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Abstract

Motivation: To obtain a reliable prediction model for a specific cancer subgroup or cohort is often

difficult due to limited sample size and, in survival analysis, due to potentially high censoring rates.

Sometimes similar data from other patient subgroups are available, e.g. from other clinical centers.

Simple pooling of all subgroups can decrease the variance of the predicted parameters of the

prediction models, but also increase the bias due to heterogeneity between the cohorts. A promis-

ing compromise is to identify those subgroups with a similar relationship between covariates and

target variable and then include only these for model building.

Results: We propose a subgroup-based weighted likelihood approach for survival prediction with

high-dimensional genetic covariates. When predicting survival for a specific subgroup, for every

other subgroup an individual weight determines the strength with which its observations enter into

model building. MBO (model-based optimization) can be used to quickly find a good prediction

model in the presence of a large number of hyperparameters. We use MBO to identify the best

model for survival prediction of a specific subgroup by optimizing the weights for additional sub-

groups for a Cox model. The approach is evaluated on a set of lung cancer cohorts with gene ex-

pression measurements. The resulting models have competitive prediction quality, and they reflect

the similarity of the corresponding cancer subgroups, with both weights close to 0 and close to 1

and medium weights.

Availability and implementation: mlrMBO is implemented as an R-package and is freely available

at http://github.com/mlr-org/mlrMBO.

Contact: jakob.richter@tu-dortmund.de

1 Introduction

Survival analysis is a central aspect in cancer research with the aim

of predicting a patient’s risk based on genomic and/or clinical cova-

riates. In clinical practice, this is often challenging because patient

cohorts are typically small and can be heterogeneous with regard to

their relationship between covariates and survival outcome. One

standard approach in multicenter studies is to simply pool different

patient cohorts (here cohorts from different clinical centers) to in-

crease sample size. However, this can lead to biased results especial-

ly when the cohorts are heterogeneous. In standard subgroup

analysis, only the patients of the subgroup of interest s� are included

in the subgroup-specific model. This can lead to unstable results, es-

pecially for smaller subgroups.

We aim at improving the prediction performance for a specific

subgroup by adaptively adding data from the other subgroups, in

order to benefit from the larger sample size, but at the same time

taking into account heterogeneity. Our proposed model potentially

uses all subgroups but assigns them subgroup-dependent weights. If

the inclusion of another subgroup increases the predictive perform-

ance, this subgroup enters with a higher weight into the model

building process.

This idea extends the work of Weyer and Binder (2015) who aim

at improving stability and prediction quality of a model for a specif-

ic subgroup by including one additional weighted subgroup. The

authors study the effects of a set of different fixed weights for the

additional subgroup in a stratified Cox model, with respect to both,

model performance and parameter stability.

In our approach, we use multiple additional subgroups and effi-

ciently optimize respective subgroup-specific weight parameters to

improve the prediction quality of a Cox model. The optimal sub-

group weights are determined by optimizing the cross-validated

Concordance index (C-index) through Bayesian optimization (Jones

et al., 1998). In an adapted version of classical cross-validation, only

the patients of the subgroup s� of interest are included in the test set,

while all patients from all subgroups can potentially be used for
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training. The idea is to assign large weights exactly to those sub-

groups that improve the prediction performance of the model for

subgroup s�. Those subgroups that deteriorate the predictive per-

formance (mainly due to a different relationship between covariates

and survival outcome) are assigned lower weights.

We show that with our subgroup weights optimization ap-

proach, the predictive quality can be improved compared to the two

naı̈ve approaches to either fully include or fully exclude all other

subgroups. As an application example, we use 10 non-small-cell

lung cancer (NSCLC) studies as subgroups and optimize the predic-

tion quality for each subgroup, respectively, using all other sub-

groups with optimized weights.

1.1 Related work
The approach of Weyer and Binder (2015) uses the same fixed

weight for all other subgroups. Alternatively, individual weights for

each patient can be estimated from the training data as proposed by

Bickel et al. (2008). The idea is that weights match the joint distribu-

tion of the complete data to the distribution in each subgroup, such

that a patient who is likely to belong to the subgroup of interest

receives a higher weight in the subgroup-specific model. Weights

correspond to the conditional probability of belonging to the target

subgroup s� given the observed covariates and outcome divided by

the prior probability for s�. The former is estimated from the train-

ing data by multiclass classification and the latter by the relative fre-

quency of s�.

Bayesian approaches for estimating subgroup weights were pro-

posed by Bogojeska and Lengauer (2012) and Simon (2002).

Bogojeska and Lengauer (2012) use a hierarchical weighted logistic

regression model with prior distributions for the subgroup weights

to predict the binary treatment response of an HIV combination

therapy. Simon (2002) considers a Cox model including a binary

treatment effect, a binary subgroup indicator and the corresponding

treatment-by-subgroup interaction with prior distribution for the re-

gression coefficients. The author shows that the components of the

posterior mean are linear combinations of the estimated treatment

effects in different subgroups and extracting the respective scalars

yields the subgroup-specific weights.

Integrative analysis combines data from different data sources

such as multiple studies. In the context of high-dimensional genomic

predictors, Liu et al. (2014a, b) suggest regularized regression with

composite penalties for parameter estimation and gene selection.

These penalties allow to select either the same set of genes or differ-

ent sets of genes in all studies. Instead of aggregating multiple stud-

ies with the same type of (omics) data, Boulesteix et al. (2017)

perform integrative analysis of multiple omics data types available

for the same patient cohort. They use a lasso penalty with different

penalty parameters for the different data types. Bergersen et al.

(2011) integrate external information provided by another genomic

data type by using a weighted lasso that penalizes each covariate in-

dividually with weights inversely proportional to the external

information.

Instead of sharing information between subgroups by integrating

external information into variable selection, Huang et al. (2011)

propose a weighted approach for combining positive predictive

value (PPV) and negative predictive value (NPV) across populations

when the assumption of common classification accuracy is justified.

ROC curve estimation is used to evaluate the ability of a risk predic-

tion marker in discriminating diseased from non-diseased. The esti-

mates of PPV and NPV are based on a weighted average of the ROC

curves from a target and an auxiliary population.

Local regression uses weighted regression models but without

predefined groups. A separate model is fitted to each observation

based on its neighboring observations. Weights in the likelihood of

the local regression model represent the distance from the observa-

tion of interest and determine to which extent the neighboring

observations influence the estimation. All single local regression

models together form the local weighted regression based on all

observations (Hastie et al., 2009, chapters 2.8.2 and 6).

Instead of using distance in covariate space, our proposed

weights are optimized with respect to prediction performance. A

drawback of localized regression is that it does not provide global

regression parameters, making interpretation difficult. Furthermore,

only a small number of observations is used for each local fit in con-

trast to our approach, where the weighted likelihood is based on all

training data. This makes estimation in high-dimensional settings

even more complicated. To deal with this problem, Tutz and Binder

(2005) developed a penalized localized classification approach and

Binder et al. (2012) propose a cluster-localized logistic regression

with weighted component-wise likelihood-based boosting for auto-

matic variable selection and a special clustering for SNP data.

Above-mentioned approaches have in common that the goal is to

achieve a high predictive accuracy on a specific subgroup by com-

bining data from different subgroups. If multiple subgroups are

available, another aim can be the identification of models that not

only work well on the data they have been trained on but also on

the other subgroups. Bernau et al. (2014) point out that classical

cross-validation tends to be too optimistic, with respect to accuracy

on data of unseen subgroups. They propose to include all available

subgroups for the validation of a single model. Zhao et al. (2014)

compare different regression methods for gene expression data and

survival outcome with respect to accuracy. They use the largest sub-

group for training and investigate which regression approach per-

forms well on the remaining subgroups.

2 Gene expression data

Ten lung cancer cohorts with overall survival and censoring infor-

mation, Affymetrix microarray gene expression data of the tumor

material, and several clinicopathologic information, were down-

loaded from the Gene Expression Omnibus (GEO) data repository

(Edgar et al., 2002) and manually curated as follows. Raw gene ex-

pression data (CEL files), measured on the Affymetrix HG-U133

Plus 2.0 and HGU-133A array, were normalized using frozen robust

multiarray analysis (fRMA) (McCall et al., 2010), except for

GSE3141 and GSE4573, where only MAS5-normalized data were

available. All cohorts were checked for duplicates by looking at cor-

relations of the expression value vectors. Duplicates, small cell can-

cer samples and normal (nontumorous) samples, as well as samples

with missing survival endpoint were removed. More details on the

data curation process can be found in Hellwig et al. (2016).

The resulting 10 NSCLC cohorts comprise n ¼ 1779 patients

with available overall survival endpoint and gene expression data as

covariates which are used for analysis. The total number of meas-

ured genetic covariates (probe sets that represent genes) in each co-

hort is 22 283 or 54 675 depending on the Affymetrix array. We

restricted the analysis to the 22 277 probe sets in the overlap of both

Affymetrix arrays. The majority of these probe sets are noise and do

not contain relevant information regarding survival outcome. This

makes the identification of the prognostic genes more difficult and

slows down computation time. Therefore, we use a reduced gene set

for analysis that is based on the 1000 features (probe sets) with the
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highest variance in gene expression values across all 10 cohorts

within the optimization dataset and a small number of literature-

based prognostic genes. The selection of the top-1000-variance fea-

tures is based on the assumption that important prognostic genes

imply systematic changes in their expression values and thus, a

larger variance in contrast to irrelevant noise genes. The following

30 prognostic features (probe sets) belong to 13 of the 14 prognostic

lung cancer genes from Kratz et al. (2012) with matches on the

Affymetrix HG-U133 Plus 2.0 and HGU-133A array. Gene symbols

(provided in brackets) were translated into corresponding probe set

IDs using the R/Bioconductor annotation package hgu133plus2.db

(version 3.2.3):

202387_at (BAG1), 211475_s_at (BAG1), 229720_at (BAG1),

204531_s_at (BRCA1), 211851_x_at (BRCA1), 203967_at

(CDC6), 203968_s_at (CDC6), 201938_at (CDK2AP1),

1563252_at (ERBB3), 1563253_s_at (ERBB3), 202454_s_at

(ERBB3), 215638_at (ERBB3), 226213_at (ERBB3),

214088_s_at (FUT3), 216010_x_at (FUT3), 206924_at (IL11),

206926_s_at (IL11), 204890_s_at (LCK), 204891_s_at

(LCK), 212724_at (RND3), 204979_s_at (SH3BGR),

209009_at (ESD), 215095_at (ESD), 215096_s_at (ESD),

228162_at (ESD), 240808_at (ESD), 203135_at (TBP),

213342_at (YAP1), 224894_at (YAP1), 224895_at (YAP1).

For each cohort, the Kaplan–Meier estimator of the survival

function is plotted in Figure 1. The Kaplan–Meier plot shows that

patients in cohort GSE31210 have the best prognosis with a 10-year

overall survival probability of about 75%, while GSE37745 exhibits

a poor prognosis with a 10-year overall survival of 25%. GSE29013

has the shortest maximum follow-up time with about 7 years, and

GSE30219 the longest maximum follow-up time with about

20 years. A summary of the clinicopathologic variables is provided

in Table 1.

3 Weighted Cox model

Assume the observed data of patient i consists of the tuples ðti; diÞ,
the covariate vectors xi ¼ ðxi1; . . . ; xipÞ0 2 R

p, and the subgroup

membership si 2 f1; . . . ; Sg with S the number of subgroups in the

complete dataset, and i ¼ 1; . . . ; n. ti ¼ minðTi;CiÞ denotes the

observed time of patient i, with Ti the event time and Ci the censor-

ing time. di ¼ 1ðTi � CiÞ indicates whether a patient experienced

an event (di ¼ 1) or was (right-)censored (di ¼ 0). The most popular

regression model in survival analysis is the Cox proportional haz-

ards model (Cox, 1972). It models the hazard rate hðtjxiÞ of an indi-

vidual at time t as

hðtjxiÞ ¼ h0ðtÞ � expðb0xiÞ ¼ h0ðtÞ � exp
Xp

j¼1

bjxij

0
@

1
A;

where h0ðtÞ is the baseline hazard rate, and b ¼ ðb1; . . . ; bpÞ0 is the

unknown parameter vector. The parameters are estimated by maxi-

mizing the partial log-likelihood (Klein and Moeschberger, 2003,

chapter 8.3).In order to take subgroups into account, a weighted

version of the partial log-likelihood as in Weyer and Binder (2015)

is used:

lðbÞ ¼
Xn

i¼1

diwi b0xi � ln
Xn

k¼1

1ðti � tkÞwk exp ðb0xkÞ
" # !

: (1)

In the subgroup-specific model for subgroup s�, the individual

weights are given by

wi ¼
1; if si ¼ s�

wðgÞ; if si ¼ g; g 2 f1; . . . ; Sg n s�

�
(2)

where wðgÞ 2 ½0; 1� is the specific weight for subgroup g. Standard

subgroup analysis is based only on the patients in the subgroup of

interest (target subgroup s�), which corresponds to w¼0 for all

patients not belonging to s�. A combined model that pools patients

from all subgroups corresponds to w¼1 for all patients.

In high-dimensional settings where the number of covariates p is

typically much larger than the sample size n, standard maximum

likelihood cannot be used for parameter estimation. Therefore, we

add a lasso penalty (Tibshirani, 1996, 1997) to the partial log-

likelihood. Lasso regression performs variable selection and yields a

sparse model solution. The resulting maximization problem of the

penalized partial log-likelihood is given by

b̂ ¼ argmax
b

lðbÞ � k �
Xp

j¼1

jbjj

8<
:

9=
;:

The parameter k controls the strength of penalization and is opti-

mized by 10-fold cross-validation.

4 Model-based optimization

Sequential model-based optimization (MBO) (Jones et al., 1998)

(also known as Bayesian optimization) is a state-of-the-art

(Shahriari et al., 2016) technique for expensive black-box optimiza-

tion problems. In comparison to other black-box optimization meth-

ods, like genetic algorithms or simulated annealing, MBO is

especially suitable when evaluating a configuration (e.g. fitting and

evaluating a model with specific hyperparameters, here denoted by

h) is very time consuming, as it becomes infeasible to evaluate the

black box for thousands of configurations. MBO solves the opti-

mization problem within a bounded search space h:

h� :¼ argminh2Hf ðhÞ;

where f ðhÞ denotes the evaluation of the black box with the input

configuration h. To reduce the number of evaluations on f the key

idea of MBO is to only evaluate values of h that are expected to lead

to a small value of f ðhÞ. The estimate f̂ ðhÞ is generated by a so-called

surrogate model. Typically, this is a regression model that predicts

the outcome of f based on previous evaluations of f. First, an initial

design of already evaluated configurations is needed. Then,
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Fig. 1. Kaplan–Meier plots of the estimated survival functions for all 10 lung

cancer cohorts
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iteratively, the MBO algorithm fits the surrogate on the previous

evaluations, proposes a new configuration h and evaluates it on f.

A so-called infill criterion guides the proposal of new configura-

tions h based on f̂ . It balances between exploration of not yet eval-

uated regions in H and exploitation, i.e. the search in regions that

promise best outcomes. As infill criterion, we use the augmented

expected improvement (Huang et al., 2006) that is well suited for

noisy functions. The steps are repeated until a budget is exhausted.

For non-noisy optimization, we would choose the configuration h�

that has led to the best outcome of f to be returned as the tuning re-

sult. If the function outcome is noisy, the best observed outcome is

likely to be distorted by noise and not located at the true posterior

mean. Therefore, we employ the surrogate to estimate the posterior

mean for each evaluated configuration to cancel out the noise. The

configuration for which the surrogate estimates the best outcome is

then returned as the optimization result h�.
We apply Kriging (also called Gaussian process regression) to fit

the surrogate model that predicts the outcome of f for unknown val-

ues of h. We use the implementation in the R-package DiceKriging

(Roustant et al., 2012) and configure it to apply the Mattern 3=2

kernel with an estimated nugget effect to account for the noisy re-

sponse of f.

In our study, we apply MBO to optimize the subgroup-specific

weights wðgÞ in the weighted Cox model. For each weight configur-

ation h ¼ ðwð1Þ; . . . ;wðS�1ÞÞ (assuming s� ¼ S), we evaluate the

weighted Cox model with a 10-fold cross-validation. As a result, we

obtain 10 noisy outcomes for each h. These are fed to the MBO.

However, due to numerical instabilities in some situations, the max-

imum likelihood estimation of the covariance matrix of the Kriging

surrogate model can fail which results in a constant mean predic-

tion. This leads to randomly proposed points for the next MBO

step. To avoid this case, we implemented a fallback model: If the

prediction of the surrogate model is constant, all noisy response

values f ðhÞ belonging to the same h are aggregated by their means.

These simplified data usually lead to models without constant

predictions.

5 Evaluation and results

We apply the methods described above to obtain a separate predict-

ive model for each of the 10 NSCLC cohorts. We use a weighted

Cox model to predict the survival function of each patient in the re-

spective target subgroup s�. The unknown parameter vector b is esti-

mated by maximizing the penalized weighted partial log-likelihood

in (1). Subgroup-specific weights (2) are optimized using MBO, with

a budget of 300 evaluations. Parameters to be optimized are the Cox

model parameters and the weight vector. The initial design for MBO

consists of 2 � ðS� 1Þ randomly sampled subgroup weights and the

following additional specific extreme cases: exactly one other sub-

group has weight 1 and all others have weight 0; all other subgroups

have weight 0 or all other subgroups have weight 1. The target sub-

group s� always has weight 1. The objective is to maximize the pre-

dictive performance by adapting the weights for all other subgroups.

The predictive performance of the weighted Cox model is eval-

uated using the C-index. To assess the performance of a weight

configuration, the C-index is evaluated on each fold of 10-fold

cross-validation. We use a modified version of the cross-validation

to take into account that we are only interested in the predictions on

the target subgroup: The target subgroup is divided into 10 chunks,

and to obtain the prediction for one chunk all remaining 9 chunks

plus all observations from the additional subgroups are combined to

the training dataset. The C-index is calculated only on the chunk of

the target subgroup that was not used for model building.

To avoid overfitting and to judge the stability, we conduct the

optimization in a nested cross-validation setting. We use a 5-fold

cross-validation for the outer validation and we use the same

Table 1. Overview of clinical variables for each lung cancer cohort in the complete NSCLC dataset

Variable Values GSE14814 GSE19188 GSE29013 GSE30219 GSE31210 GSE3141 GSE37745 GSE4573 GSE50081 Shedden

Sample size 90 82 55 269 226 110 194 130 181 442

Min. 38 32 15 30 39 42 40 33

Age (years) Mean 62 64 61 60 64 67 68 64

Max. 81 76 84 76 84 91 87 87

Male 67 59 38 228 105 0 105 82 98 223

Sex Female 23 23 17 40 121 0 89 47 83 219

NA 0 0 0 1 0 110 0 1 0 0

I 45 0 24 183 168 0 128 73 127 0

II 45 0 14 35 58 0 35 34 54 0

pTNM stage III 0 0 17 42 0 0 27 23 0 0

IV 0 0 0 4 0 0 4 0 0 0

NA 0 82 0 5 0 110 0 0 0 442

SQC 52 24 25 61 0 52 64 130 43 0

ADC 28 40 30 85 226 58 106 0 127 442

Histology LCC 10 18 0 55 0 0 24 0 7 0

other NSCLC 0 0 0 68 0 0 0 0 4 0

NA 0 0 0 0 0 0 0 0 0 0

Never smoker 0 0 2 0 115 0 15 0 24 49

Smoking status Current /ex-smoker 0 0 53 0 111 0 179 123 136 300

NA 90 82 0 269 0 110 0 7 21 93

Survival status Censoring 52 32 37 99 191 52 51 63 106 206

Event 38 50 18 170 35 58 143 67 75 236
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modification as described above for the inner cross-validation. The

target subgroup is divided into five chunks and four of those chunks

plus all observations from the additional subgroups are combined to

the data that is used as optimization dataset, i.e. for the inner cross-

validation. Accordingly, the optimization is carried out five times on

slightly different data with different random samples of the initial

design. For each outer cross-validation fold, the optimization returns

an optimal weight vector. The Cox model is then trained on the

complete optimization dataset and the final C-index is calculated on

the remaining chunk of the target subgroup. Therefore, we obtain

five different weight vectors and five different C-index values. This

enables us to judge the stability of the optimization results.

Our subgroups are derived from the gene expression data intro-

duced in Section 2. We only use gene expression data as covariates,

and each cohort acts as a subgroup. The number of genes included in

the analysis is initially reduced to the 1000 features with highest vari-

ance across all 10 subgroups within the optimization dataset and in

addition the 30 mandatory prognostic features given in Section 2.

The underlying algorithms in this study are implemented in R,

for the MBO the R-package mlrMBO (Bischl et al., 2017) is used

and survival analysis is performed using the R-package mlr (Bischl

et al., 2016).

We evaluate the effectiveness of the optimization by comparing

the C-index resulting from three different strategies.

Subgroup uses only the observations of the target subgroup to

train the Cox model (all weights 0, expect for target subgroup).

Pooled uses all subgroups to train the Cox model (all weights 1).

MBO uses the weight configuration that is proposed by the

MBO for noisy black-box functions.

Figure 2 shows the averaged optimization curves from the five

MBO optimization processes per target subgroup. It shows the

averaged predictive performance of the so far best model at each

optimization iteration for each target subgroup. For some

cohorts, the predictive performance increases strongly over time,

while for others no major improvement is observed. A strong in-

crease can be seen especially for GSE29013, which is the smallest

subgroup, with only 55 patients. Minor improvements can be

seen for GSE4573, GSE3141, GSE14814 and GSE19188, al-

though the last two suffer from a bad predictive performance

even after optimization. For GSE30219, GSE31210 and

Shedden, no major increase in performance can be observed.

These are also the largest subgroups with 269, 226 and 442

patients. The performance reached at the end of the optimization

is the training error and has the tendency to be too optimistic

regarding the predictive performance on unseen data. Therefore,

we use the C-index measured on the outer cross-validation in the

following part.

Figure 3 compares the predictive performance of the weights

obtained by MBO against the Pooled and Subgroup approach.

Table 2 shows the median C-index values obtained by the outer 5-

fold cross-validation and their ranks for each target subgroup. For

five target subgroups MBO obtained the best median C-index, for

four subgroups Pooled gave the best results and in one case

Subgroup yielded the best results. Using only the target subgroup to

train the Cox model yields the worst C-index for 6 out of 10 sub-

groups. Although the box plots in Figure 3 do not directly indicate a

GSE19188
GSE14814
GSE37745
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GSE50081
GSE3141
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GSE4573
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GSE29013

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300
MBO Iteration

C
−i

nd
ex

Fig. 2. Averaged progress of the MBO optimization runs for each target sub-

group over all 300 optimization iterations
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Fig. 3. The predictive performance of the best weight configuration according to different strategies. Each box plot includes the C-indices measured on the outer

5-fold cross-validation
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superiority of MBO for each single target subgroup, the combined

ranks in Table 2 show that on average using MBO is a promising

strategy.

To verify whether there are statistically significant differences be-

tween the strategies, we perform a nonparametric test in accordance

with Dem�sar (2006). The Friedman test is employed to test whether

there are statistical differences between the given strategies at an a-

level of 0.05. With a P-value of 0.12, the null hypothesis cannot be

rejected.

Altogether, the results indicate that optimizing the subgroup

weights is in most cases superior to the Subgroup strategy and com-

petitive to the Pooled strategy. Moreover, we showed that MBO is

capable of optimizing these weights.

5.1 Subgroup weights
Figure 4 shows the optimal weight vectors for each subgroup identi-

fied by MBO. Rows correspond to target subgroups and columns

per plot indicate the subgroups to be used for model building. The

line denotes the mean optimal weights averaged over the results of

the five outer cross-validation folds. Overall, we see different pat-

terns with weights close to 0 and close to 1, but sometimes also me-

dium weights. For instance, for the target subgroup GSE31210, we

see that there are consistent optimization results for the weights of

the additional subgroups GSE14814, GSE29013, GSE3141,

GSE37745 and GSE4573. Interestingly, for the target subgroups

GSE19188, GSE29013 and GSE4573, no clear preferences for

weights close to 0 or 1 are observable for any of the additional sub-

groups. However, this does not imply that MBO failed for those tar-

get subgroups. Looking at the results in Table 2, we see that MBO

performs better or comparable then the Pooled approach for those

cases.

An immediate question is whether weight values are bidirection-

al, meaning that an additional subgroup with a high weight for pre-

dicting the target subgroup also includes the latter with a high

weight if it is the target subgroup itself. In Figure 4 we can especially

notice that for some additional subgroups, a weight near 0 or 1 is

clearly chosen by MBO. For example, GSE14814 clearly benefits

from GSE30219 and vice versa. The same can be observed for the

pairs GSE37745, Shedden as well as GSE31210, GSE4573 and

GSE31210, GSE3141. One can suspect that these datasets are simi-

lar in terms of which models achieve high performance values, and

thus having a larger training dataset helps to increase the predictive

performance.

A different scenario can be observed for the subgroup

GSE29013 (55 patients). As target subgroup, there is no clear pref-

erence for any additional subgroup. However, it is included with a

high weight into the prediction of Shedden (442 patients). Also

GSE4573 (130 patients) does not show any clear preference toward

additional subgroups but is included into the prediction of

GSE30219 (269 patients), GSE31210 (226 patients) and GSE37745

(194 patients) with a high weight. It appears that for smaller target

subgroups, it can be advantageous to only include bigger additional

subgroups with a slightly lower weight than 1 to obtain a high

Table 2 Median C-index for each target subgroup obtained on the

outer 5-fold cross-validation by the different strategies

Subgroup Pooled MBO

Target subgroup Med Rank Med Rank Med Rank

GSE14814 0.48 (3) 0.53 (1) 0.52 (2)

GSE19188 0.48 (2) 0.47 (3) 0.50 (1)

GSE29013 0.62 (3) 0.81 (2) 0.85 (1)

GSE30219 0.67 (2) 0.68 (1) 0.65 (3)

GSE31210 0.75 (2) 0.73 (3) 0.75 (1)

GSE3141 0.54 (3) 0.59 (1) 0.56 (2)

GSE37745 0.63 (1) 0.60 (3) 0.61 (2)

GSE4573 0.59 (3) 0.68 (1) 0.61 (2)

GSE50081 0.58 (3) 0.63 (2) 0.66 (1)

Shedden 0.64 (3) 0.66 (2) 0.66 (1)

Average rank 2.50 1.90 1.60

Note: Ranks are given in brackets and averaged ranks across all target sub-

groups are given at the bottom.
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Fig. 4. Subgroup weights corresponding to the best predictive performance found by the model-based optimization. The row indicates the target cohort, the col-

umns indicate the cohorts to be used for model building. Each dot represents the optimal weight for the respective subgroup obtained in one repetition of the op-

timization run. The red line denotes the mean over the five repetitions. If the dots per subgroup scatter heavily this indicates an unstable result
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predictive accuracy. The other way around, for the bigger sub-

groups, the relatively few observations from the additional sub-

groups can be included with a high weight.

5.2 Deteriorated subgroups
To analyze how sensitive the different strategies react to subgroups

that do not contain any information, we permuted the survival data

of specific subgroups. For this analysis we used GSE3141 and

GSE37745 as target subgroups. This has the effect that for these

subgroups no useful information should be obtainable from the sur-

vival learner. Including them is expected to deteriorate the predictive

performance for the target subgroup.

none uses the original data without permutations.

perm1 permutes the survival data of those subgroups to that MBO

assigned weights below 0.5 in at least two runs. For the target sub-

group GSE3141, we permute the survival data of GSE19188,

GSE30219, GSE37745, GSE4573 and Shedden. For the target sub-

group GSE37745, we permute the survival data of GSE14814,

GSE19188, GSE29013, GSE30219, GSE31210, GSE3141 and

GSE50081.

perm2 permutes the survival data of those subgroups to that MBO

assigned the highest and the lowest weights on average. For the tar-

get subgroup GSE3141, we permute the survival data of the highly

weighted GSE31210 and the down-weighted GSE37745 subgroup.

For the target subgroup GSE37745, we permute the survival data of

the highly weighted Shedden and the down-weighted GSE50081.

In Figure 5 we show how this permutation affects the predictive

performance. As expected, the Subgroup strategy is not affected by

distorting other subgroups. The results only vary slightly due to the

randomness of the cross-validation. Interestingly, the Pooled strat-

egy is not heavily affected by distorting many of the additional sub-

groups in perm1. The performance just slightly decreases. In

contrast, the performance of MBO is capable of improving its per-

formance. However, this cannot be easily explained by the corre-

sponding weights. For perm2 the performance of the Pooled

strategy and MBO drops noticeably. This indicates that the sub-

groups that were included with a high weight in the original setting

were important to obtain the good prediction performance for both,

MBO and the Pooled strategy.

Looking at the newly obtained weights in Figure 6, we can ob-

serve that for perm1 the assigned weights of the distorted subgroups

are not closer to zero for GSE3141. However, for GSE37745 a

slight tendency toward lower weights for deteriorated subgroups

can be observed, expect for GSE3141 and GSE50081. The results

are more conclusive for perm2: subgroups with a high weight in the

original setting, now obtain low weights after permuting. Here

MBO reliably detects the deterioration. We observe that deteriorat-

ing data from subgroups with small weights does not change their

weights toward zero, different from what would be expected. It can

be speculated that some of the additional subgroups have a small in-

fluence on the prediction on the target subgroup in the Pooled strat-

egy and therefore, decreasing their weight does not strongly affect

the predictive performance. If including a certain subgroup in the

original data has a negative effect on the predictive performance, it

has obtained a low weight by MBO. After permuting the survival

data of this subgroup, this negative effect vanishes and thus, it is not

as crucial anymore to assign low weights for the subgroup.

6 Summary

When multiple patient cohorts with a similar disease and treatment

are available, it is tempting to pool the cohorts to one overall cohort

to increase sample size and therefore, the stability of conclusions

drawn from the data. However, heterogeneity between the cohorts

can heavily distort these conclusions. We considered the situation in

which one is interested in a good prediction model for one specific

cohort out of a set of potentially similar cohorts. We analyzed a

weighted likelihood strategy that is intended to only add those

cohorts to the prediction model building process that represent a
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Fig. 5. Similar to Figure 3, the predictive performance is shown. For perm1

the subgroups with previously low predicted weights are additionally deterio-

rated and for perm2 the additional subgroup with the highest and the lowest

previous weights are deteriorated
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Fig. 6. Similar to Figure 4 the subgroup weights corresponding to the best predictive performance found by the model-based optimization are shown for two ex-

emplary target subgroups. For perm1 and perm2 the survival data of the subgroups that are marked with an empty circle are permuted. The weights with no per-

mutation in the upper panel are the same as in Figure 4 and drawn for comparison
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similar feature–outcome relationship. For optimizing the weights of

the other cohorts, we used MBO. In a lung cancer survival study, it

turned out that this strategy often leads to an improved C-index as

performance criterion, in a cross-validation setting.

Some important aspects for future research remain. It will be

interesting to analyze in which way the size of the weight for a sub-

group can be related to other properties of the corresponding patient

subgroup, especially regarding sample size and the distributions of

clinical covariates. Furthermore, our results indicate that the incon-

sistencies in the obtained weights are likely due to the small sample

sizes. It remains to be examined to what extent more features, i.e. no

filtering, and more observations lead to more stable and better pre-

dictions. For proposing the final weight MBO returns, the weight

configuration that is estimated to perform best. This estimation can

be nearly the same for various weight configurations. Therefore it

might be interesting to introduce some slight regularization to give

preference to specific values, e.g. 0; 0:5; 1. Setting weights strictly to

zero would lead to clearer decisions which subgroups to include for

the model building process.
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