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Purpose: We formulated and tested ensemble learning models to classify axial length
(AXL) from choroidal thickness (CT) as indicated on fovea-centered, 2D single optical
coherence tomography (OCT) images.

Design: Retrospective cross-sectional study.

Participants: We analyzed 710 OCT images from 355 eyes of 188 patients. Each eye
had 2 OCT images.

Methods: The CT was estimated from 3 points of each image. We used five machine-
learning base algorithms to construct the classifiers. This study trained and validated the
models to classify the AXLs eyes based on binary (AXL < or > 26 mm) and multiclass
(AXL < 22 mm, between 22 and 26 mm, and > 26 mm) classifications.

Results: No features were redundant or duplicated after an analysis using Pearson’s
correlation coefficient, LASSO-Pattern search algorithm, and variance inflation factors.
Among the positions, CT at the nasal side had the highest correlation with AXL followed
by the central area. In binary classification, our classifiers obtained high accuracy, as
indicated by accuracy, recall, positive predictive value (PPV), negative predictive value
(NPV), F1 score, and area under ROC curve (AUC) values of 94.37, 100, 90.91, 100,
86.67, and 95.61%, respectively. In multiclass classification, our classifiers were also
highly accurate, as indicated by accuracy, weighted recall, weighted PPV, weighted
NPV, weighted F1 score, and macro AUC of 88.73, 88.73, 91.21, 85.83, 87.42, and
93.42%, respectively.

Conclusions: Our binary and multiclass classifiers classify AXL well from CT, as
indicated on OCT images. We demonstrated the effectiveness of the proposed
classifiers and provided an assistance tool for physicians.

Keywords: high myopia, choroidal thickness, axial length, machine learning, ensemble learning, optical
coherence tomography (OCT)
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INTRODUCTION

Myopia is a common disease among Asian people, and its
incidence has increased worldwide. Holden et al. (1) estimated
that the global prevalence of myopia would reach 49.8% in 2050
along with 9.8% for high myopia, and the myopia rate in East Asia
would increase from 51.6 to 65.3%, the highest in the world, in
the next 3 decades. Among Taiwanese schoolchildren evaluated
between 1983 and 2017, the myopia rate quintupled from 5.37
to 25.41% for 7-year-olds and more than doubled (from 30.66 to
76.67%) for 12-year-olds (2).

Eyes with a spherical equivalence (SE) of less than -6.00 D were
defined as having high myopia, and high myopia is correlated
with axial length longer than 26.0 mm (3, 4). High myopia
is associated with increased risks of cataract, glaucoma, retinal
detachment, and maculopathy (5). These ocular complications of
high myopia become more common with advanced age and may
eventually lead to blindness (5, 6). Morgan et al. (6) suggested
that the elongated AXL is the underlying mechanism of myopia
development and progression. Choroid, located at the exterior
of the retina and which provides blood supply to the outer
portion of the retina, has been reported to be thinner in myopic
than emmetropic eyes and is related to AXL elongation (7).
Choroid thinning not only correlates with myopia progression
but is also related to other complications, such as staphyloma
and chorioretinal atrophy in high myopia (7–14). In addition to
longer AXL, CT is also lower in older adults and in women (15).

Artificial intelligence (AI) is being used in medicine. In
ophthalmology, color fundus images are commonly used for
machine training in disease diagnosis, such as for diabetic
retinopathy (DR), (16, 17) age-related macular disease (AMD),
(18, 19) and glaucoma (20). Asaoka et al. (21) classified open-
angle glaucoma and healthy eyes using deep learning algorithm
trained on color fundus images from 159 patients (including 51
with glaucoma). Hemelings et al. identified pathologic myopia
from color fundus images by means of Convolutional Neural
Network (CNN) (22). Optical coherence tomography (OCT)
has become one of the most effective imaging modalities in
the diagnosis of various retinal conditions by providing high-
resolution, cross-sectional images of the entire retina and choroid
(23). The long wavelength (870 nm) used for scanning in spectral-
domain OCT (SD-OCT) enables better penetration and ensures
high-resolution retina and choroid images. Machine learning and
deep learning have been successfully applied in OCT images for
biomarker identification in AMD (24). Since myopia is a rising
problem in ophthalmology, OCT images have been used for AI
prediction in myopic eyes recently (25–27).

In this study, we focused on the relationship between
CT and AXL. Since OCT is a common exam in clinics for
patients with retinal diseases, glaucoma, and cataract surgery,
it is meaningful to access more information from the existed
exam images. With SD-OCT images from eyes with different
refraction status and AXL, we investigated the utility of machine
learning algorithms for predicting AXL and proposed a multiclass
classifier of AXL by means of the CTs (28). In this study, five
machine learning base algorithms [3 layers backpropagation
neural network (BPN), support vector machine (SVM), random

forest (RF), adaptive boosting (AdaBoost), extreme gradient
boosting (XGBoost)] are used to construct classifiers for binary
and multiclass classifications. The proposed classifiers can quickly
and accurately predict the axial length by means of the choroid
thickness (CT) and help us to understand the contribution of
choroidal change in the etiology of myopia.

MATERIALS AND METHODS

This retrospective cohort study adhered to the tenets of the
Declaration of Helsinki. This study was approved by the
Institutional Review Board of Fu Jen Catholic University
Hospital (FJUH).

DATA SETS

Participants
Patients with OCT image findings taken from and who
underwent AXL evaluation in CY Tsai’s and CJ Huang’s clinics
in the ophthalmology department at FJUH at any period from
Sep. 2017 to Dec. 2019 were included in this study. We collected
comprehensive information for participants’ sex, age, body
height, body weight, and best-corrected visual acuity (29, 30).
Patients with incomplete data or retinopathies, such as diabetic
retinopathy, age-related macular degeneration, and history of
previous photodynamic therapy, were excluded from the study.

Optical Coherence Tomography Machine and
Scanning Settings
Spectralis SD-OCT equipment (Heidelberg Engineering,
Heidelberg, Germany) was used to evaluate CT in both eyes;
OCT was performed in the daytime. Cross-sectional and
longitudinal scanning was performed in each eye (Figure 1).
The SD-OCT uses a super luminescence diode with an average
wavelength of 870 nm as a light source, an 8-um axial resolution,
and a 10-µm transverse resolution in tissue. The position of fovea
was defined as the anatomical depression of macula. The CT
was measured at 6 points: central fovea, 3 mm nasal, and 3 mm
temporal to the fovea at cross-sectional image and central fovea,
3 mm superior, and 3 mm inferior to the fovea at longitudinal
image (Figure 2). Each image was measured by 2 investigators
independently and rechecked by a third investigator.

AXL Measurement
The AXL of the eyes was evaluated by a non-contact technique
by using a Lenstar LS 900 platform (HAAG-Streit, Mason,
OH, United States).

Features
This data set had 11 features (Table 1), which were (1)
participants’ gender, age, height, and weight; (2) 3 cross-sectional
CTs; (3) 3 longitudinal CTs; and (4) AXL. The pairwise scatter
plots of all features with binary and multiclass classifications are
shown in Figures 3, 4, respectively. Figures 3, 4 clearly show that
the relationships of all pairs of two features are almost non-linear.
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FIGURE 1 | Cross-sectional (A) and longitudinal (B) choroidal images from SD-OCT.

FIGURE 2 | Three positions at which choroid thicknesses was indicated in OCT images.

Binary and Multiclass Classification of Axial Length
This study trained and validated the classifiers, which predicted
the class of AXL of each eye using binary and multiclass
classifications. In binary classification, we classified eyes into AXL
< 26 mm and AXL> 26 mm; in multiclass classification, we
classified eyes into AXL < 22 mm, 22 mm> AXL < 26 mm,
and AXL > 26 mm (31–34).

Development of Classifiers by Machine
Learning Algorithms
Algorithm Selection
In this study, we analyzed 710 OCT images from 355 eyes
of 188 patients. However, 710 images are quite low for a
CNN algorithm. An appropriate number of samples depends
on the specific problem, and it should be tested for each case
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TABLE 1 | Features in this study.

No. Feature name Description Data type

1. Gender 0 for male and 1 for female. Nominal

2. Age The age of subject. Continuous

3. Height The height of subject (cm). Continuous

4. Weight The weight of subject (kg). Continuous

5. Choroid-LU Up thicknesses of longitudinal choroid. Continuous

6. Choroid-LM Middle thicknesses of longitudinal choroid. Continuous

7. Choroid-LD Down thicknesses of longitudinal choroid. Continuous

8. Choroid-CT Temporal thicknesses of cross sections choroid. Continuous

9. Choroid-CM Middle thicknesses of cross sections choroid. Continuous

10. Choroid-CN Nasal thicknesses of cross sections choroid. Continuous

11. AXL Axial length of eyes Continuous

individually. But a rough rule of thumb is to train a CNN
algorithm with a data set larger than 5,000 samples for effective
generalization of the problem. Our previous study used data
augmentation to increase this study’s image samples and utilized
a CNN algorithm to construct the image classifier through OCT
images. However, the image classifier obtains a low accuracy.
For obtaining satisfactory results, this research does not use
simple algorithms to construct the linear classifier and selects
state-of-the-art or strong algorithms to construct the non-linear
classifier. Therefore, the selected algorithms are BNN, SVM, RF,
AdaBoost, and XGBoost. RF, AdaBoost, and XGBoost are also the
ensemble learning.

Essentially, ensemble learning algorithms feature the
combination of several weak classifiers to form a strong one
with bagging or boosting approaches. The bagging approach
trains many individual models in a parallel way, and each model
is trained by a random subset of the data. Boosting approach
trains a bunch of individual models in a sequential manner,
and each individual model learns from mistakes made by the
previous model. The Ensemble learning algorithms obtain less
bias, less variance, and better results than traditional machine
learning in general. Friedman et al. (35) indicated that boosting
approach results in dramatic performance improvements and no
additional requirements for the dataset and classifiers.

The RF, AdaBoost, and XGBoost are based on the bagging,
boosting, and hybrid bagging and boosting approaches.
AdaBoost, one of the first boosting algorithms adapted to solve
practical problems, uses multiple iterations to create a strong
learner by iteratively adding weak learners. Gradient boosting,
a generalization of AdaBoost, is one of the most powerful
techniques for building predictive models. The main objective
of gradient boosting is to minimize the loss function by adding
weak learners using a gradient descent algorithm. XGBoost
is an extension of gradient-boosted decision trees and has
the following advantages: regularized learning, gradient tree
boosting, and shrinkage with column subsampling. Since the
used ensemble learning algorithms in this study always have the
hyperparameter—n_estimators (the number of estimators), the
n_estimators means the number of the individual model will
be performed. Therefore, ensemble learning algorithms always
spend much more time than BNN and SVM calculation time.

Classifiers Construction Process
The processes of this study are exhibited in Figure 5: process
1 (preprocess) and process 2 (primary processes for each
algorithm). Before we constructed the classifiers, the data set
was preprocessed by using process 1. This study utilized 5
algorithms (BNN, SVM, RF, AdaBoost, and XGBoost) to predict
myopia by means of the CTs. We constructed 2 classifiers for
binary and multiclass classifications for each algorithm. Without
loss of generality, all models constructed by each algorithm
were executed by process 2. Finally, this study obtained the
appropriate features, suggesting resample methods, and the
appropriate values of hyperparameters for each algorithm with
the target classifications. The details of gray steps exhibited in
Figure 5 are described in subsections feature standardization,
data splitting, feature selection, hyperparameter Optimization, and
Oversampling of Imbalanced Data.

Feature Standardization
To reduce the training phase’s processing time, we standardized
numerical features by removing their means and scaling to unit
variance through the formula as follows.

Feature with normalization = (feature – feature’s
mean)/feature’s standard deviation.

Data Splitting
The 355 tuples in this imbalanced data were collected from
188 patients with 355 eyes. Each tuple represented a completely
eyeball’s six choroidal thicknesses based on cross-sectional
and longitudinal scanning images. Table 4 indicates that the
proportion of AXL < 26 mm to AXL > 26 mm was 0.7944:0.2056
in binary classification. In multiclass classification, the proportion
of AXL < 22 mm, between 22 and 26 mm, and > 26 mm was
0.0394:0.7549:0.2056. We split the imbalanced data into training
and test sets based on a uniform random distribution, and the
percentage ratio of training and test sets followed 80 and 20%
with patient level (no patient across both training and test sets),
where each set shared a similar proportion of all categories.
The training set was used in feature selection, hyperparameter
optimization, and oversampling. Finally, the test set was used
to evaluate all metrics of each set {algorithm, hyperparameters
search method, oversampling method} in Evaluation step of
process 2 in Figure 2 and the comparisons of AXL class
prediction between humans and classifiers.

Feature Selection
This study used 3 methods: Pearson’s correlation coefficient
(Pearson), variance inflation factor (VIF), and least absolute
shrinkage and selection operator (Lasso) to evaluate and select
the appropriate features based on the training set. In the training
set, one tuple only contained one eye’s features. Therefore, the
feature selection can purely evaluate the relationships of the
features within one eye. The three feature selection methods
were performed sequentially independently, and any feature
detected as redundant or useless by any method will be
removed in this step.

Pearson’s r indicated the linear relationship between a given
feature and class label. The VIF measured how substantially
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FIGURE 3 | Pairwise scatter plots of all features with binary classification.

the variance of an independent feature was influenced by other
independent features. If the VIF of the target feature was >
10, we eliminated the target feature. Lasso performs covariate
selection by forcing the sum of the absolute value of the regression
coefficients to be less than a fixed value, which forced certain
coefficients to be 0. The order of importance of input features
made the fitted model more interpretable. LASSO utilized the L1
penalty to select the most feature at once based on a given lambda
value. Compared with LASSO, Elastic net used a penalty mixed
L1 and L2 norms, and Elastic net is hard to obtain the clear order
of importance input features.

Finally, 100 different lambda values (1.00, 0.99,. . ., 0.01) with
descending order were used in LASSO, and we only kept the
lambda values that LASSO selection an additional new significant
feature in S Table 5.

Hyperparameter Optimization
Each algorithm had its hyperparameters that need to be
tuned because the appropriate hyperparameters were very
different for the algorithm applied in a different dataset.
That is, different hyperparameters will most influence
the performances of an algorithm. The search scopes for
consideration of hyperparameters for all algorithms in this
study (BNN, SVM, RF, AdaBoost, XGBoost) were listed
in Supplementary Appendix-I. Since the combinations of
hyperparameters for each algorithm were numerous, this study
used three search methods [grid search, random search, and
Hyperopt search proposed by Bergstra et al. (36)] to search the
appropriate hyperparameters. Each search method searched and
evaluated the possible hyperparameters among the scopes in
Supplementary Appendix-I, and the search method obtained
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FIGURE 4 | Pairwise scatter plots of all features with multiclass classification.

the best hyperparameters of the algorithm with the target training
set by the main matric—F1-score. Finally, each algorithm will
pick the best hyperparameters among the three search methods.

Grid search searched the performances with all combinations
of hyperparameters with the specific fixed values in their scopes.
Random and Hyperopt searches selected the hyperparameters’
with the possible real numbers from the specific intervals;
therefore, random search and Hyperopt search selected more
floating values for the hyperparameters that were not listed
in the grid search. The numbers of grid search and random
search were the same. The speed of Hyperopt search was much
slower than grid search and random search because Hyperopt
analyzes and improves the values of hyperparameters after each
iteration; therefore, the search number of Hyperopt was 1/2

that of grid search. In Supplementary Appendix-I, the search
numbers of {grid search, random search, and Hyperopt} for BNN,
SVM, RF, AdaBoost, and XGBoost are {162, 162, 81}, {20,100,
20,100, 10,050}, {15,000, 15,000, 7,500}, {24,000, 24,000, 12,000},
and {25,920, 25,920, 12,960}, respectively. Therefore, there were
212,955 searches for binary classification, and the total number
of searches in this study is 425,910 for both binary and multiclass
classifications.

For each search in the three search methods, stratified fivefold
cross-validation (CV) was used to evaluate the performance of
the current hyperparameters. Although the fivefold CV will take
a 5-times validation time than the holdout method, the trained
model will not be easy to overfit for a specific validation set and
reduce the bias and variance of the performance estimate.
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TABLE 2 | Size of original data sets and oversampled data sets.

Oversampling
Set

None ROS/SMOTE/ADASYN

Training(80%) Test(20%) Total Training Test Total

Binary AXL < 26 mm 226 56 282 226 56 282

AXL > 26 mm 58 15 73 226 15 241

Sum 284 71 355 452 71 523

Multiclass AXL < 22 mm 11 3 14 215 3 218

22 mm>AXL < 26 mm 215 53 268 215 53 268

AXL> 26 mm 58 15 73 215 15 230

Sum 284 71 355 645 71 716

Oversampling for Imbalanced Data
For each split of fivefold CV, we oversampled the training
fold to avoid the imbalanced issue. The use of this technique
increased the number of samples of the smaller-sized categories

FIGURE 5 | Flowchart of this study.

for the sample sizes to be consistent among all categories. The
oversampled samples of smaller-sized categorized of the training
fold appeared only in the training fold. This study used three
oversampling techniques as follows.

Random oversampling (ROS): Randomly sample the tuples in
the categories of smaller sample sizes.

Synthetic minority oversampling technique (SMOTE): For
the categories of smaller sample sizes, find a sample x and its
k-nearest neighbor samples xj(j = 1, ..., k). Select one individual
x′j from xj and create a new sample based on the linear
combination of xi and x′j .

Adaptive synthetic sampling (ADASYN): ADASYN is a
technique based on the SMOTE algorithm for generating
synthetic data. The difference between ADASYN and SMOTE
is that ADASYN implements a methodology that detects those
samples of the minority class found in spaces dominated by the
majority class to generate samples in the lower density areas of
the minority class. ADASYN focuses on those samples of the
minority class that are difficult to classify because they are in a
low-density area.

Finally, the numbers of training and validation folds with the
three oversampling techniques and original data set are presented
in Table 2.

Algorithm Evaluation and Statistical
Analysis
Evaluating Metrics
Because the data set in this study was imbalanced and had
many classes, accuracy alone was not sufficient to indicate the
classifiers’ performance. Therefore, accuracy, recall (sensitivity),
PPV (precision), NPV, F1 score, Specificity, and AUC were
used for binary classification. For multiclass classification, this
study used accuracy, weighted recall (sensitivity), weighted
PPV, weighted NPV, weighted F1 score, weighted Specificity,
and macro AUC where macro AUC is the macro average
of multiple one-vs-rest AUCs. Five algorithms (BPN, SVM,
AdaBoost, XGBoost, RF), three hyperparameter optimizations
(Grid Search, Random Search, Hyperopt), and four oversampling
techniques (None, ROS, SMOTE, and ADASYN) were used
to construct classifiers with training set based on the best
hyperparameters obtained in Hyperparameter Optimization for
binary and multiclass classifications. The numbers of training
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and test sets with the three oversampling techniques and original
data set are presented in Table 2. In total, 120 experiment
results with test set are reported for binary and multiclass
classification. The details of the experiment results of binary and
multiclass classifications are listed in Supplementary Appendix-
II,III respectively.

AXL Prediction
For evaluation of AXL prediction from human eyes, 2
ophthalmologists and two medical students were asked to predict
AXL of the eyes by the 10 features (age, sex, height, weight,
choroidal thickness from the 6 points). They were blind to
the AXL during prediction, and the results were checked and
compared with the results from AI algorithm with t-test by
another person in our group.

RESULTS

Demographics
In this study, 710 OCT images of 355 eyes (172 left and 183
right) of 188 patients were collected. All patients had complete
sex, age, body height, and body weight data in their medical
records. In total, 87 (46.28%) men and 101 (53.72%) women
participated. The average age was 66.49 ± 9.73 years, average
body height was 159.8 ± 8.72 cm, and average body weight was
64.8 ± 12.1 kg (Table 3). The average AXL was 24.55 ± 2.26 mm
at the right eye and 24.61 ± 2.21 mm at the left eye. The average
CT at the central fovea, 3 mm nasal, and 3 mm temporal to
the fovea on cross-sectional image was 161.46 ± 75.17 mm,
137.88 ± 69.29 mm, and 170.01 ± 65.56 mm at the right
eye, respectively; 162.48 ± 72.16 mm, 139.58 ± 67.30 mm,
175.86 ± 66.50 mm at the left eye, respectively. The average
CTs at the central fovea, 3 mm superior, and 3 mm inferior to
the fovea on longitudinal image were 161.56 ± 74.9, 172.67
± 71.56, and 158.16 ± 66.01 mm at the right eye, respectively;
162.64 ± 71.03, 161.24 ± 69.22, and 175.32 ± 62.97 mm at
the left eye, respectively. In our binary classification, there were
282 (79.44%) eyes with AXL < 26 mm and 73 (20.56%) eyes
with AXL ≥ 26 mm; in the multiclass classification, there were
14 (3.94%) eyes with AXL < 22 mm, 268 (75.49%) between 22
and 26 mm, and 73 (20.56%) eyes with AXL ≥ 26 mm (Table 4).

Results of Pearson, VIF, and LASSO
The Pearson results of all eyes revealed that the 10 features
were substantially correlated with the AXL (all P < 0.05). Age
had the strongest correlation, followed by height, Choroid-CN,
Choroid-LM, Choroid-CM, Choroid-LU, Choroid-LD, Choroid-
CT, gender, and weight. Height and weight had positive
correlations with AXL, and men had longer AXL, but the other
features had negative correlation with AXL (Supplementary
Tables 1, 2). Regarding the CT between the left and right
eye, Choroid-CM and Choroid-CN had symmetric properties
between the left and right eye because their r coefficients
were higher than others. However, the others were asymmetric
(Supplementary Table 3). The results of VIF revealed that the 10

features exhibited no multicollinearity because no feature’s VIF
was > 10 (Supplementary Table 4).

The sequence of the features’ coefficient becoming non-zero
under Lasso with decreasing α is listed as follows: age, Choroid-
CN, Choroid-LM, Height, Choroid-CM, Choroid-LU, weight,
Choroid-CT, Choroid-LD, and gender. Height and male gender
are positively correlated with AXL. Among the 6 CTs, Choroid-
CT and Choroid-LD features were positively correlated to AXL,
compared with other features. However, based on the Lasso with
α = 0.01, the coefficients of gender, choroid-LD, and weight were
relatively small (Supplementary Table 5). After the Pearson, VIF,
and Lasso analyses were conducted, all of the 10 features were
found to be non-redundant. Therefore, all 10 of the features were
used for constructing the classifiers.

Results of Proposed Classifiers
Classifier 3 obtained the best PPV and Specificity of 90.91 and
98.25%. Classifier 4 obtains the best PPV and Specificity of
92.21 and 93.37%. Tables 6, 7 list some classifiers with the best
metrics for binary and multiclass classifications, respectively.
All metrics in Tables 6, 7 are calculated from an independent
test set described in the Data Splitting. Classifier 1 (SVM with
random search and ROS oversampling), Classifier 2 (AdaBoost
with random search and ADASYN oversampling), and Classifier
3 (AdaBoost with Hyperopt search and ROS oversampling)
have different best metrics for binary classification. Classifier 1
obtains the best recall, NPV, and AUC of 100, 100, and 95.61%,
respectively. Classifier 2 obtains the best accuracy and F1-score
of 94.37 and 86.67%. Classifier 3 obtained the best PPV and
Specificity of 90.91 and 98.25%.

For multiclass classification, Classifier 4 (SVM with grid
random and SMOTE oversampling), Classifier 5 (AdaBoost
with grid search and ROS oversampling), Classifier 6 (XGBoost
with grid search and SMOTE oversampling), and Classifier 7
(XGBoost with random search and ROS oversampling) have
different best metrics. Classifier 4 obtains the best PPV and
Specificity of 92.21 and 93.37%. Classifier 5 obtains the best
accuracy, weighted recall, and weighted F1 score of 88.73, 88.73,
and 87.43%, respectively. Classifier 6 and Classifier 7 obtain the
best macro AUC (93.51%) and weighted NPC, respectively.

Among all metrics, F1-score is the main metric in this
study because F1-score seeks the balance of Recall and PPV
for the imbalanced dataset. In clinical application, it can help
doctors utilize the ensemble learning with the balance of positive
prediction and effective medical resource use. However, assessing
a model with the best F1-score and poor other metrics is
inappropriate. It is still very important to comprehensively
consider all metrics. Based on Tables 6, 7, the proposed
Classifiers 2 and 5 are excellent models for detecting myopia
with binary and multiclass classifications. It is possible to classify
AXL > or < 26 mm by CTs with the proposed Classifier 2
because Classifier 2 has no low performances of all metrics.
AXL < 22 mm, between 22 and 26 mm,≥ 26 mm can be classified
based on CTs with the proposed Classifier 5 because Classifier 5
has good performances for all metrics.

Based on Table 6, Classifier 1 (SVM) has the best recall, NPV,
and AUC but a poor PPV. Classifier 2 (AdaBoost) obtains the
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TABLE 3 | Characteristics of participants.

Feature Number (%) Feature Number (%)

Gender Height (cm, mean = 159.8, SD = 8.72)
Male 87 (46.3%) <150 24 (12.8%)
Female 101 (53.7%) 150–159.9 67 (35.6%)
Age (mean = 66.5, SD = 9.73) 160–169.9 65 (34.6%)
<40 3 (1.6%) 170–179.9 29 (15.4%)
40–49 10 (5.3%) >179.9 3 (1.6%)
50–59 19 (10.1%) Weight (kg, mean = 64.8, SD = 12.1)
60–69 85 (45.2%) <50 14 (7.4%)
70–79 58 (30.9%) 50–59.9 54 (28.7%)
>79 13 (6.9%) 60–69.9 55 (29.3%)

70–79.9 45 (23.9%)
80–89.9 12 (6.4%)
>89.9 8 (4.3%)

best accuracy and F1-score, and it also has the second-best recall,
PPV, NPV, F1-score, and specificity. Additional, the gaps of recall,
NPV, and AUC between Classifier 1 and Classifier 2 are small.
Because Classifier 2 is more stable than Classifiers 1 and 3 and has
no low performances of all metrics, Classifier 2 is recommended
to classify AXL > or < 26 mm by CTs.

Based on Table 7, Classifier 4 (SVM) has the best the best PPV
(weighted) and specificity (weighted) but very poor accuracy,
recall (weighted), and NPV (weighted). Classifier 6 (XGBoost)
and Classifier 7 (XGBoost) respectively, have the best AUC
(macro) and NPV (weighted) but medium remaining metrics.
Classifier 5 (AdaBoost) obtains the best Accuracy, recall, and
F1-score, and it also has the second-best PPV (weighted), NPV
(weighted), specificity (weighted), and AUC (macro). Because
Classifier 5 is excellent and stable than other three Classifiers (4,
6, and 7), Classifier 5 can be used to classify AXL < 22 mm, AXL
between 22 and 26 mm, and AXL ≥ 26 mm by CTs.

The appropriate values of hyperparameters of classifiers in
Tables 5, 6 are obtained by Hyperparameter Optimization,
and the details of values of hyperparameters are listed in
Supplementary Appendix-IV.

The AXL Prediction
To compare the results of AXL prediction based on the 10
features between the proposed classifiers and ophthalmologists,
we recruited 2 ophthalmologists and 2 medical students to
predict AXL in binary and multiclass classification based on
the same 10 features. In the results, the accuracy was 48.61–
69.44%, PPV (weighted) was 61.50–76.08%, Recall (weighted)
was 48.61–69.44%, F1 score (weighted) was 54.29–71.92%, NPV
(weighted) was 38.77–53.71%, and AUC (macro) was 49.07–
63.03%. The results were considerably less accurate than those
from our developed classifiers in Tables 5, 6.

The Comparisons of AXL Class
Prediction Between Humans and
Classifiers
To compare the AXL class prediction between the
proposed classifiers and ophthalmologists, we recruited two
ophthalmologists (OPHs) and two medical students to compare
binary and multiclass classification based on the same test set
with ten features (without AXL feature). Since the test set size

is over 30, this study used the test of proportion to verify the
performance of results. The null and alternative hypotheses
are H0 : pHuman ≥ pAI and H1 : pHuman < pAI, where pHuman
and pAI are the metrics of human performances and proposed
classifiers, respectively. The comparison and test results are listed
in Tables 7, 8.

In Tables 7, 8, the human performances’ results of accuracy,
recall, PPV, NPV, F1-score, specificity, and AUC, respectively, are
47.89–80.28%, 6.67–67.61%, 5.56–72.85%, 38.91–90.38%, 6.06–
69.04%, 36.98–85.71%, and 38.15–75.30%. Compared with the
same metrics of proposed classifiers 2 and 5 in Tables 6, 7, all tests
of proportion rejected H0. It demonstrated that the proposed
classifiers outperform the human performances.

DISCUSSION

In this study, we proposed that Classifiers 1–6 can predict
AXL by means of patients’ age, sex, height, weight, and CT
measured from OCT images. Studies have reported that CT is
negatively correlated with AXL, and people with high myopia
tend to have a thinner choroid (7–11). However, few studies
have assessed the prediction of AXL by means of CT. In the
proposed classifiers, the binary prediction has accuracy, recall,
PPV > 90%, and NPV > 85%; multiclass prediction has accuracy,
recall, PPV, and NPV > 80%, which is substantially better than
prediction by ophthalmologists in this study. The 10 selected
features were correlated with AXL, and the correlation was
confirmed by the Pearson, VIF, and Lasso analyses. In the Pearson
and Lasso analyses, age had the highest negative correlation
with AXL. This observation may result from the difference in

TABLE 4 | Class label criteria in terms of AXL.

Binary classification

Class Rule Number (%)

0 AXL < 26 mm 282 (79.44%)

1 AXL ≥ 26 mm 73 (20.56%)

Class Multiclass ClassificationRule Number (%)

0 AXL < 22 mm 14 (3.94%)

1 22 mm ≤ AXL < 26 mm 268 (75.49%)

2 AXL ≥ 26 mm 73 (20.56%)
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prevalence of myopia among various age groups. Studies have
reported that from 1983 to 2017, the prevalence of myopia in
the same age group substantially increased in Taiwan, (2) which
leads to more incidence of myopic eyes in younger patients in
our cohort. Another possible reason for this correlation is that
whereas older patients could have various conditions that require
ophthalmic clinic follow-up, younger patients seldom have severe
eye disease that requires clinic visits and image studies, except
for those patients with myopia or high myopia who were at
risk of retinal complications. Among the six choroid locations,
CT at the nasal side in cross-section (Choroid-CN) was the
thinnest. This result is compatible with those of El-Shalzly et.al.

(9) and Gupta et al. (13) which have demonstrated that CT at the
nasal side was thinner in patients with myopia and emmetropia.
Furthermore, CT at the nasal side also has the highest negative
correlation with AXL both in Pearson and Lasso analyses.
Although the exact mechanism requires further investigation,
this result demonstrated that CT at the nasal side is essential for
AXL prediction and possibly essential in myopia development.

Regarding myopia prediction, Varadarajan et al. (37)
developed a model to predict SE from color fundus images. Shi
et al. used CNN to predict myopia with absolute mean error of
1.115 D in SE from a color fundus image (38). We chose AXL
classifications as our prediction. Our patients’ average age was ≈

TABLE 5 | Superior performance in binary classification.

Classifier Algorithm Hyper. Opt. Over sampling Accuracy Recall PPV NPV F1-score Specificity AUC

1 SVM Random ROS 92.96% 100% 73.68% 100% 84.85% 91.22% 95.61%

2 AdaBoost Random ADASYN 94.37% 92.86% 81.25% 98.18% 86.67% 94.73% 93.80%

3 AdaBoost Hyperopt ROS 92.30% 71.43% 90.91% 93.33% 80.00% 98.25% 84.84%

TABLE 6 | Superior performances in multiclass classification.

Classifier Algorithm Hyper. Opt. Over
sampling

Accuracy Recall
(weighted)

PPV
(weighted)

NPV
(weighted)

F1-score
(weighted)

Specificity
(weighted)

AUC
(macro)

4 SVM Random SMOTE 78.87% 78,87% 92.21% 62.56% 83.17% 93.37% 88.71%

5 AdaBoost Grid ROS 88.73% 88.73% 86.16% 82.28% 87.43% 74.75% 93.06%

6 XGBoost Grid SMOTE 85.92% 85.92% 83.06% 78.89% 84.32% 65.07% 93.42%

7 XGBoost Random ROS 87.32% 87.32% 84.96% 85.83% 85.78% 68.27% 84.64%

TABLE 7 | The comparison and test results in binary classification.

Item Accuracy Recall PPV NPV F1-score Specificity AUC

Student 1 Metric 80.28% 66.67% 52.63% 90.38% 58.82% 83.93% 75.30%

p-value 0.006** 0.000*** 0.000*** 0.023* 0.000*** 0.019* 0.001**

Student 2 Metric 56.34% 6.67% 5.56% 73.58% 6.06% 69.64% 38.15%

p-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000 ***

OPH 1 Metric 77.46% 60.00% 47.37% 88.46% 52.94% 82.14% 71.07%

p-value 0.002** 0.000*** 0.000*** 0.010* 0.000*** 0.010* 0.000***

OPH 2 Metric 80.28% 60.00% 52.94% 88.89% 56.25% 85.71% 72.86%

p-value 0.006** 0.000*** 0.000*** 0.012* 0.000*** 0.035* 0.000***

p value: * < 0.05, ** < 0.01, *** < 0.001.

TABLE 8 | The comparison and test results in multiclass classification.

Item Accuracy Recall (weighted) PPV (weighted) NPV (weighted) F1-score (weighted) Specificity (weighted) AUC (macro)

Student 1 Metric 67.61% 67.61% 70.60% 41.54% 64.92% 36.98% 52.29%

p-value 0.001** 0.001** 0.012* 0.000*** 0.001** 0.000*** 0.000***

Student 2 Metric 47.89% 47.89% 60.86% 38.91% 53.59% 50.25% 49.07%

p-value 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.001** 0.000***

OPH 1 Metric 53.52% 53.52% 63.76% 41.16% 57.21% 53.00% 53.26%

p-value 0.000*** 0.000*** 0.001** 0.000*** 0.000*** 0.003** 0.000***

OPH 2 Metric 66.20% 66.20% 72.85% 50.61% 69.04% 59.85% 63.03%

p-value 0.001** 0.001** 0.025* 0.000 *** 0.004** 0.029* 0.000***

p value: * < 0.05, ** < 0.01, *** < 0.001.
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66 years, and most of our participants had various severities of
cataract; many of the participants had received cataract surgery.
Because SE may be influenced by lens condition and cylinder,
which are not directly related to retinal or choroidal condition,
we considered AXL as a more accurate feature to reflect a
patient’s myopic condition. Because some of our patients had
retinal disease, such as AMD, DME, retinoschisis, or myopic
CNV, the retinal condition may vary between patients and even
among multiple visits for the same patient. Thus, we recorded
the CT to avoid the potential variation of retinal condition. Dong
et al. (38) predicted AXL and subfoveal CT from a color fundus
image with high accuracy (39). In their heat map analysis, they
demonstrated that different areas of the macula on the fundus
image were used to predict various AXL. The entire macular
region, foveal region, and extrafoveal region were used to predict
AXL < 22 mm, from 22 to 26 mm, and > 26 mm, respectively.
In our study, we measured the CT at fovea and perifovea, and
predicted AXL from the features. Among all of the CTs at various
positions, the nasal side had the highest correlation with AXL,
followed by the central part, and the result was unanimous in
binary and multiclass classifications. Compatible with that of
Dong et al. our results also demonstrated that the CT at the fovea
and perifoveal region can predict AXL in various classifications.

In classifier construction, feature scaling is an essential
preprocessing step in AI. Before one evaluates and selects the
features, all features must be standardized to prevent redundancy
or duplication. We used Pearson, VIF, and Lasso analyses to select
the proper features. Pearson’s r indicates the linear relationship
between a given feature and class label. The p value indicates
the probability that a feature is uncorrelated with the class
label, per the method of Kowalski (40). The VIF measures how
substantially the variance of an independent feature is influenced
by other independent features. If the VIF of the target feature
was > 10, we eliminated the target feature. The Lasso method
was proposed by Santosa and Symes (41) and popularized by
Tibshirani (42). Lasso performs covariate selection by forcing the
sum of the absolute value of the regression coefficients to be less
than a fixed value, which forces certain coefficients to be 0.

In hyperparameter optimization, Random Search is more
effective than Grid Search for a fixed search number; (36)
Hyperopt obtains superior values of hyperparameters within the
same executing time (43). Our data set was imbalanced both
in binary and multiclass classifications, and the use of such
imbalanced data to train the model may yield a biased result.
The method we used, oversampling, is a popular technique for
treating imbalanced data to avoid the aforementioned problems.

The ensemble-learning approach has also been used in
ophthalmology to diagnose DR and interpret OCT imaging
(44, 45). In our study, we used 5 algorithms (BNN, SVM, RF,
AdaBoost, and XGBoost) to construct the classifiers of axial
length through CTs. The classifiers constructed by ensemble
approach (RF, AdaBoost, and XGBoost) outperformed those
constructed by single machine learning approach (BNN and
SVM). Those constructed by AdaBoost (Classifiers 1, 2, 4, and
5) and XGBoost (Classifiers 3 and 6) had the most optimal
performance. Essentially, AdaBoost and XGBoost features the
combination of several weak classifiers to form a strong one
with a boosting approach. For the 2 algorithms (AdaBoost and

XGBoost), the boosting approach plays a crucial role in dealing
with the bias-variance tradeoff, and the boosting approach is
considered more effective.

In this study, we successfully conducted AXL classification
at the accuracies of 94.34 and 88.73% for binary and multiclass
classifications by hyperparameter optimization, oversampling,
and boosting algorithms. The high prediction accuracy in our
binary and multiclass classification could be attributed to two
main reasons. First, all of our imputed CT were repeated
measured and rechecked by an ophthalmologist familiar with
OCT images to ensure the accuracy of each measurement and
avoid segmentation errors. Second, the seven final classifiers
were chosen from 8,518,200 candidates [from 425,910 searches,
each went through 20 (4 oversampling and five cross-validation)
complete experiments], thus enabled our model to have
high accuracies.

This study has several limitations. First, our sample size was
relatively small, especially those with AXL < 22 mm or > 26 mm;
the distribution of AXLs is also relatively imbalanced. Second,
the process of collecting the 10 features was time consuming.
Considerable time and effort were required to measure the
thickness of the choroid of 6 positions from 2 OCT images of
each eye and to collect data on sex, age, weight, and height of
each of the participants. Among the features we recorded, AXL
did not increase with age after adulthood, and weight may change
without change of AXL; these potentially induced bias in our
results. Third, the manual measurement of CT may cause bias
or inconsistency. Future studies should address these limitations,
and we expect to conduct more investigations using a larger data
set on the classification and diagnosis of eye diseases which may
be revealed by SD-OCT.

We demonstrated the effectiveness of the proposed classifiers
in classification prediction from medical data and provided an
assistance tool for physicians.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Fu Jen Catholic University Hospital, Fu Jen Catholic
University. Written informed consent for participation was not
required for this study in accordance with the national legislation
and the institutional requirements.

AUTHOR CONTRIBUTIONS

CY-T and H-CL: conceptualization and writing – original
preparation. H-CL: methodology and software. C-YT, H-YC,
and C-JH: data collection. H-CL and P-HC: formal analysis.
C-YT, H-YC, L-SW, and P-HC: writing – review and edition.
C-YT: supervision. H-CL, L-SW, and P-HC: funding acquisition.

Frontiers in Medicine | www.frontiersin.org 11 June 2022 | Volume 9 | Article 850284

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-850284 June 22, 2022 Time: 14:27 # 12

Lu et al. Predicting AXL From CT on OCT

All authors have read and agreed to the published version of the
manuscript.

FUNDING

This study was supported by the Ministry of Science and
Technology of Taiwan under the grants MOST 108-2410-H-030-
078-MY2 and MOST 110-2410-H-182-008-MY3, grants from
Fu Jen Catholic University (No. 910I112) and Fu Jen Catholic
University Hospital (No. PL-20200800X).

ACKNOWLEDGMENTS

We thank Jia-Hao Jhan and Rui-Xuan Su for their assistance in
data collection and analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2022.850284/full#supplementary-material

REFERENCES
1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al.

Global prevalence of myopia and high myopia and temporal trends from 2000
through 2050. Ophthalmology. (2016) 123:1036–42.

2. Tsai TH, Liu YL, Ma IH, Su CC, Lin CW, Lin LL, et al. Evolution of the
prevalence of myopia among Taiwanese schoolchildren: a review of survey
data from 1983 through 2017. Ophthalmology. (2021) 128:290–301. doi: 10.
1016/j.ophtha.2020.07.017

3. Duan F, Yuan Z, Deng J, Wong YL, Yeo AC, Chen X. Choroidal thickness
and associated factors among adult myopia: a baseline report from a medical
university student cohort. Ophthalmic Epidemiol. (2019) 26:244–50. doi: 10.
1080/09286586.2019.1597899

4. Tideman JW, Snabel MC, Tedja MS, van Rijn GA, Wong KT, Kuijpers RW,
et al. Association of axial length with risk of uncorrectable visual impairment
for Europeans with myopia. JAMA Ophthalmol. (2016) 134:1355–63. doi: 10.
1001/jamaophthalmol.2016.4009

5. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and
associated pathological complications. Ophthalmic Physiol
Opt. (2005) 25:381–91. doi: 10.1111/j.1475-1313.2005.0
0298.x

6. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. (2012) 379:1739–48.
7. Bartol-Puyal FA, Isanta C, Ruiz-Moreno O, Abadia B, Calvo P, Pablo L.

Distribution of choroidal thinning in high myopia, diabetes mellitus, and
aging: a swept-source OCT study. J Ophthalmol. (2019) 2019:3567813. doi:
10.1155/2019/3567813

8. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy
Japanese subjects. Invest Ophthalmol Vis Sci. (2010) 51:2173–6.

9. El-Shazly AA, Farweez YA, ElSebaay ME, El-Zawahry WMA. Correlation
between choroidal thickness and degree of myopia assessed with enhanced
depth imaging optical coherence tomography. Eur J Ophthalmol. (2017)
27:577–84. doi: 10.5301/ejo.5000936

10. Wang S, Wang Y, Gao X, Qian N, Zhuo Y. Choroidal thickness and high
myopia: a cross-sectional study and meta-analysis. BMC Ophthalmol. (2015)
15:70. doi: 10.1186/s12886-015-0059-2

11. Usui S, Ikuno Y, Miki A, Matsushita K, Yasuno Y, Nishida K. Evaluation of
the choroidal thickness using high-penetration optical coherence tomography
with long wavelength in highly myopic normal-tension glaucoma. Am J
Ophthalmol. (2012) 153:10–6.e1. doi: 10.1016/j.ajo.2011.05.037

12. Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM. The relationship
between axial length and choroidal thickness in eyes with high myopia. Am
J Ophthalmol. (2013) 155:314–9.e1. doi: 10.1016/j.ajo.2012.07.015

13. Gupta P, Saw SM, Cheung CY, Girard MJ, Mari JM, Bhargava M, et al.
Choroidal thickness and high myopia: a case-control study of young Chinese
men in Singapore. Acta Ophthalmol. (2015) 93:e585–92. doi: 10.1111/aos.
12631

14. Gupta P, Cheung CY, Saw SM, Koh V, Tan M, Yang A, et al. Choroidal thickness
does not predict visual acuity in young high myopes. Acta Ophthalmol. (2016)
94:e709–15. doi: 10.1111/aos.13084

15. Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, et al. Subfoveal choroidal
thickness: the Beijing eye study. Ophthalmology. (2013) 120:175–80.

16. Yang WH, Zheng B, Wu MN, Zhu SJ, Fei FQ, Weng M, et al. An evaluation
system of fundus photograph-based intelligent diagnostic technology for

diabetic retinopathy and applicability for research. Diabetes Ther. (2019)
10:1811–22. doi: 10.1007/s13300-019-0652-0

17. Takahashi H, Tampo H, Arai Y, Inoue Y, Kawashima H. Applying artificial
intelligence to disease staging: deep learning for improved staging of
diabetic retinopathy. PLoS One. (2017) 12:e0179790. doi: 10.1371/journal.
pone.0179790

18. Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr
B, et al. A deep learning algorithm for prediction of age-related eye disease
study severity scale for age-related macular degeneration from color fundus
photography. Ophthalmology. (2018) 125:1410–20. doi: 10.1016/j.ophtha.
2018.02.037

19. Dong L, Yang Q, Zhang RH, Wei WB. Artificial intelligence for the detection
of age-related macular degeneration in color fundus photographs: a systematic
review and meta-analysis. EClinincalMedicine. (2021) 35:100875. doi: 10.1016/
j.eclinm.2021.100875

20. Omodaka K, An G, Tsuda S, Shiga Y, Takada N, Kikawa T, et al. Classification
of optic disc shape in glaucoma using machine learning based on quantified
ocular parameters. PLoS One. (2017) 12:e0190012. doi: 10.1371/journal.pone.
0190012

21. Asaoka R, Murata H, Iwase A, Araie M. Detecting preperimetric glaucoma
with standard automated perimetry using a deep learning classifier.
Ophthalmology. (2016) 123:1974–80. doi: 10.1016/j.ophtha.2016.05.029

22. Hemelings R, Elen B, Blaschko MB, Jacob J, Stalmans I, De Boever P.
Pathological myopia classification with simultaneous lesion segmentation
using deep learning. Comput Methods Programs Biomed. (2021) 199:105920.
doi: 10.1016/j.cmpb.2020.105920

23. Israelsen NM, Petersen CR, Barh A, Jain D, Jensen M, Hannesschläger G, et al.
Real-time high-resolution mid-infrared optical coherence tomography. Light
Sci Appl. (2019) 8:11. doi: 10.1038/s41377-019-0122-5

24. Waldstein SM, Vogl WD, Bogunovic H, Sadeghipour A, Riedl S, Schmidt-
Erfurth U. Characterization of drusen and hyperreflective foci as biomarkers
for disease progression in age-related macular degeneration using artificial
intelligence in optical coherence tomography. JAMA Ophthalmol. (2020)
138:740–7. doi: 10.1001/jamaophthalmol.2020.1376

25. Kim YC, Chang DJ, Park SJ, Choi Y, Gong Y, Kim H, et al. Machine learning
prediction of pathologic myopia using tomographic elevation of the posterior
sclera. Sci Rep. (2021) 11:6950. doi: 10.1038/s41598-021-85699-0

26. Choi KJ, Choi JE, Roh HC, Eun JS, Kim JM, Shin YK, et al. Deep learning
models for screening of high myopia using optical coherence tomography. Sci
Rep. (2021) 11:21663. doi: 10.1038/s41598-021-00622-x

27. Li Y, Feng W, Zhao X, Liu B, Zhang Y, Chi W, et al. Development and
validation of a deep learning system to screen vision-threatening conditions
in high myopia using optical coherence tomography images. Br J Ophthalmol.
(2020) 106:633–9. doi: 10.1136/bjophthalmol-2020-317825

28. Waldstein S, Faatz H, Szimacsek M, Glodan AM, Podkowinski D, Montuoro
A, et al. Comparison of penetration depth in choroidal imaging using swept
source vs spectral domain optical coherence tomography. Eye (Lond). (2015)
29:409–15. doi: 10.1038/eye.2014.319

29. Yilmaz I, Ozkaya A, Kocamaz M, Ahmet S, Ozkaya HM, Yasa D, et al.
Correlation of choroidal thickness and body mass index. Retina. (2015)
35:2085–90. doi: 10.1097/IAE.0000000000000582

30. Wei WB, Zu L, Jonas JB, Shao L, Du KF, Wang S, et al. Subfoveal choroidal
thickness: the Beijing eye study. Ophthalmology. (2013) 120:175–80.

Frontiers in Medicine | www.frontiersin.org 12 June 2022 | Volume 9 | Article 850284

https://www.frontiersin.org/articles/10.3389/fmed.2022.850284/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2022.850284/full#supplementary-material
https://doi.org/10.1016/j.ophtha.2020.07.017
https://doi.org/10.1016/j.ophtha.2020.07.017
https://doi.org/10.1080/09286586.2019.1597899
https://doi.org/10.1080/09286586.2019.1597899
https://doi.org/10.1001/jamaophthalmol.2016.4009
https://doi.org/10.1001/jamaophthalmol.2016.4009
https://doi.org/10.1111/j.1475-1313.2005.00298.x
https://doi.org/10.1111/j.1475-1313.2005.00298.x
https://doi.org/10.1155/2019/3567813
https://doi.org/10.1155/2019/3567813
https://doi.org/10.5301/ejo.5000936
https://doi.org/10.1186/s12886-015-0059-2
https://doi.org/10.1016/j.ajo.2011.05.037
https://doi.org/10.1016/j.ajo.2012.07.015
https://doi.org/10.1111/aos.12631
https://doi.org/10.1111/aos.12631
https://doi.org/10.1111/aos.13084
https://doi.org/10.1007/s13300-019-0652-0
https://doi.org/10.1371/journal.pone.0179790
https://doi.org/10.1371/journal.pone.0179790
https://doi.org/10.1016/j.ophtha.2018.02.037
https://doi.org/10.1016/j.ophtha.2018.02.037
https://doi.org/10.1016/j.eclinm.2021.100875
https://doi.org/10.1016/j.eclinm.2021.100875
https://doi.org/10.1371/journal.pone.0190012
https://doi.org/10.1371/journal.pone.0190012
https://doi.org/10.1016/j.ophtha.2016.05.029
https://doi.org/10.1016/j.cmpb.2020.105920
https://doi.org/10.1038/s41377-019-0122-5
https://doi.org/10.1001/jamaophthalmol.2020.1376
https://doi.org/10.1038/s41598-021-85699-0
https://doi.org/10.1038/s41598-021-00622-x
https://doi.org/10.1136/bjophthalmol-2020-317825
https://doi.org/10.1038/eye.2014.319
https://doi.org/10.1097/IAE.0000000000000582
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-850284 June 22, 2022 Time: 14:27 # 13

Lu et al. Predicting AXL From CT on OCT

31. Lee MW, Lee SE, Lim HB, Kim JY. Longitudinal changes in axial length in
high myopia: a 4-year prospective study. Br J Ophthalmol. (2020) 104:600–3.
doi: 10.1136/bjophthalmol-2019-314619

32. Lai TT, Yang CM. Lamellar hole-associated epiretinal proliferation in lamellar
macular hole and full-thickness macular hole in high myopiA. Retina. (2018)
38:1316–23. doi: 10.1097/IAE.0000000000001708

33. Li M, Jin E, Dong C, Zhang C, Zhao M, Qu J. The repeatability of superficial
retinal vessel density measurements in eyes with long axial length using optical
coherence tomography angiography. BMC Ophthalmol. (2018) 18:326. doi:
10.1186/s12886-018-0992-y

34. Yang QH, Chen B, Peng GH, Li ZH, Huang YF. Accuracy of axial length
measurements from immersion B-scan ultrasonography in highly myopic
eyes. Int J Ophthalmol. (2014) 7:441–5.

35. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the authors). Ann Statist.
(2000) 28:337–407.

36. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J
Mach Learn Res. (2012) 13:281–305.

37. Varadarajan AV, Poplin R, Blumer K, Angermueller C, Ledsam J, Chopra R,
et al. Deep learning for predicting refractive error from retinal fundus images.
Invest Ophthalmol Vis Sci. (2018) 59:2861–8. doi: 10.1167/iovs.18-23887

38. Shi Z, Wang T, Huang Z, Xie F, Song G. A method for the automatic detection
of myopia in Optos fundus images based on deep learning. Int J NumerMethod
Biomed Eng. (2021) 37:e3460. doi: 10.1002/cnm.3460

39. Dong L, Hu XY, Yan YN, Zhang Q, Zhou N, Shao L, et al. Deep learning-based
estimation of axial length and subfoveal choroidal thickness from color fundus
photographs. Front Cell Dev Biol. (2021) 9:653692.

40. Kowalski CJ. On the effects of non-normality on the distribution of the sample
product-moment correlation coefficient. J R Stat Soc Ser C Appl Stat. (1972)
21:1–12.

41. Santosa F, Symes WW. Linear inversion of band-limited reflection
seismograms. J Sci Stat Comput. (1986) 7:1307–30.

42. Tibshirani RJ. Regression shrinkage and selection via the lasso. J R Stat Soc Ser
B Appl Stat. (1996) 58:267–88.

43. Bergstra J, Yamins D, Cox D. Making a science of model search:
hyperparameter optimization in hundreds of dimensions for vision
architectures. Proc Int Conf Machine Learn. (2013) 28:115–23.

44. Sikder N, Masud M, Bairagi AK, Arif ASM, Nahid A-A, Alhumyani HA.
Severity classification of diabetic retinopathy using an ensemble learning
algorithm through analyzing retinal images. Symmetry. (2021) 13:670.

45. Anoop BN, Pavan R, Girish GN, Kothari AR, Rajan J. Stack generalized
deep ensemble learning for retinal layer segmentation in optical coherence
tomography images. Biocybern Biomed Eng. (2020) 40:1343–58.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Lu, Chen, Huang, Chu, Wu and Tsai. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 13 June 2022 | Volume 9 | Article 850284

https://doi.org/10.1136/bjophthalmol-2019-314619
https://doi.org/10.1097/IAE.0000000000001708
https://doi.org/10.1186/s12886-018-0992-y
https://doi.org/10.1186/s12886-018-0992-y
https://doi.org/10.1167/iovs.18-23887
https://doi.org/10.1002/cnm.3460
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles

	Predicting Axial Length From Choroidal Thickness on Optical Coherence Tomography Images With Machine Learning Based Algorithms
	Introduction
	Materials and Methods
	Data Sets
	Participants
	Optical Coherence Tomography Machine and Scanning Settings
	AXL Measurement
	Features
	Binary and Multiclass Classification of Axial Length

	Development of Classifiers by Machine Learning Algorithms
	Algorithm Selection
	Classifiers Construction Process
	Feature Standardization
	Data Splitting
	Feature Selection
	Hyperparameter Optimization
	Oversampling for Imbalanced Data

	Algorithm Evaluation and Statistical Analysis
	Evaluating Metrics

	AXL Prediction

	Results
	Demographics
	Results of Pearson, VIF, and LASSO
	Results of Proposed Classifiers
	The AXL Prediction
	The Comparisons of AXL Class Prediction Between Humans and Classifiers

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


