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Abstract

Evaluating and tracking wound size is a fundamental metric for the wound assessment pro-

cess. Good location and size estimates can enable proper diagnosis and effective treat-

ment. Traditionally, laboratory wound healing studies include a collection of images at

uniform time intervals exhibiting the wounded area and the healing process in the test ani-

mal, often a mouse. These images are then manually observed to determine key metrics —

such as wound size progress— relevant to the study. However, this task is a time-consum-

ing and laborious process. In addition, defining the wound edge could be subjective and can

vary from one individual to another even among experts. Furthermore, as our understanding

of the healing process grows, so does our need to efficiently and accurately track these key

factors for high throughput (e.g., over large-scale and long-term experiments). Thus, in this

study, we develop a deep learning-based image analysis pipeline that aims to intake non-

uniform wound images and extract relevant information such as the location of interest,

wound only image crops, and wound periphery size over-time metrics. In particular, our

work focuses on images of wounded laboratory mice that are used widely for translationally

relevant wound studies and leverages a commonly used ring-shaped splint present in most

images to predict wound size. We apply the method to a dataset that was never meant to be

quantified and, thus, presents many visual challenges. Additionally, the data set was not

meant for training deep learning models and so is relatively small in size with only 256

images. We compare results to that of expert measurements and demonstrate preservation

of information relevant to predicting wound closure despite variability from machine-to-

expert and even expert-to-expert. The proposed system resulted in high fidelity results on

unseen data with minimal human intervention. Furthermore, the pipeline estimates accept-

able wound sizes when less than 50% of the images are missing reference objects.
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Author summary

Knowledge of the wound size changes over-time allows us to observe important insights

such as rate of closure, time to closure, and expansion events, which are key indicators for

predicting healing status. To better perform wound measurements it is essential to utilize

a technique that returns accurate and consistent results every time. Over the last years, col-

lecting wound images is becoming easier and more popular as digital cameras and smart-

phones are more accessible. Commonly, scientists/clinicians trace the wound in these

images manually to observe changes in the wound, which is normally a slow and labor-

intensive process and also requires a trained eye. The clinical goal is to more efficiently

and effectively treat wounds by employing easy to use and precise wound measurement

techniques. Therefore, the objective should be devising automatic and precise wound

measurement tools to be used for wound assessment. To this end, we leveraged a combi-

nation of various state-of-the-art computer vision and machine learning-based methods

for developing a versatile and automatic wound assessment tool. We applied this tool to

analyze the images of wound inflicted lab mice and showed that our developed tool auto-

mated the overall wound measurement process, therefore, resulting in high fidelity results

without significant human intervention. Furthermore, we compared results to two expert

measurements. We found variability in measurement even across experts further validat-

ing the need for a consistent approach. However, qualitative behavior, which is most

important for predicting wound closure, is preserved.

This is a PLOS Computational Biology Methods paper.

Introduction

A fundamental metric for studying wound healing is wound size and, generally it is the first

criterion to be considered in a wound assessment process [1, 2]. Several studies provide many

reasons regarding the importance of wound measurement, such as monitoring the healing rate

and progress, evaluating the effectiveness of treatments, and identifying the static wounds, to

name a few [1–3]. In addition, plotting size changes over-time allows us to observe the rate of

closure, time to closure, expansion events, and other insights which are key indicators for pre-

dicting healing status [4].

Different approaches are available to perform wound measurements and to be able to com-

pare study outcomes, it is essential to employ a similar technique every time [2]. There exist

many commercially available wound measuring cameras that utilize built-in algorithms for

wound size measurements [5–7], however, not all the clinics or scientific labs have access to

them due to high expenses. Collecting wound images is becoming easier and more popular as

digital cameras and smartphones are more accessible and, therefore, increasingly being used as

a means of recording/monitoring the wound healing progress. Developing methods that can

leverage their use can help the clinical setting as well, where the complicated and labor-inten-

sive operation of these stand alone measuring systems does not easily integrate with its fast

pace. Commonly, scientists/clinicians reference these images manually to observe changes in

the wound, which is normally a slow and labor-intensive process. This approach also requires

a trained eye. However, this can quickly become a bottleneck as the experiment size grows and

interesting big-data insights could be lost. Furthermore, these images are not always taken

with the expectation of computerized image processing later down the road, so not much care
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is taken to capture clean, clear, and uniform data. While the images can provide greater infor-

mation (e.g., tissue type, skin condition, etc.) about the wound, ensuring the consistency of the

imaging is essential [1, 8].

This generally requires the following conditions among others, (i) to always have a ruler in

the wound images, (ii) the distance between the wound and the camera should ideally be iden-

tical each time, and (iii) the angle of the wound relative to the camera lens should remain con-

stant [8]. Considering the fact that satisfying all these requirements is not always possible,

especially in a time-limited clinical encounter, it is important to create a process that is robust

against these variations. The potential tools for tackling these challenges are computer vision

and machine learning-based methods. Among the state-of-the-art machine learning-based

techniques, the deep learning algorithms are known for their performance against varied data

distributions and speed if designed accurately. Therefore, leveraging the deep learning-based

algorithms can enhance this task with higher accuracy sufficient to be used in the wound

assessment process. The deep learning methods are expanding their popularity in the biologi-

cal and medical applications and more specifically in image analysis, including but not limited

to classification and segmentation [9–13].

Among the existing image-based techniques in wound assessment, most of them are

focused on the classification of different wound types or conditions [14–18]. However, seg-

mentation techniques, and more specifically semantic segmentation methods, are essential for

developing a wound size measurement algorithm. There are several image-based wound

periphery measurement methods which utilize deep and non-deep learning-based wound

image segmentation approaches [19–26]. Deep learning-based techniques have the potential

to be significantly more accurate but require larger datasets [27]. Additionally, many of the

methods above aiming to accurately quantify wound features require customized data sets that

include reference objects for size and color assessment or various imaging conditions to

account for distortion. Finally, robustness to image quality or missing reference objects is

rarely discussed. Improving on such methods will allow researchers to extract information

from data sets not generated with AI algorithms in mind, thereby increasing usable data sets

for analysis and understanding and providing rapid clinical information at point-of-service,

using easily obtained cell phone images.

Here, we combine variations of two deep-learning techniques previously used for wound

detection and segmentation. Our pipeline detects the wounded area using a deep learning-

based object detection algorithm known as YOLO [28], where it allows us to automatically

crop the wound-of-interest in unseen images at different resolutions, and leverages U-net as

its main segmentation technique. However, we present a method of complimenting traditional

techniques to develop a pipeline to automate wound size estimation robust to poor image qual-

ity and missing or deteriorated reference objects. We achieve this through strategic data aug-

mentation and a custom post-processing algorithm. Our developed pipeline has the following

advantages:

• With only 256 images in the data set, it produces high fidelity results without significant

human intervention.

• It is robust against camera changes (e.g., distance, translation, angle).

• It is robust to wound occlusions and uneven lighting.

• We demonstrate the use of an arbitrary but consistent reference object for size estimation

when a ruler is missing. In this work we used a ring-shaped splint around the wound as its

reference object with known size.
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• Applying several post-processing techniques, our pipeline can provide up to 20%

improvement in performance with no modifications to the network architecture and accept-

able size estimate when approximately less than 50% of images are missing a reference

object.

• Our customized object detection algorithm can accurately determine the wound-of-interest

when multiple wounds are visible. This is done by choosing the detected wound with the

highest confidence score.

Our pipeline generalizes the overall process, therefore, resulting in a more precise estima-

tion. This method is user friendly in that it can be used by a scientist with minimal consider-

ation during data generation. Finally, we compare our results to that of experts and show

preservation of information relevant to predicting wound closure and other clinical studies.

Given a relevant training dataset the principles of this work can be applied to a clinical setting

as well to make use of imperfect images and a missing reference object. The reference object

can be as arbitrary as stickers outside the periphery of the wound. Finally, we note that discrep-

ancies in wound segmentation can occur across experts. This further motivates the need for a

consistent method to quantify wound size but also sheds light on the challenge in getting con-

sistency in annotated data. For consistency in this work, all manually segmented wounds in

the generation of training data were done by a single person.

Materials and methods

Ethics statement

The mouse wounding surgery and the animal protocol was approved by the Institutional Ani-

mal Care and Use Committee (IACUC) at UC Davis.

Deep learning pipeline

Automatic wound size calculations were performed using a custom-designed deep learning-

based pipeline (see Fig 1) that intakes mice wound images (splinted or missing/damaged

splint) and extracts relevant information from wound images such as wound-of-interest loca-

tion and wound periphery size estimates. We developed customized algorithms based on the

well-known object detection and medical instance segmentation deep learning algorithms

known as YOLO [28] and U-Net [10], respectively, and adapted them to our particular task. A

preprocessing task was performed to make images more consistent and easier to work with.

Detection and location of the wounded area were performed by a YOLOv3 [30] based object

detection algorithm trained on our dataset, where we manually labeled bounding boxes

around the wound for each image on our training set. This architecture was chosen because

the output annotations are scale-invariant and will allow us to crop images of any resolution.

Cropping was done by an algorithm able to read-in output annotations and crop around the

detected midpoint of the wound-of-interest. Size estimation was performed by developing an

image segmentation algorithm aimed at segmenting the wounded and ring area (i.e., the inner

area of the splint located around the wound) for each wound image. Some post-processing was

performed to clean up the segmentation results ensuring a better estimation of the wound size.

In order to assess the contribution of the post-processing algorithm to the performance of our

pipeline we compare performance to pipelines with two other segmentation algorithms (Seg-

Net [31] and FCN-8 [32]), as well as, with and without the post-processing algorithm. Further

explanations are provided in the following subsections.
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Wounding surgery and daily imaging

Two cohorts of C57BL/6J mice (male, Jackson lab, Sacramento, CA) were used in 2 indepen-

dent experiments. One day prior to wounding, dorsal surfaces of mice were shaved and then

depilated (Nair, Church & Dwight Co., Inc., Ewing, NJ). On day 0, mice were anesthetized

with 2.5% isoflurane and injected subcutaneously with analgesic (Buprenex, 0.05 mg/mL,

2 μL/g body weight). After betadine and alcohol washes of the mouse dorsum, two sterile sili-

con splints (10 mm inner diameter, 16 mm outer diameter, 1.6 mm thick) were glued using

cyanoacrylate (Scotch Super Glue, 3M, Maplewood, MN) to the back skin 35 mm from the

base of the skull and 10 mm on either side of the spine. Splints were further secured with six

interrupted sutures (Ethilon 6 − 0 nylon suture, #697G, Ethicon, Bridgewater, NJ). Wounds

were created in telogen skin, evidenced by the absence of visible dark follicles. All mice

received a 6 −mm full-thickness, circular wound in the center of each splint (2 total wounds

per mouse) by a biopsy punch (Miltex Instruments, Integra Lifesciences, Princeton, NJ) and

surgical microscissors. A 16 −mm circular plastic coverslip was applied on top of the splints

and the entire dorsum area was sealed with a transparent, semi-permeable dressing (Tega-

derm, 3M, Maplewood, MN) adhered with liquid bandage (New Skin, Advantice Health,

Cedar Knolls, NJ). The mice were housed singly after wounding, and daily mice were

weighed and wounds were imaged. On day 15 post wounding, animals were euthanized by

exsanguination and tissues were collected for analysis detailed below. The wounds were pho-

tographed using the digital camera application on the iPhone X that was attached to a tripod

using a clamp to ensure the camera was at the same height for every photograph taken over

the 16 days.

Fig 1. Custom-designed end-to-end deep learning-based image analysis pipeline. The pipeline consists of 6 major blocks for performing the

preprocessing, detection, cropping, segmentation, post-processing, and measurement. Note: All the black boxes have been added later to obscure the

protocol number and any animal identifying information.

https://doi.org/10.1371/journal.pcbi.1009852.g001
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Dataset

The original dataset consists of approximately 256 images of wound inflicted lab mice (see

“Wounding surgery and daily imaging” for details). It covers four mice in Cohort 1 (C1) and

four mice in Cohort 2 (C2) over 16 days of healing (i.e., starting from day 0 (surgery) to day

15). The two cohorts represent two distinct experimental conditions and so the results are

grouped by cohort. Each mouse has two wounds, one on the left and the other one on the right

side, and therefore our dataset consists of time series of 16 individual wounds. Each wound

has a ring-shaped splint surrounding the wounded area, where its inner diameter is� 10mm
and its outer diameter is� 16mm. Since the splint has a fixed inner/outer diameter, it is used

as a reference object with known size in our pipeline. It should be noted that these splints are

missing or have substantial damage for over 25% of the images in this dataset. There are several

challenges present in these images, for example, there are variations in image rotation (land-

scape vs portrait), lighting conditions (Fig 2A and 2B), unreliable or occluded tape measure

placement (Fig 2C and 2D), significant occlusion of the wound (Fig 2E and 2F), multiple

Fig 2. Dataset challenges. Images were sometimes directly illuminated by a warm tone light source (A) and other times they were not (B). The

measuring tape is often placed outside the frame or occluded (C, D). The wound surface area can often become significantly occluded by plastic

coverings, reflections, debris, etc (E, F). There are two wounds on each mice, it is possible for an image intended to observe only the left wound contains

a clear instance of the right wound (G). It is also possible that stitches holding the splint in place inflict secondary wounds around the wound of interest

(H). Note: All the black boxes have been added later to obscure the protocol number and any animal identifying information.

https://doi.org/10.1371/journal.pcbi.1009852.g002
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visible wounds (Fig 2G and 2H) and wound location relative to the image frame. These chal-

lenges pushed the research towards a combination of deep learning algorithms and traditional

image processing methods. We split the dataset into a train (75%), validation (12.5%), and test

(12.5%) subsets. To assess the performance of our developed pipeline on unseen wounds, we

distribute the images across the three subsets such that a complete time-series from an individ-

ual wound is wholly in the training, validation or test subset and unseen elsewhere. That is, we

have 12 wounds for training, 2 for validation and 2 for testing, We used two independent

time-series (i.e., C1(M-2 R) and C2(M-4 L)) in our validation and two additional time-series

(i.e., C1(M-4 L) and C2(M-1 R)) in our test sets. Here, “L” refers to the left wound, “R” refers

to the right wound, and the integer identifies the mouse.

Manual measurement

Manual measurement (Periphery). For the purposes of training our segmentation algo-

rithm we defined wound periphery as the boundary furthest from the wound center at which

the skin appearance changes from normal to abnormal (e.g., the boundary between “Region

A” and “Region B” in Fig 3). This kind of wound/skin boundary segmentation is common

Fig 3. Cartoon image showing different wound area. “Region A” shows normal skin. “Region B” shows the regeneration of epidermis. “Region C”

shows wound center.

https://doi.org/10.1371/journal.pcbi.1009852.g003
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among computational wound segmentation works [19–22, 27]. Given our automatically gen-

erated cropped wound dataset (see “Detection” Section for details) we used the open-source

software Labelme [33] to draw polygons around the wound edge for all the images in our data-

set. We also drew polygons around the splints (when available) as these manual measurements

also serve as ground-truth annotations for our Training and Validation sets (Fig 4). These

measurements may not be pixel-perfect, especially for the more challenging images in the data-

set where the wound edge is ambiguous. To ensure uniformity of the annotation, the same

non-expert performed all the manual annotation of raw data from scratch using a consistent

protocol. The training dataset was reviewed by an expert and deemed acceptable and is also

available for review in the Github repository.

Manual measurement (Expert). For comparison, we describe here the method used by

selected experts to delineate the wound edge. Wound areas were macroscopically measured on

daily images (see “Wounding surgery and daily imaging” and “Dataset” for details) using Ima-

geJ software, version 1.8.0_172 (http://imagej.nih.gov/ij). Briefly, the freehand selection tool

was used to trace the neo-epithelial/granulation tissue border (e.g., the boundary between

“Region B” and “Region C” in Fig 3). Identifying the neo-epithelial/granulation tissue border

from wound images can be challenging and delineations of said borders may vary across

experts. More accurate analysis could be done by utilizing other types of image analysis (e.g.,

fluorescence excitation images and histology images), techniques that have inherent disadvan-

tages such as the need for in vivo imaging (for fluorescently labeled markers) or terminal

experiments (histological images) precluding temporal analysis [34, 35]. The pixel numbers of

the wound areas was obtained using the measure function in ImageJ. Then the percentage of

wound area closed relative to the original wound was calculated using the following formula:

Relative closed wound area (%) = [1 − (open wound area/original wound area)] × 100. Wound

closure was complete (100% closed) when the entire wound surface area was covered with

neo-epithelial tissue.

Fig 4. Wound periphery annotations. Red lines delineate the wound while green lines delineate the splint. Early day zero images (A, B). Midway

images (days 4–8) with splint (C, D, E F) and without splint (G, H).

https://doi.org/10.1371/journal.pcbi.1009852.g004
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Pre-processing

To make the input images more consistent and easier to work with, the original images were

automatically rotated to portrait orientation (i.e., vertically rotated). This task is accomplished

by reading the width and height of the input images and performing a 90-degree rotation if the

width is larger than the height of the image. The images are also down-sampled to half of their

original size, which facilitates handling of the data, the training process and does not sacrifice

image quality to a significant degree.

Detection

To automatically generate the crops, we manually labeled bounding boxes around the wound

(including the splint when available) for each image on our training set using the open-source

software Labelme [33] and then trained a YOLOv3 based object detection algorithm (see Fig

5A). The YOLO output includes scale-invariant coordinates denoting the detected object mid-

point, thus, given these coordinates, a custom-designed algorithm crops the original high-reso-

lution images to produce 352 × 352 wound-of-interest sub-images. In addition, we customized

the YOLO output file to include a confidence score for the cropping algorithm to choose the

detected object with higher confidence score as the wound-of-interest when multiple wounds

are detected (see Fig 5B). This experiment generated our consistent cropped wound dataset

used from this point forward. This new dataset surfaced previously hard-to-notice challenges

Fig 5. Details of detection and cropping process. A) Manual labeling bounding box, Training, and Validation, B) Testing (i.e., detecting the wound-

of-interest and cropping the wound with highest confidence score. Note: All the black boxes have been added later to obscure the protocol number and

any animal identifying information.

https://doi.org/10.1371/journal.pcbi.1009852.g005
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such as different camera angles (Fig 6A and 6B), camera focusing issues (Fig 6C and 6D), hair

growth (Fig 6E and 6F) and day zero size differences (Fig 6G and 6H).

Segmentation

To observe the different healing rates and generate wound periphery size estimates where

wound periphery is defined as the boundary at which the skin appearance changes form nor-

mal to abnormal, we developed an image segmentation algorithm. The task for this model is to

segment the wounded area and ring area (i.e., the inner area of the splint located around the

wound) for each wound image. Given these masks, we could then estimate the unknown

wound area from the known ring area (see “Wound Area Calculation” section). To perform

this, we trained the segmentation algorithm based on U-Net [36] on our cropped dataset,

where we manually annotated our training set by drawing polygons around both wound areas

and the inner ring (whenever the splint was available) (see Fig 7A). To boost our available

training data, we applied heavy data augmentation such as vertical and horizontal flips (per-

formed at random 50% of the time), rotation (applied randomly from a -90 to 90 degree range.

This means we apply affine rotation on the y-axis to input data images by a random value

between -90 and 90 degrees), linear contrast (applied at random from a 0.50 to 1.50 range.

This means we modify the contrast of images according to 127 + alpha�(v-127), where v is a

pixel value and alpha is sampled uniformly from the interval [0.5, 1.5] (once per image)), pixel

intensity (multiplier applied at random from a 0.50 to 1.50 range. This means we multiply all

pixels in an image with a specific value [0.5, 1.5], thereby making the image darker or brighter),

and Gaussian blur (applied 35% of the time at a random severity sigma inside a 0 to 6 range).

We are using the “On The Fly Data Augmentation” and the generated instances change at

each epoch. There are 6 different augmentation techniques that are applied at random for each

training sample. We trained for 1000 epochs at a batch size of 4, therefore the size of the

Fig 6. New dataset challenges. Camera can appear to be at unknown angles relative to the surface of the wound, 90˚ (A) unknown angle (B). Camera is

often not focused at the wounded area or the Tegaderm dressings are still there, introducing significant blurriness (C, D). Hair may grow back before

the end of the experiment (i.e., before the complete wound closure), occluding the wounded area (E, F). Initially, we believed the day zero wound sizes

to be the same across all mice given that the same tool was used to produce the wounds but close inspection seems to show variability (G, H). Note: the

images shown here are a direct output of our automatic cropper, no alterations have been made.

https://doi.org/10.1371/journal.pcbi.1009852.g006
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training data after augmentation could be up to� 4000. It is worth noting that data augmenta-

tion is only applied in the training phase. After successfully training and validation of the seg-

mentation algorithm, we perform testing on the unseen images (Fig 7B). Fig 7 illustrates the

overall segmentation process (i.e., manual annotation, training, validation, and testing) in

detail. Given the masks obtained from the segmentation algorithm (see Fig 7B), we estimated

the unknown wound area from the known ring area (details are provided in the Post-process-

ing and Automatic Measurement sections).

The results achieve 0.96 Dice and 0.93 IoU scores in training phase (see Fig 8) and therefore

generating good predictions on the test set. The Dice score tends to measure closer to the aver-

age performance while the IoU score tends to measure closer to worst-case performance. Dice

is more commonly used for segmentation. The blue plots in Fig 8 show the training dice-based

loss and training accuracy (i.e., dice-based loss and IoU coefficients) and the orange plots

show the validation dice-based loss and validation accuracy (i.e., dice-based loss and IoU coef-

ficients). The loss graph shows that the loss is gradually decreasing toward zero and then stabi-

lized. The IoU coefficients show that the accuracy is gradually increasing toward 100% and

then remain steady. This means the performance of the trained model is promising. Several

post-processing techniques were later applied to clean up the predictions.

Fig 7. Details of image segmentation process. A) Manual annotation, Training, and Validation, B) Testing (i.e., mask prediction).

https://doi.org/10.1371/journal.pcbi.1009852.g007
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Post-processing

The post-processing involved traditional image processing techniques. To clean up the pre-

dicted ring mask, we select the largest connected component. To account for false-positive

wounds masks (i.e., wounds that can be present in an image but are not of interest) we select

the connected component that is closer to the middle of the cropped image within a certain

threshold in position from the center. In other words, we selected the connected component

that is closest to the center-point of the cropped image (i.e., the pixel at (x = 176, y = 176)).

This technique eliminates secondary splint wounds developed around the outer perimeter of

our wound of interest. To estimate size when no ring is detected, we overlay the average ring

mask calculated from the whole set or we search for the closest known size wound with a ring

detection and apply that ring mask to calculate the size of the unknown wound. To clean any

missing points in our detections we insert the average between the previous and next points.

These techniques are summarized as follows:

1. To clean up the ring mask, we select the largest connected component.

2. To clean up the wound mask we select the connected component that is closer to the middle

(over a certain size) (see Algorithm 1).

3. To estimate size when no ring is detected, we overlay the average ring mask calculated from

the whole set (see Algorithm 2).

4. Alternatively, to estimate wound size when no splint is detected, we perform a search for

the closest sized wound with a detected ring and apply that ring mask to estimate size (see

Algorithm 3).

5. To clean any missing points in our detections we insert the average between the previous

and next points.

It is worth noting that, when the dataset contains many unsplinted wounds, it is beneficial

to trade the inference speed of technique 3 for the more accurate estimates of technique 4.

To demonstrate the impact of the post-processing algorithm on the performance of our pipe-

line we compare the changes in performance obtained by changing segmentation algorithms to

Fig 8. Training and validation curves, including dice-based loss and IoU. The blue plots show the training dice-based loss and training accuracy (i.e.,

dice-based loss and IoU coefficients) and the orange plots show the validation dice-based loss and validation accuracy (i.e., dice-based loss and IoU

coefficients). The loss graph shows that the loss is gradually decreasing toward zero and then stabilized. The IoU coefficients show that the accuracy is

gradually increasing toward 100% and then remain steady.

https://doi.org/10.1371/journal.pcbi.1009852.g008

PLOS COMPUTATIONAL BIOLOGY Automatic wound detection and size estimation using deep learning algorithms

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009852 March 11, 2022 12 / 26

https://doi.org/10.1371/journal.pcbi.1009852.g008
https://doi.org/10.1371/journal.pcbi.1009852


those gained by the postprocesing algorithm. We trained two additional segmentation algo-

rithms based on SegNet [31] and FCN-8 [32] and compared performance across all three seg-

mentation algorithms with and without post-processing. The results are summarized in Table 1.

The results suggest that the post-processing algorithm can provide a significant improvement in

performance in comparison to efforts in optimizing the network architecture for segmentation.

Algorithm 1: The technique 2 for cleaning up the wound mask.
Initialization:
Set min_wound_pixel_intensity = 20, and
min_splint_pixel_intensity = 40.
Define min_wound_size = 50, (note: wounds smaller in size than this
are not annotated by experts).
Define image_centroid = the pixel location on the center of the image,
in our case (176, 176).
with model_prediction:
wound_mask = threshold(model_prediction.wound,
min_wound_pixel_intensity)
splint_mask = threshold(model_prediction.splint,
min_splint_pixel_intensity)
for connected_component in wound_mask do
if connected_component > min_wound_size then
centroid_distance = get_distance(image_centroid,
conected_component)
wound_candidates.append(connected_component, centroid_distance)

end if
end for
wound = wound candidate with min centroid_distance
splint = largest connected component from splint_mask

Algorithm 2: The technique 3 for overlaying the average ring mask calculated from the

whole set.
for predictions with splints do

total_splint_size+ = splint.size
number_of_splints+ = 1

end for
average_splint_size = (total_splint_size/number_of_splints)
for predictions without splints do
prediction.splint.size = average_splint_size

end for
Algorithm 3: The technique 4 for performing a search for the closest sized wound with a

detected ring.
for predictions with splints do
wound_to_splint_map[prediction.wound.size] = prediction.splint.size

end for
for predictions without splints do
wound_size = prediction.wound.size
closest_splinted_wound = closest(wound_size, wound_to_splint_map.
keys)
prediction.splint.size = wound_to_splint_map[closest_splinted_wound]

end for

Table 1. Comparing architectures.

Model FCN-8 FCN-8 + post-pr. SegNet SegNet + post-pr. U-Net U-Net + post-pr.

Parameters 17, 990, 019 17, 990, 019 339,971 339,971 1, 941, 139 1, 941, 139

Test Set Dice (%) 59.22 82.32 65.96 85.41 67.85 86.65

Test Set IoU (%) 45.90 75.78 53.88 79.56 56.98 81.64

https://doi.org/10.1371/journal.pcbi.1009852.t001
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Automatic measurements

Having the wound images detected and segmented properly, various analysis is performed to

extract meaningful information. Here, we calculated the wound area and wound closure

percentage.

Wound area calculation. Wound area calculation was performed using the following

equation:

Au ¼ Ain � R; ð1Þ

where Au is the unknown wounded area of interest, Ain is the known inner ring area, and R is

the ratio of wounded area to inner ring pixels.

Wound closure calculation. Wound closure percentage calculation was performed using

the following equation:

CP ¼ 100 �
Ai

A0

� 100

� �

; ð2Þ

where CP is the wound closure percentage, A0 is the wounded area at day 0, and Ai is the area

of the wound at day i. Day 0 size is considered 0% closure, an increase/decrease in the size is

considered as negative/positive percentage change, and the 100% closure means the wound is

completely closed. Data deposited in the Dryad repository https://doi.org/10.25338/B84W8Q

[29].

Dryad DOI

https://doi.org/10.25338/B84W8Q.

Results

This section presents the extracted results by employing the developed pipeline to the experi-

mental data of 8 different mice (see “Dataset” section for details). It is possible to perform dif-

ferent analyses using the extracted information. Here, we plotted the estimated wound closure

percentage of each wound image over time. In addition, to have a better insight into the per-

formance of the developed pipeline, we plotted the wound closure percentage using the mea-

surements from our manually annotated wound and ring areas, noting that these manual

measurements were performed by an individual unfamiliar with the experiment, and not a

trained expert.

Fig 9 shows manual (periphery) and automatic measurements of average wound closure

percentages for C1 mice (see Fig 9 left-plot) and C2 mice (see Fig 9 right-plot) for all data

including training, validation, and test subsets. The orange line shows the average wound clo-

sure percentage measurements based on the manual periphery annotations and the blue line

shows the average wound closure percentages based on the automatic estimation using the

developed pipeline. Fig 10 shows manual (periphery) and automatic measurements of wound

closure percentages for the test data subset only). The orange line shows the wound closure

percentage measurements based on the manual periphery annotations and the blue line shows

the wound closure percentages based on the automatic estimation using the developed

pipeline.

S1 and S2 Figs show the wound closure percentages for C1 mice both left and right wounds.

The results in S1 Fig are obtained based on the automatic estimation using the developed pipe-

line and the results in S2 Fig are obtained by using the measurements based on the manual

periphery annotation of the images. In both figures, the left plot shows the wound closure
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percentages for the wound on the left side of 4 different C1 mice from day 0 to day 15 in differ-

ent colors, and the right plot shows the wound closure percentages for the wound on the right

side of those mice. S3 and S4 Figs show the same measurements but for C2 mice.

In order to further demonstrate the robustness of the developed pipeline and its various

post-processing techniques dealing with a missing reference object, we artificially removed the

splint masks for up to 50% of images. Figs 11 and 12 show the results of applying post-process-

ing technique 3 and technique 4 respectively. These results show that the developed pipeline

can provide an acceptable size estimate when approximately less than 50% of images are miss-

ing a reference object. In both figures (i.e., Figs 11 and 12), the blue line shows the average

wound closure percentages based on the automatic estimation using the developed pipeline

for dataset having 75% (baseline) of the splints, the orange shows the same results but for hav-

ing 60% of the splints, and finally green shows the same results but for 50% missing splints.

Fig 9. Automatic and manual measurements of wound periphery for all C1 (left-plot) and C2 (right-plot) mice. The orange line shows the average

wound closure percentage measurements based on the manual periphery annotations and the blue line shows the average wound closure percentages

based on the automatic estimation using the developed pipeline. Training, validation, and test datasets are included.

https://doi.org/10.1371/journal.pcbi.1009852.g009

Fig 10. Automatic and manual measurements of wound periphery for test C1(M-4 L) (left-plot) and C2(M-1 R) (right-plot) mice wounds. The

orange line shows the wound closure percentage measurements based on the manual periphery annotations and the blue line shows the wound closure

percentages based on the automatic estimation using the developed pipeline.

https://doi.org/10.1371/journal.pcbi.1009852.g010
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Furthermore, to demonstrate the robustness of the developed pipeline and its various post-

processing techniques we consider a missing reference object at biased time points. We artifi-

cially removed the splint masks of all the images in a fixed window of size 8 days (i.e., 0 − 7, 1

− 8, 2 − 9, 3 − 10, 4 − 11, 5 − 12, 6 − 13, 7 − 14, and 8 − 15). Fig 13 shows the results of applying

post-processing technique 4 dealing with a biased missing reference object only for three dif-

ferent windows for better illustration. However, the measurements for all the different win-

dows are available in (S1 File). In Fig 13), the blue line shows the average wound closure

percentages based on the automatic estimation using the developed pipeline for dataset having

75% (baseline) of the splints, the orange shows the same results but for those with all the splints

removed for days 0 − 7, the green shows the same results but for those with all the splints

removed for days 4 − 11, and finally red shows the same results but for those with all the splints

Fig 11. Automatic measurements of wound periphery using post-processing technique 3 for C1 (left-plot) and C2 (right-plot) mice when 75%

(baseline), 60%, and 50% of the images have splints. The blue line shows the average wound closure percentages based on the automatic estimation

using the developed pipeline for dataset having 75% (baseline) of the splints, the orange shows the same results but for having 60% of the splints, and

finally green shows the same results but for 50% missing splints.

https://doi.org/10.1371/journal.pcbi.1009852.g011

Fig 12. Automatic measurements of wound periphery using post-processing technique 4 for C1 (left-plot) and C2 (right-plot) mice when 75%

(baseline), 60%, and 50% of the images have splints. The blue line shows the average wound closure percentages based on the automatic estimation

using the developed pipeline for dataset having 75% (baseline) of the splints, the orange shows the same results but for having 60% of the splints, and

finally green shows the same results but for 50% missing splints.

https://doi.org/10.1371/journal.pcbi.1009852.g012
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removed for days 8 − 15. These results show that the developed pipeline can provide an accept-

able size estimate.

Moreover, to demonstrate the robustness of the developed pipeline and its various post-

processing techniques to camera angle, we changed camera angle by 10 − 15 degrees for all the

four mice in Cohort 1 (C1) and four mice in Cohort 2 (C2) in day 1, and statistically compared

these measurements to measurements where camera angle was measured at 0 degree. S6 Fig

shows the Root Mean Square Error (RMSE) of estimated size of angled images comparing to

those taken at 0 degree where the mean of the RMSE for all mice is 1.8088 and the median is

1.3472. To further study whether the RMSE of the estimated results for the angled images are

acceptable, we calculated the RMSE of images (in the original dataset) taken at Day 1 compar-

ing to those taken at Day 0. S6 Fig shows the results where the mean of the RMSE for all mice

is 4.0553 and the median is 3.9355. Fig 14A shows the RMSE for all mice in the angled images

dataset and those in the original dataset comparing Day 1 to Day 0. There exist one outlier in

the RMSE of the angled images where Fig 14B and 14C show the raw image and its masks. It is

worth noting that it is hard for human annotators to analyze this image.

Finally, to demonstrate the robustness and generalizability of the developed pipeline and its

various post-processing techniques to dealing with wounds with different initial sizes, we

employed the developed pipeline to analyze those wounds with the initial size of ⪆ 8 −mm.

Fig 15 shows the results of applying the developed pipeline for analyzing two different images

with different initial sizes. These results show that the developed pipeline can provide accurate

masks for both wounded area and inner area (i.e., accurate wound estimation). It worth to

note that, we used the same pipeline with no change in its parameter to perform these analysis.

Discussion

Measuring the wound size is an indispensable part of the wound assessment process where its

precision directly impacts the proper diagnosis and effective treatment. Here, we demon-

strated that our developed pipeline could automatically measure laboratory wounds, therefore,

can be beneficial for ultimately translating to the human wound measurement. We have

Fig 13. Automatic measurements of wound periphery using post-processing technique 4 for C1 (left-plot) and C2 (right-plot) mice dealing with a

biased missing reference object. The blue line shows the average wound closure percentages based on the automatic estimation using the developed

pipeline for dataset having 75% (baseline) of the splints, the orange shows the same results but for those with all the splints removed for days 0 − 7, the

green shows the same results but for those with all the splints removed for days 4 − 11, and finally red shows the same results but for those with all the

splints removed for days 8 − 15.

https://doi.org/10.1371/journal.pcbi.1009852.g013
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Fig 14. Comparison of the results for automatic analysis of wound periphery for wounds with changed camera angle by 10 − 15 degrees

with those in the original dataset. (A) shows the RMSE for all mice in the angled images dataset and those in the original dataset comparing

Day 1 to Day 0. (B,C) show the raw image and its masks for the outlier in the RMSE of the angled images.

https://doi.org/10.1371/journal.pcbi.1009852.g014
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shown that leveraging the deep learning-based algorithms can enhance this task with higher

accuracy sufficient to be used in the wound assessment process. Our developed pipeline has

several advantages over standard computer vision techniques. It provides high fidelity results

with minimal human intervention. It is robust against camera changes (e.g., distance, transla-

tion, angle). It automates the whole measurement process which is a time-consuming and

laborious task if manually performed. Thanks to the several post-processing techniques

employed in our pipeline, it provides an acceptable size estimate when approximately less than

50% of images are missing reference object. Furthermore, Our pipeline detects and localizes

the wounded area and it allows us to automatically crop the wound-of-interest in unseen

images at different resolutions. In addition, our customized detection algorithm could accu-

rately determine the wound-of-interest when multiple wounds are visible. It utilized the splint

around the wound as its reference object with known size. In addition, our algorithm could

Fig 15. Automatic analysis of wound periphery for wounds with different initial sizes using developed pipeline. The raw image and its masks for

sample 1 (A,C) and sample 2 (B,D). Results show that the developed pipeline can provide accurate masks for both wounded area and inner area.

https://doi.org/10.1371/journal.pcbi.1009852.g015
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use any known sized object in the image as the reference. Ultimately, generalizing the overall

process, it results in a more precise estimation.

Considering the high cost of collecting data in biology, the original dataset is small and not

suitable for deep learning purposes. However, we were able to mitigate overfitting through

data augmentation. We validated this by testing on unseen data presenting variations in

wound size and camera angles. The model can be further generalized by expanding the diver-

sity of the dataset.

When performing the tracing, defining the wound margins could be subjective and some-

times difficult because the wound margins are not always clearly visible [2]. Therefore, the

choice of wound margins can vary from one individual to another even among experts. Fig 16

shows the comparison of three different tracings (i.e., Manual (periphery) vs. Manual (experts

(#1 and #2))). Fig 16A, 16B and 16C show similar trends in tracing performed by two different

experts (#1 and #2) and a non-expert for the same wound (taken before day 3) respectively.

Fig 16D, 16E and 16F show different trends in tracing performed by two different experts (#1

and #2) and a non-expert for the same wound (taken after day 3) respectively.

To compare our results to those measurements assessed by experts (see “Manual Measure-

ment (Expert)” for more details), Fig 17 shows manual (experts’) and automatic measurements

of average wound closure percentages for C1 mice (see Fig 17 left-plot) and C2 mice (see

Fig 17 right-plot). The orange line shows the average wound closure percentage measurements

based on expert #1’s annotations, the green line shows expert #2’s annotation results, and the

blue line shows the average wound closure percentages based on the automatic estimation

using the developed pipeline. In addition, Fig 18 shows the wound closure percentages for test

Fig 16. Experts vs. periphery annotations. The left column (A, D) are two sample tracings performed by expert #1, middle column (B, E) are two

sample tracings performed by expert #2, and the right columns (C, F) are two sample tracings performed by non-expert. (A, B, C) show similar trends

in tracing for the same wound (taken before day 3), while (D, E, F) show different trends in tracing for the same wound (taken after day 3).

https://doi.org/10.1371/journal.pcbi.1009852.g016
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time-series C1(M-4 L) (left-plot) and C2(M-1 R) (right-plot) wounds. For C1 mice, the expert

measurements seem to agree and deviate from the automated measurements, while for C2,

expert #1 seems to agree with the automated measurements and deviate from expert #2’s anno-

tation results early on. Additionally, several correlation analyses [37] were performed for pair-

wise comparisons across all manual and automated results. Table 2 shows all the results. A

score close to 1 means the inputs are in strong agreement with each other. The results support

the claim that our results follow a general trend and that none of the annotations are too far

from each other despite some discrepancies. That is, even if the mean is off, the qualitative

dynamics match. In the clinical field, wound closure rates are often used to predict whether a

wound will heal or not [4]. Thus having a consistent approach to compare results across exper-

iments and time points is of utmost importance. Therefore, even if quantitative measurements

are not exactly aligned, the preservation of wound healing dynamics remains informative. The

Fig 17. Automatic and experts measurements of wound for C1 (left-plot) and C2 (right-plot) mice. The orange line shows the average wound

closure percentage measurements based on expert #1 annotations, the green line shows the expert #2 annotation results, and the blue line shows the

average wound closure percentages based on the automatic estimation using the developed pipeline. Training, validation, and test datasets are included.

https://doi.org/10.1371/journal.pcbi.1009852.g017

Fig 18. Automatic and experts measurements of wound for test C1(M-4 L) (left-plot) and C2(M-1 R) (right-plot) mice wounds. The orange line

shows the wound closure percentage measurements based on expert #1 annotations, the green line shows the expert #2 annotation results, and the blue

line shows the wound closure percentages based on the automatic estimation using the developed pipeline.

https://doi.org/10.1371/journal.pcbi.1009852.g018
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ground truth can remain ambiguous but if experts can universally agree on a unique set of

annotations, then the algorithms can always be retrained to segment in the same way. The seg-

mentation algorithm can only achieve what it is taught.

S7 and S8 Figs show the wound closure percentages for the same mice calculated from the

expert #1 annotations. S9 and S10 Figs show the wound closure percentages for the same mice

calculated from the expert #2 annotations.

Conclusion

An automatic wound analysis pipeline is presented in this paper by using custom-designed

deep learning-based algorithms to provide critical information such as wound closure percent-

ages and wound size for further evaluating the wounds. The results demonstrate the effective-

ness of the presented method with minimal human intervention. Considering its versatility,

the developed pipeline is a promising tool for replacing the time-consuming and laborious

manual process of wound measurement.

Based on the results, we observed that, on average, traces of the wound edge begin to

diverge after day 3 but agreement is regained upon wound closure. There are quite a few rea-

sons why there is some discrepancy. Human annotators take into account the previous/next

images when annotating the wound edge (temporal aspect) while the model does not. Human

annotators are better at dealing with some of the challenges like occlusion and blur than the

model. For future work, in order to predict surface area closer to what experts measure a net-

work could be built to incorporate contextual information such as time and specific color/tex-

ture variations. Given that defining the wound edge could be subjective and can vary from one

individual to another even among experts, another interesting approach could be unsupervised

methods that do not require such annotations. We postulate that the above mentioned

approaches can solve the current difficulty and subjectivity by finding a universally “agreed”

upon segmentation for training for a universally consistent approach to segmentation. By uni-

versally agreed on segmentation we mean a segmentation that all experts can accept.

Table 2. Correlation.

Average Wound Closure Percentage Pearson Correlation Spearman Correlation Kendall Correlation

C1 mice: Automatic vs Manual Periphery 0.996076 0.999264 0.995825

C2 mice: Automatic vs Manual Periphery 0.995547 0.997059 0.983333

C1 mice: Automatic vs Expert #1 0.966218 0.997059 0.983333

C2 mice: Automatic vs Expert #1 0.988421 0.994118 0.966667

C1 mice: Automatic vs Expert #2 0.953707 0.997059 0.983333

C2 mice: Automatic vs Expert #2 0.936969 0.988235 0.950000

C1 mice: Expert #1 vs Expert #2 0.987967 0.994118 0.966667

C2 mice: Expert #1 vs Expert #2 0.962619 0.997059 0.983333

Automatic: C1 mice vs C2 mice 0.954987 0.997059 0.983333

Manual Periphery: C1 mice vs C2 mice 0.936963 0.993378 0.962351

Expert #1: C1 mice vs C2 mice 0.900344 0.994118 0.966667

Expert #2: C1 mice vs C2 mice 0.972558 0.997059 0.983333

C1 mice: Manual Periphery vs Expert #1 0.980868 0.994849 0.979088

C1 mice: Manual Periphery vs Expert #2 0.968218 0.996321 0.979088

C2 mice: Manual Periphery vs Expert #1 0.992362 0.997059 0.983333

C2 mice: Manual Periphery vs Expert #2 0.942631 0.994117 0.966667

https://doi.org/10.1371/journal.pcbi.1009852.t002
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Supporting information

S1 Fig. Wound closure percentages based on the automatic estimation using the developed

pipeline for C1 mice both left and right wounds.

(TIF)

S2 Fig. Wound closure percentages for C1 mice both left and right wounds obtained from

the manual periphery measurements.

(TIF)

S3 Fig. Wound closure percentages for C2 mice both left and right obtained using the

developed pipeline.

(TIF)

S4 Fig. Wound closure percentages for C2 mice both left and right wounds obtained by

using the measurements based on the manually annotated images.

(TIF)

S5 Fig. Automatic analysis of wound periphery for wounds with changed camera angle by

10 − 15 degrees using developed pipeline.

(TIF)

S6 Fig. Comparison of wound periphery measurements in day0 and day1 for wounds in

the original dataset using developed pipeline.

(TIF)

S7 Fig. Wound closure percentages for C1 mice both left and right wounds obtained by

using the measurements based on the expert #1 annotations.

(TIF)

S8 Fig. Wound closure percentages for C2 mice both left and right wounds obtained by

using the measurements based on the expert #1 annotations.

(TIF)

S9 Fig. Wound closure percentages for C1 mice both left and right wounds obtained by

using the measurements based on the expert #2 annotations.

(TIF)

S10 Fig. Wound closure percentages for C2 mice both left and right wounds obtained by

using the measurements based on the expert #2 annotations.

(TIF)

S1 File. Measurements for all the different windows.

(CSV)
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Writing – original draft: Héctor Carrión, Mohammad Jafari, Michelle Dawn Bagood, Hsin-

ya Yang, Roslyn Rivkah Isseroff, Marcella Gomez.
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