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Abstract 

Background: The gold standard for the diagnosis of liver fibrosis and nonalcoholic fatty liver disease (NAFLD) is liver 
biopsy. Various noninvasive modalities, e.g., ultrasonography, elastography and clinical predictive scores, have been 
used as alternatives to liver biopsy, with limited performance. Recently, artificial intelligence (AI) models have been 
developed and integrated into noninvasive diagnostic tools to improve their performance.

Methods: We systematically searched for studies on AI-assisted diagnosis of liver fibrosis and NAFLD on MED-
LINE, Scopus, Web of Science and Google Scholar. The pooled sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) and diagnostic odds ratio (DOR) with their 95% confidence intervals (95% CIs) were 
calculated using a random effects model. A summary receiver operating characteristic curve and the area under the 
curve was generated to determine the diagnostic accuracy of the AI-assisted system. Subgroup analyses by diagnos-
tic modalities, population and AI classifiers were performed.

Results: We included 19 studies reporting the performances of AI-assisted ultrasonography, elastrography, com-
puted tomography, magnetic resonance imaging and clinical parameters for the diagnosis of liver fibrosis and 
steatosis. For the diagnosis of liver fibrosis, the pooled sensitivity, specificity, PPV, NPV and DOR were 0.78 (0.71–0.85), 
0.89 (0.81–0.94), 0.72 (0.58–0.83), 0.92 (0.88–0.94) and 31.58 (11.84–84.25), respectively, for cirrhosis; 0.86 (0.80–0.90), 
0.87 (0.80–0.92), 0.85 (0.75–0.91), 0.88 (0.82–0.92) and 37.79 (16.01–89.19), respectively; for advanced fibrosis; and 
0.86 (0.78–0.92), 0.81 (0.77–0.84), 0.88 (0.80–0.93), 0.77 (0.58–0.89) and 26.79 (14.47–49.62), respectively, for signifi-
cant fibrosis. Subgroup analyses showed significant differences in performance for the diagnosis of fibrosis among 
different modalities. The pooled sensitivity, specificity, PPV, NPV and DOR were 0.97 (0.76–1.00), 0.91 (0.78–0.97), 0.95 
(0.87–0.98), 0.93 (0.80–0.98) and 191.52 (38.82–944.81), respectively, for the diagnosis of liver steatosis.

Conclusions: AI-assisted systems have promising potential for the diagnosis of liver fibrosis and NAFLD. Validations of 
their performances are warranted before implementing these AI-assisted systems in clinical practice.

Trial registration: The protocol was registered with PROSPERO (CRD42020183295).
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Background
Chronic liver diseases and cirrhosis are the 11th lead-
ing cause of death in the world, accounting for 1.1 
million deaths annually [1]. The global prevalence of 
cirrhosis has been substantially rising from 71 mil-
lion in 1990 to over 122 million in 2017 [2]. Common 
causes of cirrhosis are chronic hepatitis B virus (HBV) 
and hepatitis C virus (HCV) infections, alcohol-related 
liver disease and nonalcoholic steatohepatitis (NASH) 
[2]. Over the past decade, there has been a temporal 
shift in the prevalence of causes of cirrhosis, i.e., the 
prevalence of NASH has been dramatically increasing, 
whereas the prevalence of other causes has been slowly 
decreasing [3]. The estimated worldwide prevalence of 
nonalcoholic fatty liver disease (NAFLD) is 25% [4] and 
is projected to be to 33.5% by 2030, emphasizing the 
importance of both cirrhosis and NAFLD [5].

The spectrum of liver fibrosis ranges from minimal 
fibrosis to full-blown cirrhosis [6]. Patients with early 
cirrhosis are mostly asymptomatic because the liver is 
able to compensate. However, without a prompt diag-
nosis and proper treatments, it can quickly deteriorate 
to decompensated cirrhosis, which eventually leads to 
complications and mortality. Patients with decompen-
sated cirrhosis have an approximately tenfold higher 
risk of death than general populations [7]. Therefore, 
the detection and treatment of early-stage fibrosis and 
NASH can slow disease progression, reduce the risk of 
liver cancer and decrease mortality.

The gold standard for the diagnosis and staging of 
liver fibrosis and NAFLD is liver biopsy. However, liver 
biopsy is an invasive procedure that can lead to com-
plications such as hemorrhage, biliary peritonitis and 
pneumothorax [8]. Another drawback of liver biopsy 
is a high rate of sampling error with interobserver and 
intraobserver variation in histologic evaluations [6, 9]. 
Additionally, liver biopsy is not always feasible as a fol-
low-up method for liver diseases. Accordingly, serum 
markers and imaging modalities have been developed 
as alternative noninvasive diagnostic methods for liver 
fibrosis, but they have limited performance, particu-
larly for early-stage fibrosis [8, 10]. For example, the 
sensitivity and specificity of the aspartate aminotrans-
ferase-to-platelet ratio index (APRI) are 69% and 77%, 
respectively, and those of the Fibrosis-4 (FIB-4) score 
are 69% and 78%, respectively, for the detection of 
advanced fibrosis [11]. Various imaging modalities, 
e.g., magnetic resonance elastography (MRE), have also 

been used for the diagnosis and classification of liver 
fibrosis with relatively reliable accuracy [12]. However, 
the availability of these modalities is limited. The per-
formance of most of these tests needs to be improved.

Since the twenty-first century, there have been signifi-
cant advancements in artificial intelligence (AI) technol-
ogy, resulting in applications of AI in several aspects of 
medicine, particularly in aiding diagnosis. In gastroenter-
ology, AI-assisted systems have been studied in various 
diseases such as the endoscopic detection and classifica-
tion of colorectal cancer [13, 14]. Regarding the applica-
tion of AI in liver diseases, machine learning algorithms 
has been developed to predict risk and outcomes of dis-
eases using multiple clinical parameters, e.g. assessment 
of liver fibrosis and steatosis, predicting liver decompen-
sation in primary sclerosing cholangitis, screening and 
selection of liver transplant recipients as well as predict-
ing post-transplant survival and complications [15].

There have been some previous systematic reviews on 
AI in gastroenterology and liver disease [15, 16], however, 
very few meta-analyses have been conducted to evaluate 
the performance of the AI-assisted systems. In this sys-
tematic review and meta-analysis, we focused mainly on 
liver parenchymal diseases, i.e., liver fibrosis and stea-
tosis. The main objective of this study was to assess the 
performance of AI-integrated noninvasive tests for the 
diagnosis and staging of liver fibrosis and steatosis.

Methods
The study was conducted based on the Preferred Report-
ing Items for Systematic Review and Meta-Analysis 
(PRISMA) checklist.

Search strategy
We searched for studies on AI in liver fibrosis and stea-
tosis. A literature search was conducted on MEDLINE, 
Scopus, Web of Science and Google Scholar databases. 
The search was conducted from the year 2000 through 
January 2020. We opted to exclude studies published 
before 2000 because most of these studies utilized obso-
lete computer-assisted algorithms that are currently 
no longer used in the modern AI era. Keywords for the 
search were as follows: “artificial intelligence”, “computer-
assisted”, “computer-aided”, “neural network”, “machine 
learning”, “deep learning”, “liver”, “hepatic”, “parenchyma”, 
“parenchymal”, “fibrosis”, “cirrhosis”, “steatosis”, “fatty”, 
“NASH”, and “NAFLD”.

Keywords: Artificial intelligence, Computer-assisted, Machine learning, Deep learning, Liver fibrosis, Cirrhosis, Liver 
steatosis, Fatty liver, NAFLD, Non-invasive diagnostic tests
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Inclusion and exclusion criteria
We included all articles focusing on the utilization of 
AI in the diagnosis and/or staging of liver fibrosis and 
steatosis. The inclusion criteria were as follows: par-
ticipants included in the study underwent liver biopsy 
as the gold standard for the diagnosis of liver fibrosis 
and steatosis. The reported results were sufficient for 
generating 2 × 2 tables, and the articles were in English. 
The exclusion criteria were as follows: articles that did 
not report our desired outcomes of sensitivity, speci-
ficity, positive predictive value (PPV), negative predic-
tive value (NPV); studies that did not provide sufficient 
information to calculate true positive (TP), false posi-
tive (FP), true negative (TN) and false negative (FN) 
values; articles that did not clearly report training and 
test datasets or did not contain information on valida-
tion methods; and conference proceedings or abstracts 
with incomplete information on population, AI meth-
ods, and validation methods.

Data extraction and quality assessment
Two authors (PD and TT) independently performed 
data extraction and quality assessment. Any disagree-
ments were discussed with the third author (RC). Data 
extracted included the author, publication year, coun-
try where the study was conducted, study design, liver 
diseases/conditions, diagnostic modalities, number 
of participants, type of AI models, number of samples 
in the development and validation cohorts, valida-
tion method (e.g., k-fold cross validation, independent 
cohort), sensitivity, specificity, and crude number of TP, 
FP, TN and FN values. For the studies that developed 
multiple AI models, we included the AI model that had 
the best overall performance in the main analysis. Our 
criterion for the best overall performance was to cal-
culate the mean between the sensitivity and specificity, 
i.e., (sensitivity + specificity)/2 [17]. This criterion was 
used because we equally emphasized the sensitivity and 
specificity. In the diagnosis of liver fibrosis, especially 
cirrhosis, we would like a diagnostic test to be sensi-
tive in order to early detect liver fibrosis. However, we 
would also like to avoid incorrectly diagnosing patients 
as having liver fibrosis when they actually do not have 
the condition. Therefore, we opted for methods with a 
balanced false negative (sensitivity) and false positive 
(specificity) [17]. Moreover, sensitivity and specificity 
do not depend on prevalence or incidence in validation 
cohorts. We also extracted performance of AIs with the 
best sensitivity and specificity in studies with multiple 
AIs models in order to further perform sensitivity-
focused and specificity-focused analysis.

Quality assessment
The methodological quality of the included studies 
was evaluated using the Quality Assessment of Diag-
nostic Accuracy Studies (QUADAS-2) tool [18]. The 
QUADAS-2 tool comprises 12 questions regarding 4 
domains including patient selection, index test, refer-
ence standard, and flow and timing. Some questions 
were slightly modified to specifically assess studies 
on AI. For example, in clinical studies on diagnostic 
tests, prespecified thresholds of the index test should 
be set prior to data collection and analysis to prevent 
post-hoc data analysis for the desired results. For AI 
research, we assessed this issue by identifying whether 
the developed AI model was validated in another set of 
cohorts apart from the training cohorts, e.g., test set, 
or external validation cohorts. Details of the modi-
fied QUADAS-2 tool are provided in the Supplemental 
methods.

Statistical analysis
After data extraction, the TP, FP, TN and FN values, if not 
available, were calculated using Review Manager version 
5.3.5 [19]. All statistical analyses were performed using R 
software, version 3.6.3, Vienna, Austria [20]. The pooled 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) and diagnostic odds 
ratio (DOR) with 95% confidence intervals (95% CIs) 
were calculated from the crude number of TP, FP, TN and 
FN values of each study using a random effects model. 
The summary receiver operating characteristics (SROC) 
curve was generated, and the area under the curve (AUC) 
was calculated to determine the diagnostic accuracy of 
the AI-assisted system. AUC values of 0.5–0.7, 0.7–0.9, 
and 0.9–1 indicate low, moderate and high accuracy, 
respectively [21]. Heterogeneity was assessed using I2 and 
Cochran’s Q statistics. To determine the source of hetero-
geneity, subgroup analyses and regression analysis based 
on diagnostic modalities,  population  and AI classifiers 
were performed. Publication bias was assessed with the 
Deeks funnel plot. P values of < 0.05 were considered sta-
tistically significant.

Results
Literature search
The search results and process of selecting articles are 
shown in Fig. 1. After the literature search, a total of 297 
articles were identified. Articles were excluded for the 
following reasons: studies that were duplicated (n = 149), 
studies that were conducted in animals (n = 10), studies 
focusing on diseases other than liver parenchymal dis-
eases (n = 11), studies that were not original research, i.e., 
reviews, editorials (n = 35), studies that were not written 
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in English language (n = 6), studies that did not report 
the desired outcomes or validation population character-
istics (n = 2), and studies that did not use liver biopsy as 
the gold standard (n = 4). Eventually, a total of 80 articles 
were included in the qualitative analysis and snowballing, 
of which 19 were included in the quantitative analysis (17 
studies on liver fibrosis and 2 studies on NAFLD). There 
were 12 studies integrating AI with imaging modalities, 
i.e., ultrasonography [22–26], elastography [27, 28], com-
puted tomography (CT) [29, 30] and magnetic resonance 

imaging (MRI) [31, 32], to facilitate the diagnosis of liver 
fibrosis and NAFLD. The other 7 studies developed AI 
models using clinical and laboratory data, such as the 
presence of other underlying diseases or ascites, liver 
chemistry tests, and platelet and white blood cell counts, 
to predict liver fibrosis stages [33–39]. Regarding the 
types of AI, 6 studies used convolutional neural networks 
(CNNs) [22, 24, 28–30, 32], 6 studies used artificial neu-
ral networks (ANNs) [25, 26, 35–37, 39], 5 studies used 
multiple AI models [23, 27, 33, 34, 38] and 2 studies used 

Records identified through database 
searching
(n = 297)

Records after duplicates removed
(n = 149)

Abstract screened
(n = 148)

Records excluded due to 
conducted on animals (10)  
focusing on other topic (11) 
not an original research (35) 
in other languages (6) 
(n = 62)

Full-text articles assessed 
for eligibility

(n = 86)

Full-text articles excluded due to 
no desired outcomes or validation cohort 
characteristics (2) 
did not use liver biopsy as gold standard (4) 
(n =  6)

Studies included in 
qualitative synthesis  

and snowballing 
(n = 80)

Studies included in 
quantitative synthesis 

(meta-analysis)
(n =  19)
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Fig. 1 Flow diagram of search methodology and literature selection process
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a support vector machine (SVM) [31, 40]. The study 
characteristics, sensitivity, specificity, prevalence, valida-
tion methods and other extracted data from the included 
studies are shown in Table 1. The methodological assess-
ment by QUADAS-2 is summarized in Additional file 1: 
Table S1.

Overall performance of AI in the diagnosis of liver cirrhosis
First, we focused on the performance of AI in diagnos-
ing liver cirrhosis (METAVIR F4). A total of 11 studies 
were included in this analysis [22, 25, 27–30, 32, 33, 35, 
38, 39]. Five studies developed AI models using CNNs 
[22, 28–30, 32], 3 used ANNs [25, 35, 39], and the other 
3 studies developed multiple AI models [27, 33, 38]. Dif-
ferent imaging modalities were also employed as inputs 
for the AI systems: ultrasound was used in 2 studies [22, 
25], elastography in 2 studies [27, 28], CT in 2 studies 
[29, 30], and MRI in 1 study [32]; 4 studies used multiple 
clinical and laboratory parameters as AI inputs [33, 35, 
38, 39]. The results of the meta-analysis showed that AI-
assisted systems were able to diagnose cirrhosis with a 
pooled sensitivity, specificity, PPV, and NPV of 0.78 (95% 
CI: 0.71–0.85), 0.89 (95% CI: 0.81–0.94), 0.72 (95% CI: 
0.58–0.83) and 0.92 (95% CI: 0.88–0.94), respectively. The 
pooled DOR was 31.58 (95% CI: 11.84–84.25) (Fig. 2). For 
the sensitivity-focused analysis of the 11 studies, there 
was no change in the pooled sensitivity. On the other 
hand, the pooled specificity increased to 0.94 (95% CI: 
0.86–0.97) in the specificity-focused analysis (Additional 
file 1: Table S2).

Overall performance of AI in the diagnosis of advanced 
fibrosis (METAVIR ≥ F3) and significant fibrosis 
(METAVIR ≥ F2)
We identified 10 studies using AI models to diagnose 
advance fibrosis (≥ F3) [27–30, 32–34, 37, 38, 40]. Four 
studies developed CNNs [28–30, 32], 1 study developed 
an ANN [37], 1 study utilized SVM [40], and the other 4 
studies developed multiple AI models [27, 33, 34, 38]. The 
AI models were integrated into elastrography in 2 studies 
[27, 28], CT images in 2 studies [29, 30], MRI images in 2 
study [32, 40] and clinical and laboratory parameters in 
the other 4 studies [33, 34, 37, 38]. After combining all 
studies, AI-assisted analysis systems had a pooled sen-
sitivity, specificity, PPV and NPV of 0.86 (95% CI 0.80–
0.90), 0.87 (95% CI 0.80–0.92), 0.85 (95% CI 0.75–0.91), 
and 0.88 (95% CI 0.82–0.92), respectively, and a DOR of 
37.79 (95% CI 16.01–89.19) for the diagnosis of advanced 
fibrosis. Sensitivity and specificity-focused analysis found 
similar pooled sensitivity but increased pooled specificity 
to 0.89 (95% CI 0.81–0.93). (Additional file 1: Table S2).

There were 8 studies investigating the performance 
of AI-assisted systems for the diagnosis of significant 

fibrosis (≥ F2) [22, 23, 27, 28, 30, 32, 36, 38]. Four stud-
ies used CNNs as AI models [23, 28, 29, 31], 1 study uti-
lized an ANN [36], and the other 3 studies used multiple 
AI models [23, 27, 38]. In this group, the AI models were 
integrated into ultrasonography in 2 studies [22, 23], elas-
tography in 2 studies [27, 28], CT in 1 study [30], MRI 
in 1 study [32], and clinical and laboratory parameters in 
2 studies [36, 38]. We found that the pooled sensitivity, 
specificity, PPV and NPV were 0.86 (95% CI 0.78–0.92), 
0.81 (95% CI 0.77–0.84), 0.88 (95% CI 0.80–0.93) and 
0.77 (95% CI 0.58–0.89), respectively, and the DOR was 
26.79 (95% CI 14.47–49.62). In the sensitivity-focused 
analysis, the pooled sensitivity increased to 0.91 (95% 
CI 0.76–0.97) while the specificity remained the same in 
specificity-focused analysis. (Additional file 1: Table S2).

Subgroup analysis by diagnostic modality
We observed substantial heterogeneity in the overall 
performance of AI-assisted diagnosis system, e.g., I2 
was 79%, 95%, 93%, 82% and 93% for the pooled sensi-
tivity, specificity, PPV, NPV and DOR, respectively, for 
the diagnosis of liver cirrhosis. We conducted additional 
subgroup analyses by diagnostic modality for each stage 
of fibrosis (Table 2). As expected, there were statistically 
significant differences in the pooled sensitivity, speci-
ficity, PPV, NPV and DOR among different diagnostic 
modalities. In most subgroups, the I2 values were mark-
edly decreased.

For the diagnosis of cirrhosis, the pooled sensitivity, 
specificity, PPV, NPV and DOR of different diagnostic 
modalities were significantly different. The sensitivities 
were 0.79 (95% CI 0.73–0.84), 0.87 (95% CI 0.50–0.98), 
0.84 (95% CI 0.80–0.87), and 0.65 (95% CI 0.58–0.72), 
and the specificities were 0.93 (95% CI 0.90–0.95), 0.88 
(95% CI 0.85–0.91), 0.86 (95% CI 0.43–0.98) and 0.91 
(95% CI 0.74–0.97), for ultrasonography, elastrography, 
CT, and clinical and laboratory parameters, respectively 
(p < 0.01 both). Significant differences in the PPV, NPV 
and DOR among AI-assisted systems for the diagnosis 
of cirrhosis were also found (p = 0.01, < 0.01 and 0.04, 
respectively) (Table 2). In the subgroup analyses, the het-
erogeneity of most diagnostic subgroups of cirrhosis was 
markedly reduced. For example, I2 of the ultrasonography 
subgroup was 0% for the pooled sensitivity, specificity, 
PPV, NPV and DOR. Similarly, I2 was 0% for the pooled 
specificity and NPV of the elastrography subgroup, 0% 
for the pooled sensitivity and NPV of the CT subgroup 
and 0% for the pooled sensitivity of the clinical param-
eters subgroup (Table 2, Fig. 2).

For advanced liver fibrosis (≥ F3), we observed a 
smaller magnitude of differences in diagnostic perfor-
mance among diagnostic subgroups, with a smaller 
reduction in I2 values after subgroup analyses than the 
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Fig. 2 Sensitivity (a), specificity (b), positive predictive value (c), negative predictive value (d) and diagnostic odds ratio (e) of AI-assisted diagnosis 
of liver cirrhosis (F4) with subgroup analysis according to diagnostic modality (ultrasonography, elastography, computed tomography and clinical 
data)
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subgroups of cirrhosis. For instance, a statistically sig-
nificant difference was only detected in the pooled NPV 
among diagnostic subgroups (p < 0.01) (Table  2, Addi-
tional file 1: Fig. S1).

The results of the subgroup analyses of significant liver 
fibrosis (F2-4) stage were similar to those of cirrhosis, i.e., 
there were significant differences in the pooled sensitiv-
ity, specificity, NPV and DOR among diagnostic modal-
ity groups (p < 0.05), and the heterogeneity accessed by I2 
was greatly reduced in several subgroups. The I2 values 
were 0% for the pooled sensitivity, specificity and PPV in 
the ultrasonography subgroup, 0% for the pooled sensi-
tivity, specificity and DOR in the elastography subgroup, 
and 0% for the pooled sensitivity, specificity and NPV 
in the clinical data subgroup (Table  2, Additional file  1: 
Fig. S2).

Figure  3 shows the SROC curves of AI-assisted sys-
tems for the diagnosis of cirrhosis, advanced fibrosis and 
significant fibrosis with subgroup analysis by diagnostic 
modality. The overall AUC values were 0.85, 0.92 and 
0.86 for the diagnosis of cirrhosis, advanced fibrosis and 
significant fibrosis, respectively. AUC values of subgroup 
analyses of different diagnostic modalities are shown in 
Table 2.

Subgroup analysis by study population
We were able to identify 2 population groups in the 
selected studies. The first group of studies was con-
ducted in a general population without any specific 
liver disease, while the second group was conducted in 
an “at-risk” population of individuals who already suf-
fered from chronic liver diseases such as chronic viral 
hepatitis B and C infections. Therefore, we performed 
subgroup analyses according to the study population, 
i.e., the at-risk population and general population. The 
performance of AI-assisted systems for the diagnosis of 
F2-F4 fibrosis is summarized in Table  2. In contrast to 
the aforementioned subgroup analysis, the sensitivity and 
specificity of AI-assisted diagnostic systems in the at-risk 
population were similar to those in the general popula-
tion in all stages of liver fibrosis. The heterogeneity was 
not dramatically reduced, and the subgroups’ I2 values 
remained high (70–90%). Additionally, there were no sig-
nificant differences in diagnostic performance between 
subgroups (p ≥ 0.05) in almost all stages of liver fibro-
sis. Therefore, we could infer that different populations 
are unlikely to have an impact on the performance of 
AI-assisted systems for diagnosing liver fibrosis. To con-
firm this finding, we further performed a meta-regres-
sion analysis with population as a covariate. The mixed 
effects model showed no statistically significant results, 
with p = 0.69, 0.70 and 0.35 for F4, ≥ F3 and ≥ F2 stages, 
respectively.

Subgroup analysis by AI classifiers
We divided AI-classifiers of the included studies into 2 
main subgroups, i.e., neural network and non-neural net-
work. Performance of each subgroup is shown in Addi-
tional file  1: Table  S3. We found that the performance 
of the 2 subgroups were relatively similar except for a 
slightly better sensitivity, specificity, PPV and DOR in the 
neural network group for the diagnosis of cirrhosis. There 
was no significant difference between AI-classifier sub-
groups, except for the pooled sensitivity and PPV for the 
diagnosis of cirrhosis as well as pooled NPV for the diag-
nosis of advanced fibrosis. We further stratified neural 
network-assisted studies by diagnostic modalities (ultra-
sonography, elastography, CT, MRI and clinical data) as 
well as population (at-risk, general population) (Addi-
tional file 1: Table S4). Furthermore, there was a reduc-
tion in heterogeneity after subgroup by modalities. For 
example, I2 values were 0 for the pooled sensitivity, speci-
ficity, PPN, NPV and DOR in the diagnosis of cirrhosis by 
neural network-assisted ultrasonography and the diagno-
sis of advanced fibrosis by neural network-assisted clini-
cal parameters. Difference between modalities were also 
observed in the pooled sensitivity, specificity, NPV and 
DOR for diagnosing cirrhosis as well as specificity, PPV, 
NPV and DOR for classifying advanced fibrosis; whereas 
subgroups by population revealed no significant change 
in overall performance or heterogeneity.

Overall performance of AI in the diagnosis of nonalcoholic 
fatty liver disease (NAFLD)
Only 2 studies on the AI-assisted diagnosis of NAFLD 
had liver biopsy as the gold standard [24, 26]. One used 
an ANN, and the other one used a CNN as AI models. 
The pooled sensitivity, specificity, PPV, NPV and DOR 
were 0.97 (95% CI 0.76–1.00), 0.91 (95% CI 0.78–0.97), 
0.95 (95% CI 0.87–0.98), 0.93 (95% CI 0.80–0.98), and 
191.52 (95% CI 38.83–944.81), respectively, with I2 of 0% 
for all (Additional file 1: Table S5).

Publication bias
Deeks funnel plots were generated for publication bias 
assessments. The slope coefficients were relatively sym-
metrical with P values of 0.30, 0.21 and 0.35 for the 
diagnosis of cirrhosis, advanced fibrosis and significant 
fibrosis, respectively (Additional file 1: Fig. S3), suggest-
ing that publication bias was not present.

Discussion
In this meta-analysis, AI-assisted models had good per-
formance in the assessment of liver fibrosis and steatosis. 
Interestingly, for the detection of cirrhosis, AI-assisted 
imaging-based models had greater sensitivities than 
AI-assisted clinical-based models, i.e., 0.79–0.87 versus 
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Fig. 3 SROC curves demonstrating performance of AI-assisted diagnosis of liver cirrhosis (F4) (a), advanced fibrosis (F3–4) (b) and significant liver 
fibrosis (F2–4) (c) with subgroup analysis according to diagnostic modality (ultrasonography, elastography, computed tomography and clinical data)
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0.65. By contrast, for the diagnosis of significant fibrosis, 
clinical-based models had a greater sensitivity (0.96 ver-
sus 0.73–0.90) but less specificity (0.78 versus 0.82–0.87) 
than imaging-based models. The NPV of AI-assisted 
models for detecting advanced liver fibrosis and cirrho-
sis were approximately 90%, implying that the AI-assisted 
models were able to help guide clinical decisions that the 
patients unlikely had liver fibrosis, without the need for 
invasive methods such as liver biopsy.

AI-aided systems have some advantages over conven-
tional noninvasive diagnostic tools. Unlike ultrasonogra-
phy, which is an operator-dependent modality, AI utilizes 
multiple features from ultrasonographic images as inputs 
to systematically analyze the images, thus reducing bias 
in the image interpretation. Moreover, AI-assisted diag-
nosis systems can potentially be used in both the general 
population and at-risk population. This was suggested by 
the results of the meta-regression analysis with popula-
tion as a covariate and by the similar performance of AI-
assisted systems between the 2 populations.

Transient elastography is currently the most com-
monly used noninvasive tool for staging liver fibrosis. 
A recent meta-analysis showed that transient elastogra-
phy had AUCs of 0.84, 0.89, and 0.94 for the diagnosis 
of ≥ F2, ≥ F3 and F4 stage fibrosis, respectively [41, 42]. 
Real-time elastography has also been frequently used as 
an alternative to transient elastography with an AUC of 
0.72, 0.86 and 0.69 for the diagnosis of liver cirrhosis, 
advanced fibrosis and significant fibrosis, respectively 
[43]. Our meta-analysis showed that AI-assisted elastog-
raphy had higher AUCs for the diagnosis of all stages of 

liver fibrosis than real-time elastography. When compar-
ing to transient elastography, AI-assisted elastography 
had a slightly lower AUC for identifying liver cirrhosis, 
but higher AUCs for classifying advanced fibrosis and 
significant fibrosis. Interestingly, among the 3 AI-assisted 
systems, AI-assisted ultrasonography had the best per-
formance (Table 3). This could possibly be due to the dif-
ference in types of input data. Studies using AI-assisted 
ultrasonography incorporated inputs with relatively 
larger region of interests (ROIs) and extracted different 
categories of radiomics, compared to AI-assisted elas-
tography studies. Therefore, AI performance could be 
affected by the selected inputs. Further studies to specify 
the most appropriate inputs for each AI classifier is war-
ranted in order to maximize the AI performance. Due 
to the satisfactory performance of AI-assisted ultra-
sonography, AI has a potential application for staging 
liver fibrosis in areas where elastography machines are 
not available. Likewise, the FIB-4 score and APRI score 
are the most commonly used clinical parameters for 
predicting liver fibrosis. We found that, in line with the 
AI-assisted image analysis model, the AI-assisted clinical-
based model had a lower AUC value for the diagnosis of 
stage F4 fibrosis but higher AUC values for the diagnosis 
of stage ≥ F2 and ≥ F3 fibrosis. Nevertheless, after exclud-
ing one study [35] which had a different specific popula-
tion, focusing only on cirrhosis in NALFD patients, the 
AUC value for F4 fibrosis dramatically increased from 
0.68 to 0.86 which was better than APRI and FIB-4.

In this meta-analysis, we observed relatively high 
heterogeneity throughout the study. After performing 

Table 3 Sensitivity, specificity and area-under-the-curve (AUC) of AI-assisted ultrasonography, AI-assisted elastography, 
and AI-assisted clinical data for the diagnosis of liver cirrhosis (F4), advanced fibrosis (F3–4) and significant liver fibrosis 
(F2–4)

Pooled sensitivity, specificity and AUC of transient elastography, real-time elastography, AST to Platelet Ratio Index (APRI) and Fibrosis-4 (FIB-4) for diagnosis of liver 
fibrosis from previous meta-analyses [41–44] are also shown

Analysis AI-assisted 
ultrasonography

AI-assisted 
elastography

AI-assisted clinical 
data

Transient 
elastography 
[41, 42]

Real-time 
elastography 
[43]

APRI [44] FIB-4 [44]

Cirrhosis (F4) (Cut-off 2.0) (Cut-off 1.62–2.65)

 Sensitivity 0.79 (0.73–0.84) 0.87 (0.50–0.98) 0.65 (0.58–0.72) 0.83 (0.79–0.86) 0.74 (0.63–0.82) 0.31 (0.13–0.63) 0.64 (0.39–0.77)

 Specificity 0.93 (0.90–0.95) 0.88 (0.85–0.91) 0.91 (0.74–0.97) 0.89 (0.87–0.91) 0.84 (0.79–0.88) 0.89 (0.81–0.96) 0.86 (0.75–0.98)

 AUC 0.95 0.89 0.68 0.94 0.72 0.72 0.78

Advanced fibrosis (F3–4) (Cut-off 0.5) (Cut-off 1.45)

 Sensitivity – 0.84 (0.74–0.91) 0.87 (0.79–0.92) 0.82 (0.78–0.86) 0.82 (0.75–0.88) 0.73 (0.63–0.83) 0.63 (0.50–0.71)

 Specificity – 0.94 (0.77–0.99) 0.82 (0.79–0.85) 0.86 (0.82–0.89) 0.81 (0.72–0.88) 0.55 (0.37–0.72) 0.56 (0.14–0.80)

 AUC – 0.93 0.86 0.89 0.86 0.76 0.80

Significant fibrosis (F2–4) (Cut-off 0.5) (Cut-off 1.45)

 Sensitivity 0.90 (0.87–0.93) 0.73 (0.68–0.77) 0.96 (0.94–0.98) 0.79 (0.74–0.82) 0.79 (0.75–0.83) 0.70 (0.35–0.97) 0.65 (0.52–0.87)

 Specificity 0.82 (0.77–0.85) 0.87 (0.82–0.90) 0.78 (0.72–0.83) 0.78 (0.72–0.83) 0.76 (0.68–0.82) 60 (0.34–0.87) 0.74 (0.65–0.85)

 AUC 0.92 0.85 0.86 0.84 0.69 0.72 0.76
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subgroup analyses categorized by diagnostic modality 
(ultrasound, elastography, CT, MRI, and clinical data), 
the heterogeneity was dramatically reduced, i.e., the I2 
value was 0% in many subgroups. Moreover, the per-
formance of most subgroups was significantly different, 
indicating that the types of diagnostic modality had an 
impact on the performance of AI models. Interestingly, 
we found that AI-integrated ultrasonography had excep-
tional performance with a relatively low heterogeneity 
throughout the analyses. Because ultrasound machines 
are widely available, this finding suggests that AI-assisted 
ultrasonography has tremendous potential for being uti-
lized in real clinical practice.

This is one of the very first meta-analyses of the AI-
supported systems in diagnosis of liver diseases. Apart 
from publications in medical journals, we also included 
articles from computer science and engineering journals, 
resulting in a comprehensive review of AI advancements 
regarding this topic. To reduce the chance of overesti-
mating the diagnostic performance of AI models, only 
studies that had a validation cohort or equivalent method 
for evaluating the performance of the developed AI mod-
els were included.

There are some limitations in this review and meta-
analysis. First of all, there are several imaging modalities 
and AI classifiers included in the meta-analysis which 
contributed to the heterogeneity of the overall analysis. 
For different AI-assisted imaging modalities, we prespec-
ified subgroup analysis by modalities. We also further 
performed subgroup analysis according to AI classifier, 
i.e., neural networks and non-neural networks (Addi-
tional file  1: Table  S3). We observed relatively similar 
performance except for a relatively better performance in 
the diagnosis of cirrhosis in the neural networks group. 
Additionally, we performed another subgroup analy-
sis of imaging modalities and population including only 
studies with neural network AI classifier (Additional 
file  1: Table  S4). We found that the heterogeneity was 
decreased. However, it is important to note that the input 
modalities and AI-assisted systems were not completely 
identical among studies included in the analysis, inter-
pretation of the pooled diagnostic performance needs to 
be done with caution. Although there were an acceptable 
number of studies for meta-analysis, the number of stud-
ies of each diagnostic tool was relatively small, given that 
several modalities are currently used for the assessment 
of liver fibrosis and steatosis. Therefore, the results of the 
subgroup analyses of each diagnostic modality need to be 
interpreted with caution. Furthermore, we selected only 
studies in which liver biopsy was used as the reference 
standard; consequently, some studies that demonstrated 
promising results but did not have liver biopsy to confirm 
the stage of liver fibrosis or steatosis were excluded. Nine 

of the 19 studies (47%) were prospective; however, none 
of the included studies were randomized controlled tri-
als. Only 1 study compared the performance between 
AI and humans [29]. Interestingly, this study showed 
that the AI-aided system outperformed humans in stag-
ing liver fibrosis in CT images. Most included studies 
evaluated the performance of the developed AI systems 
on “internal” validation cohorts, of which the baseline 
patient characteristics were quite similar to those of 
the development cohort. Whether these developed AI 
models can be generalized to other populations in clini-
cal practice needs to be further investigated. Moreover, 
long-term assessment of AI performance in real clinical 
settings and studies with direct comparisons between AI 
and conventional diagnostic methods would be beneficial 
in investigating real-world positive and negative impacts 
of the AI-assisted system.

Conclusions
This meta-analysis demonstrates the promising potential 
of AI systems for aiding the diagnosis and staging of liver 
fibrosis and NAFLD. Integrating AI into conventional 
noninvasive tools yields effective diagnostic tools with an 
optimal balance of sensitivity and specificity. Validation 
of these AI models in other independent cohorts is war-
ranted before implementing these AI-assisted systems 
into clinical practice.
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