by
stepwise logistic regression to select the independent clinical
predictors of EMVI. According to the best radiomics signature
selected by the DeLong test, different joint models were built
using support vector machine (SVM) combined with each
independent predictor. SVM is a kind of supervised learning
model that is commonly used in pattern recognition,
classification and regression analysis. In recent years, it has
been successfully applied to the diagnosis, prognosis prediction
and treatment of various diseases (28).

To compare the performance of each model, we use the ROC
curve to evaluate the performance of the model in the training set
and used the data of the test set for verification. Finally, the
optimal model was selected to generate a visual radiomics
nomogram. The Hosmer-Lemeshow test was used to analyze
the goodness of fit of the nomogram. The calibration curve was
used to measure the consistency between the predicted EMVI
probability and the EMVTI probability. In addition, to evaluate
the clinical efficacy of the nomogram, we used the nomogram to
calculate the prediction score of EMVI for each patient. Taking
the best cutoff value corresponding to the Youden index
threshold of the ROC curve of training set as the classification
point (29), all patients were divided into a low-risk group and a
high-risk group according to the prediction score, and the
number of patients with EMVI-positive between the two
groups was compared.
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Statistical Analysis

All statistical analyses in the present study were performed with
SPSS (version 25.0), R 3.5.1 and Python 3.5.6. The Kolmogorov-
Smirnov test was used for the normality testing of the
measurement data. The normally distributed data were
evaluated using the independent sample t-test, whereas the
nonnormally distributed data were evaluated using the Mann-
Whitney U test. The differences between categorical variables
were tested by the chi-square test. ICC estimates and their 95%
confident intervals were calculated using SPSS statistical package
version 25 based on a mean-rating (k = 2), absolute-agreement,
2-way mixed-effects model. A two-tailed p-value < 0.05 was
regarded as significantly different.

RESULTS

Patient Clinical Data

The research flow chart is shown in Figure 1. There were no
significant differences in any of clinical features between the
training and test sets, as shown in Table 1. There were significant
differences in lymph node metastasis and mrEMVI between
patients who were EMVI-negative and patients who were EMVI-
positive in the training and test sets. See Table 2 for details.

Diagnostic Performance of the Radiomics
Signature

As is shown in Figure 2, the remaining 16, 20 and 19 features
after dimensionality reduction were extracted from enhanced
CT, T2WI and CE-T1WI images respectively. The performance
of the radiomics signature based on these features both in the
training set and in the test set are as shown in Figure 3. The
DeLong test showed that there was no significant difference in

the AUC values among the three radiomics signatures in the
training set and the test set (P > 0.05). Therefore, we selected the
signature constructed by T2WI as the optimal signature for
the construction of the joint model. Acquiring T2WI image
can avoid both radiation damage and medical risk caused by
contrast medium. In addition, the rad score was calculated based
on each signature model in the training set and test set, and there
were significant differences in the rad score between the EMVI-
positive and EMVI-negative groups (P < 0.05), as shown in
Figure 4. Details of the construction of the radiomics signature
can be found in the supporting materials.

Construction and Performance Evaluation
of the Radiomics Nomogram

Stepwise logistic regression analysis showed that mrEMVI,
degree of pathological differentiation and radiomics signature
were independent predictors of EMVI, as shown in Table 3.
Three models were constructed, including the clinical model (the
optimal radiomics signature combining with the degree of
pathological differentiation), the MRI model (the optimal
radiomics signature combining with the mrEMVTI status) and
the integrated model (the optimal signature radiomics
combining with both the degree of pathological differentiation
and the mrEMVI status). The ROC curve showed that the
AUC value of the integrated model was higher than those of
other models and independent predictors in the training and test
sets. The DeLong test showed that there was significant
difference in the AUC values of the integrated model between
MRI model and Clinical model in training set (P = 0.0129 and
0.0007), and in the test set, there were also significant differences
(P = 0.0462 and 0.0159). Therefore, the radiomics nomogram
was based on the integrated model, as shown in Figures 5 and 6A
and Table 4. Finally, the Hosmer-Lemeshow test showed that
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FIGURE 1 | Research flow chart of the radiomics model.
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TABLE 1 | Descriptive statistics of the two sets.

Variables Level Training set (n = 198) Test set (n = 83) P value
Gender (n, %) Male 79 (39.9) 41 (49.4) 0.181
Female 119 (60.1) 42 (50.6)
Age (year) Mean (sd) 59.3 (10.2) 57.6 (10.8) 0.227
mrEMVI (n, %) No 125 (63.1) 51 (61.5) 0.929
Yes 73 (36.9) 32 (38.5)
Tumor location (n, %) Low-rectum 5 (37.9) 27 (32.5) 0.288
Mid-rectum 85 (42.9) 44 (53)
High-rectum 38 (19.2) 12 (14.5)
MRI LN status (n, %) NO 99 (50) 42 (50.6) 1.000
N1-2 99 (50) 41 (49.4)
CEA (n, %) Normal 143 (72.2) 62 (74.7) 0.78
Abnormal 55 (27.8) 21 (25.9)
Degree of pathological differentiation (n, Low 24 (12.1) 9 (10.8) 0.64
Medium 156 (78.8) 69 (83.1)
High 18 (9.1) 5 (6.0)
mrEMVI, magnetic resonance extramural venous invasion.
TABLE 2 | Clinical characteristics of the training and test sets.
Variables Level Training set (n = 198) Test set (n = 83)
EMVI-negative EMVI-positive P value EMVI-negative EMVI-positive P value
(n=110) (n=88) (n = 46) (n=37)
Gender (n, %) Male 46 (41.8) 33 (37.5) 0.638 24 (52.2) 17 (45.9) 0.731
Female 64 (58.2) 55 (62.5) 22 (47.8) 20 (54.1)
Age (year) Mean (sd) 59 2 (10.4) 59.3 (10.1) 0.974 57 2 (10.7) 58.1 (11) 0.709
mrEMVI (n, %) Negative 6 (86.7) 29 (32.9) <0.001* 35 (76.1) 16 (43.2) 0.002*
Positive 4 (13.3) 59 (67.1) 1(23.9) 21 (56.8)
Location (n, %) Low-rectum 6 (40.9) 27 (30.7) 0.194 9(41.3 8(21.6) 0.162
Mid-rectum 1(46.4) 43 (48.9) 1(45.7) 23 (62.2)
High-rectum 4(12.7) 18 (20.5) 6 (13) 6(16.2)
MRI LN status (n, %) NO 0 (63.6) 29 (39) <0.001* 32 (69.6) 10 (27) <0.001*
N1-2 0 (36.4) 59 (67) 4 (30.4) 27 (73)
CEA (n, %) Normal 85 (77.9) 58 (65.9) 0.106 34 (73.9) 22 (59.5) 0.245
Abnormal 5 (22.7) 30 (34.1) 2 (26.1) 15 (40.5)
Degree of pathological differentiation Low 8 (7.3) 12 (13.6) 0.197 3 (6.5) 6 (16.2) 0.368
(n, %) Medium 89 (80.9) 70 (79.5) 40 (87) 29 (78.4)
High 13 (11.8) 6 (6.8 3 (6.5 2 (5.4)

*P < 0.05. mrEMVI, magnetic resonance extramural venous invasion. EMVI, pathological extramural venous invasion.

the performance of the nomogram was not significantly different
between the training and testing sets (P > 0.05). The calibration
curve showed that the nomogram had better prediction
performance (Figures 6B, C) and decision curve analysis
(DCA) showed that the nomogram had the best clinical net
benefit compared with the other models in the overall dataset
(Figure 6D). Based on the classification value of the nomogram
(cutoff = 0.463), the number of EMVI-positive cases in the low-
risk group and the high-risk group was significantly different
(Figure 6E).

DISCUSSION

In this study, our results showed that there was no significant
difference in the diagnostic performance of EMVI by three
radiomics signatures based on CT-enhanced images, T2WI
and CE-T1WI. T2WTI is not involved in radiation damage and

contrast-induced medical risk. Therefore, T2WI-based radiomics
signature was selected in the present study to combine with
clinical and mrEMVTI data to build the radiomics nomogram.
Our results also showed that the nomogram has the best
predictive performance of the models. In view of the
noninvasive and low-cost characteristics of radiomics
technology, this may provide a new quantifiable tool for the
preoperative evaluation of EMVI status.

In the diagnosis and treatment of rectal cancer, CT is mainly
used for screening tumor metastasis, especially in the diagnosis
of liver and lung metastases (30). However, due to the low signal-
to-noise ratio of CT and the lack of ideal soft tissue resolution,
there are great limitations in the visual evaluation of EMVI by
CT (31). In this study, radiomics technology based on CT images
can be used for EMVI evaluation, implying the advantages of
radiomics technology (32). T2WI shows great performance in
EMVTI evaluation in rectal cancer (10) for its high resolution of
soft tissue. Similarly, the radiomics signature based on T2WI
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showed the highest AUC value in this study. Although some
prior studies have shown that CE-T1WI can display vascular
structure and improve the diagnostic performance of EMVI for
rectal cancer (33), there were no statistically significant
differences observed between CE-T1WI and T2WI using
radiomics signature for evaluation of EMVI in this study,
which indicated that high-resolution T2WI may be more
suitable for radiomics analysis than the CE-T1WT in predicting
EMVT considering the cost, convenience and safety. In general,
T2WT is more suitable for the radiomics analysis of rectal cancer,
which may improve the clinical evaluation of EMVL

The radiomics nomogram obtained in this study also shows
superior performance in predicting EMVI. Our results are better

than those of Brown et al, reporting that the sensitivity and
specificity of conventional MRI for EMVI detection were 62%
and 88% respectively (34), which may be benefit from the
diagnostic performance of the radiomics signature, mrEMVI
and clinical features. Previous studies have confirmed that the
ability of mrEMVI was at least as good as that of routine
histopathology (5). Resembly, our study showed that mrEMVI
had higher diagnostic efficiency of EMVI than that of the
radiomics signature, though the sensitivity of mrEMVI was
significantly lower. Sohn et al. reported that the sensitivity of
MRI in the evaluation of EMVI was only 28.2% (8), as the
smallest vessel diameter that 3.0-T MRI can distinguish is 3 mm.
Theoretically speaking, even if high-resolution T2WT is used, it is
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FIGURE 4 | Scatter plot between EMVI-negative (blue dots) and EMVI-positive (yellow dots) rad scores calculated by radiomics signatures constructed by T2WI (A),
CE-T1WI (B) and CT-enhanced images (C) in the training and test sets.

TABLE 3 | Stepwise logistic regression analysis of EMVI prediction.

Variable Univariate logistic regression Multivariate logistic regression

OR (95%Cl) P value OR (95%Cl) P value
Gender (Male vs Female) 0.334 (0.123-1.721) 0.562 NA NA
Age (per 1 increase) 0.467 (0.282-1.515) 0.628 NA NA
mrEMVI (Negative vs Positive) 7.317 (3.086-17.35) <0.001* 7.351(3.132-17.256 <0.001*
Location (Low vs Mid) 2.443 (1.227-5.872) 0.434 NA NA
Location (Low vs High) 3.646 (1.643-6.563) 0.642 NA NA
MRI LN status (NO vs N1-2) 3.284 (2.341-6.732) 0.672 16.251 (6.549-40.326) <0.0001*
CEA (per 1 increase) 1.557 (0.382-6.337) 0.537 NA NA
Degree of pathological differentiation (Low vs Medium) 2.614 (1.475-14.37) 0.025* 2.665 (1.533-15.473) 0.014*
Degree of pathological differentiation (Low vs High) 0.935 (0.203-4.303) 0.031* 1.043 (0.382-5.482) 0.009*
Radiomics signature 1.463 (1.048-2.042 0.002* 1.5635 (1.105-2.131) 0.01*

NA, not available as the variable, was not included in the multivariate logistic regression. mrEMVI, magnetic resonance extramural venous invasion,; LN, lymph node. *P < 0.05.
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FIGURE 5 | ROC curves of three models in the training set (A) and test set (B). The results show that the integrated model has the highest AUC value.
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TABLE 4 | Diagnostic efficacy of different models and independent clinical predictors.
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FIGURE 6 | Radiomics nomogram for detecting EMVI (A). In the nomogram, a vertical line was drawn according to the value of the rad score to determine the
corresponding value of points. The points of mrEMVI and differentiation stage can also be determined in the same way. The total points were the sum of the three
points above. Finally, a vertical line was drawn according to the value of the total points to determine the probability of EMVI. The calibration curve of the radiomics
nomogram for EMVI in the training set (B) and test set (C). A dashed line indicated the reference line where an ideal nomogram would lie. A dotted line indicated the
performance of the nomogram, while the solid line indicated bias correction in the nomogram. DCA curve (D) for the integrated model, MRI model and clinical model
predicting EMVI in the dataset. The graphs showed that the integrated model had the greatest net benefit. The risk classification performance of the integrated
model in the training and test set (E). *P < 0.05.

Test set

Group Performance features Integrated model MRI model Clinical model mrEMVI Degree of pathological differentiation
Training set AUC 0.863 0.78 0.705 0.74 0.647

Sensitivity 0.774 0.867 0.71 0.613 0.593

Specificity 0.801 0.56 0.669 0.868 0.712
Test set AUC 0.834 0.771 0.699 0.73 0.625

Sensitivity 0.708 0.685 0.746 0.615 0.573

Specificity 0.892 0.829 0.735 0.845 0.763

AUC, area under the curve. mrEMVI, magnetic resonance extramural venous invasion.
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difficult to identify vessels with a diameter less than 3 mm (10,
35). In fact, it is very difficult to identify vessels on MRI, and it
is usually necessary to compare different sequences at the same
level in addition to intravenously using gadolinium contrast agent
to confirm whether it is a vessel. Even if it can be confirmed
as a blood vessel, many cases do not show the typical imaging
features of vascular lumen expansion, irregular shape or the “flow
empty” signal in the blood vessel replaced by the tumor signal.
Therefore, even experienced radiologist can easily miss these
atypical cases. However, the radiomics nomogram can be used
to quantitatively evaluate EMVI through the radiomics analysis of
primary tumors. In this process, only the delineation of the tumor
area is through visual evaluation, which is obviously more
accurate and easier than the all visual evaluation. Therefore, the
radiomics technology has greater clinical advantages compared
with the traditional visual assessment.

Compared to the same type of research by Yu et al. (20), the
diagnostic efficiency of the nomogram in the training set was lower
than that of the radiomics nomogram constructed in their study
(AUC = 0.904), while the diagnostic efficiency of the nomogram in
the test set was higher than that of theirs (AUC = 0.812), which
indicated better stability of our nomogram. This may be caused by
the different radiomics signature. In their study, the nomogram
was constructed by the radiomics signature based on dynamic
contrast-enhanced MRI. While in our research, the radiomics
signature was on the basis of T2WI images. In fact, the use of
contrast medium may affect the choice of radiomics features. The
different doses of contrast medium and the permeability of tissue
microvessels, which were related to the image enhancement effect
(36), would change the distribution of pixels and then affect the
stability of the whole model. In addition, Maxiao et al. (37) found
that the radiomics model constructed by SVM had the best
performance of the different machine learning methods in
evaluating preoperative pathological features. Thus, the model
generated by SVM in our study was more stable than that of Yu et
al, which was built by logistic regression. In addition, the previous
studies have shown that the accuracy of CT based super
physiological vein diameter for predicting EMVI is 0.83 (38),
which is equivalent to the accuracy of nomogram for identifying
EMVI. However, compared with CT radiation damage,
nomogram may be more suitable for clinical practice. Aysegul
et al. Used changes in dimensions of superior recurrent vein (SRV)
and inferior median vein (IMV) and ADC values were used to
predict EMVI (39), and the AUC values were 0.851.0.893 and
0.664, respectively. Although the diagnostic efficiency of IMV was
higher than that of the nomogram, but these indexes were based
on CT examination, while the ADC value based on MRI
examination was significantly lower than that of our nomogram.
In fact, functional imaging such as DWI could not improve the
efficiency of MRI in EMVI detection (35).

There were some limitations in this research. First, this study
was retrospectively. However, eligible patients were consecutively
retrieved from a prospective database that included all patients
with rectal cancer in our hospital. Second, our data are limited to
a single center study, so our results may not be extended to other
medical centers. In the future, multicenter studies are needed to
further verify the results of this study. Finally, this study did not

analyze the correlation between the radiomics features and
clinical features and lacked the interpretability of the radiomics
features. In the future, we will further clarify the interpretability of
the radiomics features.

In conclusion, T2WI-based radiomics technology was
superior to CT and CE-TIWI in predicting the EMVT status in
rectal cancer. At the same time, the radiomics nomogram
combined with clinical features and mrEMVI was a convenient
and noninvasive tool to predict the EMVI status accurately.
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