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An artificial neural network 
approach integrating plasma 
proteomics and genetic data 
identifies PLXNA4 as a new 
susceptibility locus for pulmonary 
embolism
Misbah Razzaq1,2*, Maria Jesus Iglesias3,4, Manal Ibrahim‑Kosta5,6, Louisa Goumidi5, 
Omar Soukarieh1,2, Carole Proust1,2, Maguelonne Roux2, Pierre Suchon5,6, Anne Boland2,7, 
Delphine Daiain2,7, Robert Olaso2,7, Sebastian Havervall8, Charlotte Thalin8, Lynn Butler3,4,9, 
Jean‑François Deleuze2,7,10, Jacob Odeberg3,4,11, Pierre‑Emmanuel Morange5,6,11 & 
David‑Alexandre Trégouët1,2,11*

Venous thromboembolism is the third common cardiovascular disease and is composed of two 
entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While 
PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help 
identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial 
neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT 
patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear 
approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping 
DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected 
single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main 
findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. 
The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing 
sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak 
(rs1424597: p = 5.3 × 10–7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele 
were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, 
p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known 
to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 
levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated 
proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose 
exact role now needs to be further elucidated.
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Deep vein thrombosis (DVT) and pulmonary embolism (PE) are often considered as two sides of the same coin, 
venous thromboembolism (VTE), the third most common cardiovascular disease. VTE is a complex disease 
resulting from the interplay of various factors including (epi-)genetics and environmental sources. VTE inci-
dence is estimated at 1 per 1000 patient-years, and its fatal form, PE, is associated with a mortality rate of 6% 
in the acute phase and 20% after one year1. PE generally results from the migration of a blood clot from a deep 
vein to the lung and is observed in ~ 40% of patients with documented DVT2. However, isolated PE without 
any trace of DVT can also be observed either when the clot has completely migrated to the lung or when it is a 
pulmonary clot in situ as recently highlighted in COVID-19 patients3,4. Even though some specific risk factors 
for PE have been identified in DVT patients such as obesity, sickle cell disease5 as well as some genetic variations 
in F55 and GRK56 genes, the exact, likely multifactorial, biological mechanisms that lead to PE are still not fully 
characterized. Besides, there are still limited biomarkers that can help discriminating patients that will develop 
PE from those who will not, the former being then at higher risk of death. Thus, there is clearly a need for novel 
PE-associated molecular markers to be identified.

Plasma is an ideal potential source for VTE biomarkers; the intravascular compartment itself is the site of 
disease manifestation and tests are relatively non-invasive, quick and cheap. Several types of molecular determi-
nants can be assessed in plasma samples including microRNAs, metabolites and proteins, and all of them have 
been investigated in the context of VTE. For example, plasma microRNAs have been assessed in relation to VTE 
recurrence7,8. Plasma proteomics has been employed to discover novel proteins associated with VTE risk9,10 and 
plasma metabolomics used to identify novel mechanisms involved in VTE etiology11,12. Only one study has so 
far adopted an exploratory plasma proteomics strategy to identify novel proteins associated with high-risk versus 
low-risk of PE in humans. This study13 was based on a relatively small sample size and compared 6 patients with 
high risk of PE to 6 patients at low PE risk, risk being classified based on clinical presentations and symptoms, 
with plasma samples profiled by matrix-assisted laser desorption/ionization–time-of-flight/time-of-flight mass 
spectrometry (MALDI-TOF/TOF MS).

In this work, we aim at identifying novel molecular phenotypes that could help in better characterizing the 
biological mechanisms involved in the development of PE in VTE patients. For this, 234 plasma proteins tar-
geted with 376 protein specific antibodies, with the major part derived from the Human Protein Atlas (HPA) 
repository14 were profiled in 1388 VTE patients selected from the MARTHA study15,16 and from whom 283 
had experienced a symptomatic PE event. To explore far beyond the search for linear associations between 
protein levels and PE risk and to identify more complex relationships that could serve as integrative markers of 
upstream/downstream mechanisms involving molecular determinants that have not necessarily been measured, 
we deployed a sequential procedure implementing several methodologies selected from the machine-learning 
domain. Briefly, and as summarized in Fig. 1 and more detailed thereafter, the first step consists in applying an 
under-sampling algorithm (edited nearest neighbors)17 to remove individuals with strong data heterogeneity that 
would hamper the efficiency of the downstream analyses, leaving to subsample of 592 VTE patients (497 DVT 
and 95 PE). This subsample was then used in an Artificial Neural Network (ANN) learning framework in order 
to predict PE from proteomics and clinical data. We then used the Local Interpretable Model-agnostic Explana-
tions (LIME) algorithm18 to derive a linear approximate of the ANN based predictor for PE risk which would, in 
addition, have a more meaningful biological interpretation. As MARTHA patients have been previously typed 
for genome-wide genotype data, we then conducted a genome wide association study of the LIME predictor of 
PE in order to detect single nucleotide polymorphisms (SNPs) associated with the predictor with the hope that 
the integration of genetic and proteomic data could provide additional insights into the pathophysiology under-
lying the identified predictor19,20. SNPs with strong statistical association with the LIME predictor were tested 
for association with PE risk in the whole original MARTHA dataset and significant associations were further 
tested for replication in an independent study of 339 VTE patients including 143 with PE. Sequencing data were 
also scrutinized in some patients with observed VTE outcomes poorly predicted by our ANN/LIME prediction 
models in order to identify rare variants that could be responsible for the observed phenotypes.

Materials and methods
Ethical approval.  Each individual study on which the work is based was approved by its institutional ethics 
committee and informed written consent was obtained in accordance with the Declaration of Helsinki. Ethics 
approval were obtained from the “Departement santé de la direction générale de la recherche et de l’innovation 
du ministère” (Projects DC: 2008-880 and 09.576) and from the institutional ethics committees of the Kremlin-
Bicetre Hospital.

MARTHA study.  The MARTHA population is composed of VTE patients recruited from the Thrombo-
philia center of La Timone hospital (Marseille, France) and free of any chronic conditions and of any well char-
acterized genetic risk factors including antithrombin, protein C or protein S deficiency, homozygosity for FV 
Leiden or Factor II 20210A, and lupus anticoagulant. Detailed description of the MARTHA population has been 
provided elsewhere15,21.

MARTHA proteomics substudy.  A sample of 1388 MARTHA patients with available plasma samples were pro-
filed for targeted plasma proteomic investigations as described below.

MARTHA genetic substudy. From the whole MARTHA population, 1592 patients with DNA available were 
genotyped with high-throughput genotyping arrays (see below).

Patients were also phenotyped for 19 quantitative traits known to be involved in thrombotic biological pro-
cesses (Supplementary Table 1).
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Plasma proteomic profiling.  Generation of antibody suspension bead array (SBA).  The multiplex anti-
body suspension bead array (SBA) was created by covalent coupling of 339 Human Protein Atlas (HPA) antibod-
ies, 13 from commercial providers and 25 monoclonal BSI antibodies (BioSystems International Kft) targeting 
234 unique candidate proteins (Supplemental Table 2). These proteins were selected for (1) their known roles 
in the coagulation/fibrinolysis cascade and/or intermediate traits of relevance to thrombosis, (2) their specific 
expression in endothelial cells (a key cell type involved in thrombosis physiopathology) or (3) encoded by genes 
identified in pangenomic studies as associated with several cardiovascular disease-linked biological pathways 
(e.g. platelet function, renal function, inflammation).

Antibodies were individually coupled to carboxylated magnetic beads (MagPlex-C, Luminex Corp.) generat-
ing up to 384 different bead identities (IDs), essentially according to methods previously described9,22. The final 
multiplexed suspension bead array was prepared by combining all 384 antibody coupled beads into a single SBA 
stock with a concentration of approximately 25–40 beads of each antibody bead ID/ul.

Plasma labelling and protein profiling assay.  Plasma samples were diluted 1:10 in filtered 1xPBS and labelled 
with biotin (NHS-PEG4-Biotin, Thermo Scientific) for 2 h at 4 °C. The labelling process was terminated by the 
addition of 12,5ul of 0.5 M HCl pH:8.0 to each sample for 20 min and consecutively storage at − 20 °C until 
usage22. Labelled plasma samples were diluted 1:50 in PVX casein buffer + 10% (v/v) rabbit IgG (0.1% casein, 
0.5% polyvinyl alcohol, 0.8% polyvinylpyrrolidone, prepared in 1xPBS). Diluted samples were heat-induced to 
achieve epitope retrieval for 30 min at 56 °C. Five microliters of the SBA were mixed with 45ul of heat-treated 
samples for 16–18 h, at RT and constant shake. Unbound complexes were removed by 2 consecutive washes 
with PBS-T and antibody-bound complexes were cross-linked by resuspending the beads in 0.4% PFA-PBS for 
10 min. R-phycoerythrin-conjugated streptavidin (1:750, PBS-T; Invitrogen) was added to all samples for 30 min 

Figure 1.   Analysis workflow of the present study.
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followed by 2 times washes. Relative amount of each protein complex was expressed as median of fluorescence 
intensity (MFI) by read out on a FlexMAP3D.

The early onset venous thrombosis (EOVT) study.  This study is composed of 339 VTE patients with 
documented idiopathic isolated PE or DVT selected according to the same criteria as the MARTHA partici-
pants, with the exception that the age of VTE onset was below 50 yrs. Brief characteristics of the EOVT partici-
pants are shown in Supplementary Table 3 while detailed description can be found in21,23.

Machine‑learning framework for identifying a molecular predictor of PE risk.  Step 1: Normaliza‑
tion.  First, all HPA variables and biological traits were normalized and scaled to have 0 mean and 1 variance to 
avoid major artificial influence of variables with large range of variations.

Step2: Edited nearest neighbors.  As our aim was to identify new molecular markers associated with PE, we 
hypothesized that conducting our discovery phase on isolated PE, an expected less heterogeneous class of VTE 
patients than the class of patients with both DVT and PE, will increase our chance to identify novel relevant 
molecular players. As a consequence, we decided to build our ANN model only on patients with isolated PE 
(N = 95) or with DVT (N = 1105). However, due to the imbalance nature of this dataset with ~ 10 more samples 
in the DVT class than in the PE class, we applied the edited nearest neighbors (ENN) algorithm, an under 
sampling method usually used in the field of pattern recognition or classification in presence of unbalanced 
samples17. This method relies on under sampling unit of analysis, in our case individuals, from the majority class 
by removing the most heterogeneous units. It consists in computing the Euclidean distance between each pair 
of individuals from their proteomics and biological data and to remove samples whose clinical phenotype (here 
DVT) is not consistent with that of his/her k nearest neighbors (k = 3 in this work). This led us to the selection 
of the so called ANN dataset composed of N = 497 DVT and N = 95 PE patients for building our ANN model.

Step3: Derivation of an ANN model for PE prediction.  To build our ANN model, the ANN dataset was divided 
into a training set composed of 576 patients (487 DVT and 89 PE) and a testing set of 16 patients (10 DVT and 
6 PE), the latter being used for testing the accuracy of the ANN model derived from the former. This allocation 
was chosen so that the number of PE cases used for training was sufficiently large.

Because the application of a standard ANN methodology to our training set would lead to unstable network 
for predicting PE due to the imbalance nature of the input data with ~ 5 times more DVT than PE patients, an 
interactive ANN framework was adopted:

At each iteration i,

•	 A random sample of 30 PE patients and 100 DVT patients is selected from the training set and a sample of 70 
synthetic PE samples are generated using the ADASYN algorithm24. ADASYN is an adaptive synthetic data 
generation method where new samples are generated based on the weighted distribution for minority class 
samples with two main advantages, resolving data imbalance and forcing classifiers to be more sensitive to 
the minority class. This strategy led to a balanced dataset Di of 100 PE and 100 DVT (synthetic) patients on 
which a ANN is built.

•	 Using the Di dataset further splitted randomly into 90%/10% training/testing subsamples, a two hidden-
layers feed forward neural network was implemented (see Supplementary data for an illustration of the 
neural network’s structure). In addition to the input layer corresponding to the number of proteomic and 
biological variables (n = 395), the proposed neural network included a first hidden layer with 395 neurons, 
a second layer with 128 neurons and an output layer with 2 neurons, representing the DVT and PE classes 
respectively. The number of neurons were selected by trial and error approach under the constraint that the 
number of neurons shall be smaller or equal to the number of input variables and higher than the number 
of output classes.

The Rectified Linear Unit (ReLU) function25 was used to activate hidden layers while the softmax activation 
function26was used to generate class probabilities in the output layer.

After fixing the number of nodes, layer and activation function, the process of training the neural network 
can start. Starting from random weights, forward propagation is used to generate the output of all nodes at all 
layers while moving from the input to the output layers. The generated final output is compared to the observed 
class phenotype and an error is calculated using the cross-entropy function27. Iteratively, this error was then back-
propagated using a gradient descent algorithm28 (with learning of 0.01 and batch size of 32) to update weights 
according to their contribution to the error. In order to reduce over-fitting and obtain the best performing model, 
the callback feature proposed by the Keras open-source library (https://​keras.​io/) was employed.

Step4: Local interpretable model‑agnostic explanations (LIME).  As a neural network is often considered a 
black box without telling much about which, and how, input variables contribute to the prediction, the LIME 
methodology18 was applied to the final ANN model obtained at Step 3 in order to inform about which input 
variables (i.e. plasma protein levels) contribute to PE risk prediction and what are the relative weights using a 
linear approximation of the ANN model.

Genome wide genotyping.  As previously described16,21, both MARTHA and EOVT participants have 
been genotyped with high-density genotyping Illumina arrays and imputed for single nucleotide polymor-

https://keras.io/
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phisms (SNPs) from the 1000G Phase I Integrated Release Version 2 Haplotypes using MACH (v1.0.18.c) and 
Minimac (release 2011-10-27) imputation software.

Genome‑Wide Association analysis (GWAS).  Imputed SNPs with imputation quality r2 greater than 
0.5 and with minor allele frequency (MAF) greater than 0.01 were tested for association with the LIME predic-
tor derived in 574 MARTHA participants. Associations with statistical p-value < 5 × 10–8 were considered as 
genome-wide significant.

Genetic Association Analysis with PE risk.  The candidate SNP identified from the GWAS on the LIME 
predictor was tested for its association with PE risk, both in MARTHA and EOVT participants. For this, we 
employed the Cochran-Armitage trend for association applied to the best guessed genotypes inferred from the 
imputed allele dosage at the SNP of interest. Logistic regression was also employed to estimate genetic effects 
adjusted for age and sex.

Annotation of the candidate SNP.  Identified SNP was examined for association with the expression of 
its structural gene via publicly available genome-wide gene expression data from multiple cell lines and tissues 
incl.29–32. The GTEx portal (https://​gtexp​ortal.​org/) was used to investigate the SNPs effect on gene expression. 
Association of the SNPs with DNA methylation levels from peripheral blood DNA was also investigated using 
latest results from the GoDMC consortium (http://​mqtldb.​godmc.​org.​uk/​index). Additional online tools were 
also used to determine if the candidate SNP could be associated with any biological traits (e.g. HaploReg:https://​
pubs.​broad​insti​tute.​org/​mamma​ls/​haplo​reg/​haplo​reg.​php; GWAS Catalog: https://​www.​ebi.​ac.​uk/​gwas/; BIG 
server: http://​big.​stats.​ox.​ac.​uk/; GRASP server: https://​grasp.​nhlbi.​nih.​gov/​Overv​iew.​aspx; FinnGen reposi-
tory: https://​www.​finng​en.​fi/​en/​access_​resul​ts) or with specific regulatory mechanisms (e.g. RegulomeDB: 
https://​www.​regul​omedb.​org/​regul​ome-​search/; Trap: http://​trap-​score.​org/).

Plasma levels of the identified candidate protein in COVID‑19 patients.  Given that PE is a fre-
quently observed thrombotic complication in COVID-19 patients33, we measured plasma levels of the protein 
encoded by the identified candidate gene in COVID-19 participants of the COMMUNITY study and assessed 
their associations with pulmonary complications. The COMMUNITY study—“COVID-19 biomarker and Immu‑
nity study” is a single center study of 112 patients with COVID-19 disease admitted to general wards, intermedi-
ate units, or intensive care units at Danderyd Hospital, Stockholm Sweden between April 15th and May 27th 
2020. Inclusion was based on a confirmed diagnosis of SARS-CoV2 infection based on reverse‐transcriptase 
polymerase chain reaction (RT‐PCR) viral RNA detection of nasopharyngeal or oropharyngeal swabs, or clinical 
presentation with COVID-19 disease. Exclusion criteria were age < 18 years. Patients were followed longitudi-
nally from inclusion, and blood samples for biobanking of plasma samples were collected shortly after hospital 
admission and every 2–3 days during the hospital stay. Procedures for blood sampling and plasma prepara-
tion have been previously described34. Demographic data, routine lab results, comorbidity and information and 
variables reflecting clinical deterioration, including respiratory support were obtained from medical records. 
Patients were divided into groups based on respiratory support classified at the time of a sample was drawn, 
classified into a categorical variable ‘Respiratory Index’ or RI, defined as RI = 0 for no respiratory support, RI = 1 
for ≤ 5 L of oxygen on nasal cannula or mask, RI = 2 for > 5 L of oxygen on nasal cannula or mask, RI = 3 for 
noninvasive respiratory support and RI = 4 for intubation. Level of respiratory support and oxygen supplemen-
tation were set at the discretion of the treating physician. For the current study, 339 samples collected from 112 
patients were available, with at least 2 samples for 71 of the patients (63.4%). Baseline characteristics are shown 
in Supplementary Table 4.

The HPA antibody HPA052141 targeting the PLXNA4 protein was used to measure PLXNA4 levels in the 
339 available samples from the COMMUNITY study, following a similar protein profiling protocol as that 
described above.

Association of PLXNA4 plasma levels with respiratory index at baseline was tested using linear regression 
models. To handle multiple time point measurements, association of PLXNA4 plasma levels with RI was further 
investigated using all available longitudinal measurements using a linear mixed effect model as implemented in 
the nlme R package. Analyses were adjusted for age, sex and body mass index.

Whole genome sequencing.  From the whole MARTHA study, 200 patients had been selected for whole 
genome sequencing. These patients were selected to have experienced VTE in absence of strong environmental 
and genetic risk factors. Besides, these patients should have family history of VTE or multiple unprovoked VTE 
events, such clinical patterns being compatible with the existence of an underlying VTE causing genetic defect. 
Genomic DNA was extracted from peripheral blood, using the BioRobot EZ1 workstation. The DNA concen-
tration was determined using the Qubit assay kit (Thermofisher). Whole genome sequencing was performed at 
the Centre National de Recherche en Génomique Humaine (CNRGH, Institut de Biologie François Jacob, Evry, 
France). After a complete quality control, 1 µg of genomic DNA was used for each sample to prepare a library 
for whole genome sequencing, using the Illumina TruSeq DNA PCR-Free Library Preparation Kit, according to 
the manufacturer’s instructions. After normalization and quality control, qualified libraries were sequenced on a 
HiSeqX5 instrument from Illumina (Illumina Inc., CA, USA) using a paired-end 150 bp reads strategy. One lane 
of HiSeqX5 flow cell was used per sample specific library in order to reach an average sequencing depth of 30× 
for each sequenced individual. Sequence quality parameters have been assessed throughout the sequencing run 
and standard bioinformatics analysis of sequencing data was based on the Illumina pipeline to generate FASTQ 
file for each sample. FastQ sequences were aligned on human genome hg37 using the BWA-mem program35. 

https://gtexportal.org/
http://mqtldb.godmc.org.uk/index
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://www.ebi.ac.uk/gwas/
http://big.stats.ox.ac.uk/
https://grasp.nhlbi.nih.gov/Overview.aspx
https://www.finngen.fi/en/access_results
https://www.regulomedb.org/regulome-search/
http://trap-score.org/
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Variant calling was performed using the GATK HaplotypeCaller (GenomeAnalysisTK-v3.3-0, https://​softw​are.​
broad​insti​tute.​org/​gatk/​docum​entat​ion/​artic​le.​php?​id=​4148). Single-sample gVCFs files were then aggregated 
using GATK CombineGVCFs and joint genotyping calling performed by GATK GenotypeGVCFs. Recalibration 
was then conducted on the whole gVCF following GATK guidelines. Following GATK VQSR, we retained single 
nucleotide variants in the 99.5% tranche sensitivity threshold and indels in the 99% tranche sensitivity threshold 
for further analysis and annotated them using Annovar36.

As a strategy to identify candidate variants that could explain the VTE phenotype in individuals with dis-
cordant class prediction, we first prioritized variants that were likely functional (stop loss/stop gain, frameshift, 
non-synonymous and splicing variants), located in known VTE associated genes (ABO, ARID4A, C4BPB, EIF5A, 
F2, F3, F5, F8, F9, F13A1, FGG, GRK5, MPHOSPH9, MAST2, NUGCC, OSMR, PLAT, PLCG2, PLEK1, PROC, 
PROS1, SCARA5, SERPINC1, SLC44A2, STAB2, STX10, STXBP5, THBD, TSPAN15, VWF)37–39, that have not 
been reported or at a low frequency (< 1‰) in public genomic data repositories (dbSNP, GnomAD) and that 
was present in only one of the 200 sequenced patients. If no candidate variants was identified in known VTE 
genes, we extended our search to whole coding genes and also took into account the predicted deleteriousness of 
selected candidates using in silico tools such as SIFT, PolyPhen and CADD-v1.240 to further reduce the number 
of candidates.

Results
Data description.  The MARTHA proteomics substudy was composed of 1,388 VTE patients among which 
1105 were diagnosed for DVT, 95 with isolated PE and 188 with both DVT and PE (Table 1).

Exploration of this dataset using high-dimensional visualization techniques including principal component 
analysis, t-distributed stochastic neighbor embedding (t-SNE)41 and Uniform Manifold Approximation and 
Projection (UMAP)42 did not reveal any specific stratification in the data nor outliers (Fig. 2) but rather illustrates 
that the three class of patients (DVT, PE, DVT + PE) could not be easily separated.

Artificial Neural Network for PE—As the accuracy/efficiency of any ANN strongly depend on the quality/
homogeneity of the input data, we first applied the edited nearest neighbors algorithm17 to perform under sam-
pling of the majority class (DVT) and obtain a more homogeneous set of DVT patients, and further discarded 
the DVT + PE class to avoid adding noise in discriminating between PE and non PE patients. This strategy led 
to the selection of a subsample (referred thereafter to as the ANN dataset) of 592 patients (497 DVT and 95 PE) 

Table 1.   Characteristics of the MARTHA proteomics study. Data shown correspond to mean (standard 
deviation) and count (percentage) for continuous and categorical variables, respectively. DVT Deep Vein 
Thrombosis, PE Pulmonary Embolism, BMI Body Mass Index.

DVT PE DVT + PE

N 1105 95 188

Age at sampling 46.67 (14.90) 48.63 (15.26) 51.57 (16.99)

Age at first VTE 40.89 (15.28) 41.64 (15.02) 44.22 (17.56)

Female sex 716 (65%) 78 (82%) 112 (60%)

Women under oral contraceptives at VTE event 286 (26%) 35 (37%) 45 (24%)

FV Leiden (rs6025) heterozygotes 255 (23%) 17 (18%) 39 (21%)

Anticoagulant therapy at plasma sampling 303 (27%) 29 (31%) 76 (40%)

Smokers 209 (19%) 18 (19%) 24 (13%)

BMI 25.14 (4.57) 25.20(4.39) 26.43(4.62)

Figure 2.   Graphical representation of the HPAs and biological MARTHA data projected on the first two 
principal components derived from standard principal components analysis (a), t-SNE (b) and UMAP (c) 
techniques.

https://software.broadinstitute.org/gatk/documentation/article.php?id=4148
https://software.broadinstitute.org/gatk/documentation/article.php?id=4148
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whose proteomics/biological entered the ANN analysis. Visual inspection of the proteomics and biological data 
in the selected ANN sample is shown in Supplementary Fig. 2.

A two hidden-layers ANN was then built from the ANN dataset with a training set of 576 patients (487 DVT 
and 89 PE) and a testing set of 16 patients (10 DVT and 6 PE). This allocation was chosen so that the number 
of PE cases used for training was sufficiently large. Because the training set presented with a strong imbalance 
with respect to the DVT/PE classes with ~ 5 times more DVT than PE patients, the ANN was trained iteratively 
as described in the Materials and Methods section. By completion of the iterative algorithm, the final ANN 
obtained an area under the operative curve (AUC) of 0.89. Of more interest are the performances of the ANN 
in the testing set. Indeed, our ANN got F1-scores of 0.82 and 0.60 for the DVT and PE classes, respectively, and 
a global AUC of 0.79 in the testing set.

We then used the LIME algorithm to obtain a local linear approximate of the ANN predictions. In the testing 
set, the LIME prediction achieved an overall AUC of 0.77 instead of 0.79 for ANN. For each of the 16 patients 
in the testing set, we compared the individual predictions of their observed VTE event provided by the ANN 
and LIME methods (Table 2). In general, ANN and LIME predictions were rather consistent even if the ANN 
predictions seem to be more accurate in predicting DVT while LIME appears slightly more accurate in predict-
ing PE. The average prediction in correctly classifying DVT patients was 0.872 by ANN compared to 0.748 by 
LIME. Note that one DVT patient (individual 10) was wrongly predicted to be PE by the ANN predictor, but 
not by the LIME predictor. Conversely, the average prediction in correctly classifying PE patients was 0.498 by 
ANN compared to 0.578 by LIME. Two PE patients (individuals 11 and 12) presented low predictions of being 
PE, using both ANN and LIME predictors.

We then assessed the correlation of the LIME predictor with the available biological phenotypes. No strong 
correlation was observed (Supplementary Table 5). However, the LIME predictor showed marginal positive cor-
relation with fibrinogen (ρ = 0.12, p = 5.7 × 10–3) and factor VIII (ρ = 0.16, p = 0.013) plasma levels, and marginal 
negative correlation with prothrombin time (ρ = −0.10, p = 0.029) and protein S (ρ = −0.10, p = 0.021) plasma 
levels. To go further into the biological interpretation of the LIME predictor, we sought to identify which pro-
teins contribute the most to the definition of the LIME predictor. Figure 3 display the top 20 most contributing 
antibodies/proteins. Of note, 5 proteins tended to have substantial more importance than the remaining ones, 
among which three include proteins that had been selected because their gene expression (COX4I2, VCL, VWF) 
was found to be specifically enriched in endothelial cells43.

Genetics of the LIME predictor.  To get additional information about the biological mechanisms that 
could underlie the linear LIME predictor, we conducted a GWAS on this predictor considered as a quantita-
tive linear trait in a sample of 574 individuals of the ANN subsample with GWAS data. While no SNP reached 
genome-wide significance, we observed a peak of strong suggestive statistical association on chromosome 7 
at the PLXNA4 locus (Supplementary Fig.  1–Supplementary Table  6). The sentinel SNP (p = 5.33 × 10–7) was 
rs1424597 whose minor A allele with frequency of 0.09 was associated with an increase of + 0.169 ± 0.034 in 
LIME predictor values. We then tested the association of the rs1424597 polymorphisms with PE in the whole 
MARTHA samples. As shown in Table 3, the rs1424597-A allele tended to be more frequent in patients with PE 
than in patients with DVT only (0.11 vs. 0.08). However, looking deeply to the genotypic distribution revealed 
a pattern of association more compatible with a recessive effect for the rs1424597-A allele. Carriers of the AA 
genotype were more frequently observed in the PE than in the DVT groups (2% vs. 0.4%), carrying the AA 
genotype being associated with a significantly higher risk of PE (OR 5.3 [1.7–17.0], p = 0.005). This pattern of 
recessive association was also observed in the EOVT study composed of 143 PE patients and 196 DVT patient. 

Table 2.   Individual predictions of VT event provided by ANN and LIME in the 16 patients of the testing set.

Individual Observed clinical class ANN prediction for class PE Local prediction for class PE

1 DVT 0.04 0.31

2 DVT 0.00 0.18

3 DVT 0.03 0.24

4 DVT 0.02 0.17

5 DVT 0.00 0.23

6 DVT 0.02 0.32

7 DVT 0.00 0.25

8 DVT 0.04 0.22

9 DVT 0.25 0.34

10 DVT 0.88 0.26

11 PE 0.00 0.30

12 PE 0.20 0.31

13 PE 0.98 0.94

14 PE 1.0 1.0

15 PE 0.01 0.15

16 PE 0.80 0.77
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In EOVT, 3% of PE patients were carriers of the AA genotype and none of the DVT patients, the Fisher exact test 
for the recessive A allele effect being significant (p = 0.013). Looking back to the original GWAS results for the 
LIME predictor revealed that the association of rs1424597 with the predictor was also compatible with a reces-
sive effect. Mean values for the LIME predictor were 0.33 ± 0.31, 0.48 ± 0.36 and 0.79 ± 0.45, in GG, GA and AA 
genotypes, respectively.

We then interrogated various public resources (See Methods) to investigate if the PLXNA4 rs1424597 could 
be associated with additional clinical or biological traits as well as regulatory mechanisms. The only robust and 
strong identified association relates to a meta-analysis of whole blood DNA methylation data performed in 
more than 27,000 individuals part of the GoDMC consortium (https://​doi.​org/​10.​1101/​2020.​09.​01.​20180​406) 
and where rs1424597 was statistically associated (p = 8.7 × 10–91) with methylation levels at the CpG cg06087029 
site. The rs1424597-A allele was associated with decreased levels of the cg06087029 site that maps to the ATRIP 
locus on chromosome 3. Noteworthy, the PLXNA4 polymorphism that associated the most with cg06087029 
in GoDMC, rs17219279 (p = 2.7 × 10–119) was in strong linkage disequilibrium with the rs1424597 (r2 = 0.85, 
D′ = 0.99) and also demonstrated strong statistical association with our LIME predictor (p = 2.19 × 10–6, Sup-
plementary Table 6) and PE risk (p = 0.007) in MARTHA. Of note, no evidence for association of rs1424597 with 
gene expression was reported in the GTEx portal.

Accumulating evidence indicates that vascular dysfunction together with a prothrombotic state underlies 
severe COVID-19 pathophysiology, with respiratory failure linked to microvascular thrombosis in lung44,45. With 
the hypothesis that plasma proteins associated with PE risk would potentially be associated with COVID-19 
pulmonary complications, we included an antibody targeting PLXNA4 in a plasma proteomic analysis of 339 
samples collected at consecutive time points from 112 hospitalized COVID-19 patients. As indicated in Table 4, 
plasma PLXNA4 levels tend to slightly decrease with worsened respiratory dysfunction at baseline, patients with 

Figure 3.   List of the top 20 antibodies contributing the most to the prediction model for PE.

Table 3.   Association of rs1424597 with PE risk in the MARTHA and EOVT studies. MAF Minor Allele 
Frequency. OR: Allelic Odds Ratio [95% CI] adjusted for sex and age at DVT/PE event, under the assumption 
of recessive effect.

MARTHA EOVT

DVT PE DVT PE

GG 1028 (84%) 258 (80%) 149 (76%) 110 (77%)

GA 185 (15%) 59 (18%) 47 (24%) 28 (20%)

AA 5 (< 1%) 7 (2%) 0 (−) 5 (3%)

MAF1 0.080 0.113 0.120 0.133

OR2 5.338 [1.676–17.00]
p = 0.005 Undefined

https://doi.org/10.1101/2020.09.01.20180406
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RI > 2 having lower PLXNA4 levels (β = −0.107 ± 0.082, p = 0.195) than patients with RI ≤ 2. The longitudinal 
analysis of all available measurements confirmed this association (β = −0.073 ± 0.033, p = 0.025).

Genetics of inconsistent LIME predictions.  As shown in Table  2, our ANN/LIME models failed to 
correctly predict the true VTE outcome in four individuals from the testing set (individuals 10, 11, 12 and 15). 
First, it is worthy of note that these 4 individuals were all females. Second, the 3 female PE patients wrongly 
predicted to be DVT (individuals 11, 12 and 15) were all under oral contraceptives (OC) at the time of the PE 
event (age 45, 35 and 53, respectively), but not individual 10 incorrectly predicted to be PE. While we cannot 
rule out the possibility that our ANN/LIME models poorly behave in women under OC, we nevertheless sought 
to investigate whether discordant predictions could be due to genomic outlier individuals harboring very rare 
disease causing mutations that could make the global ANN/LIME predictions inaccurate, in line with the idea 
that the discrepancy between (machine learning derived) predicted and observed phenotypes could be a herit-
able trait46. Among these 4 individuals, only two (Individuals 11 and 15) have been sequenced for their whole 
genome. Sequence data of these two individuals were then scrutinized for candidate rare variants that could 
explain the VTE phenotype.

Individual 11 is a woman that experienced PE under oral contraceptives (OC) at age 45. Of note, her ten clos-
est neighbors inferred from HPA data were all DVT patients which would likely explain why the derived ANN 
predicted her a DVT outcome instead of PE. She was not found to harbor any candidate variation in known VTE 
genes but presented in her genome with 61 very rare coding variants with strong predicted deleteriousness that 
could be good candidates responsible for the PE event (Supplementary Table 7).

Individual 15 is a woman that had experienced PE at age 53 also under OC. Nine out of 10 of her closest 
proteomics based neighbors were DVT patients which may also explain why this PE patient was incorrectly 
predicted to be DVT. This patient was found to carry a very rare nonsynonymous variation (rs121918154; 
PROC:NM_000312:exon9:c.C814T:p.R272C) in the VTE-associated PROC gene. This variation has a minor 
allele frequency of 0.005% in public database (https://​www.​ncbi.​nlm.​nih.​gov/​snp/​rs121​918154), is predicted to 
be deleterious by several bioinformatics tools and have been previously reported in VTE patients with protein 
C deficiency47,48. This variation is located in the last exon of the gene and is predicted to alter splicing regulatory 
elements49–51, which could lead to a deletion of a part of the peptidase S1 domain that is responsible for the cleav-
age activity of the protein. Of note, this patient exhibited moderately low plasma Protein C levels, 63%, slightly 
lower than the 65% threshold adopted to declare moderate protein C deficiency52.

Discussion
This work is original in at least three main aspects. First, it is the largest plasma proteomic study with respect 
to pulmonary embolism in VTE patients. Second, it is to our knowledge the first attempt to deploy ANN meth-
odologies on proteomic data with the aim at identifying new molecular thrombotic players. And finally, the 
integration of proteomic and genomics data identified PLXNA4 as a new candidate gene for PE.

This work started with the implementation of an ANN methodology on antibody based affinity proteomics 
data in relation to PE risk. This ANN was not developed as a tool to be used in clinic for predicting PE risk as 
1/one is not 100% certain about the identity of the identified tagged proteins53 (further experimental validation 
would be needed to assess this) and 2/plasma protein levels determined with the antibody suspension bead array 
are not absolute but relative values depending on the current set of studied antibodies. Rather, we employed this 
ANN strategy to detect a PE-associated molecular signature that could either reflect nonlinear relationships 
between investigated proteins or serve as an intermediate surrogate biomarker of an unmeasured variable that 
could generate new knowledge about the (genetics) mechanisms involved in PE. Our intention is not to claim 
that the proposed strategy is the panacea but that it can be considered as an appealing strategy compared to 
others methods. The latter are legion and their exhaustive comparison is out of the scope of the current work. 
However, preliminary results (see supplementary data) indicate that our ANN strategy performs better on our 
proteomics data than some popular methodologies such as standard logistic regression and Random Forest.

Table 4.   Association of PLXNA4 plasma levels with Respiratory Index (RI) in COVID-19 patients from the 
COMMUNITY study. Shown values shown correspond to PLXNA4 median [1st–3rd quartile] of relative MFI 
levels. Tests for association were performed on log transformed values adjusted for age, sex and body mass 
index using linear and linear mixed effect models for baseline and multiple time points analyses, respectively. 
Individuals with RI ≥ 3 tend to exhibit lower log-transformed PLXNA4 levels than individuals with RI ≤ 2, both 
in the baseline (β = −0.107 ± 0.082, p = 0.195) and multiple time point (β = −0.073 ± 0.033, p = 0.025) analyses .

RI = 0 RI = 1 RI = 2 RI = 3 RI = 4

Baseline data analysis

164.1
[146.7–187.5]
N = 42

164.9
[152.4–175.3]
N = 45

160.8
[152.8–191.8]
N = 17

154.1
[149.8–154.4]
N = 3

147.3
[145.5–159.9]
N = 3

Mutiple time point analysis

165.4
[147.8–187.7]
N = 112

165.3
[151.4–183.3]
N = 118

161.6
[151.2–171.6]
N = 43

154.4
[151.4–187.5]
N = 12

150.4
[140.2–158.4]
N = 53

https://www.ncbi.nlm.nih.gov/snp/rs121918154
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By conducting a GWAS on the derived PE linear predictor and capitalizing on two case—control samples 
totaling 467 patients with PE and 1414 patients with DVT, we observed that VTE patients that were homozygotes 
carriers of the PLXNA4 rs1424597-A allele were at higher risk of PE.

PLXNA4 codes for Plexin A4, which is part of a receptor complex involved in signal transduction of sema-
phorin 3 signals linked to cytoskeletal rearrangement, inhibiting integrin adhesion54,55. It has a role in axon 
guidance in nervous system development, and genetic variants in PLXN4 have been linked to risk of Alzheimer 
disease56,57. Based on RNA seq data from HPA, FANTOM and GTEx datasets, PLXNA4 is expressed at medium/
high levels in central nervous system, adipose, breast and female reproductive tract tissues, and low levels in 
a broad range of other tissues (https://​www.​prote​inatl​as.​org/​ENSG0​00002​21866-​PLXNA4/​tissue), indicating 
roles outside the nervous system. Despite found in most tissues, based on more recently available data from an 
integrated analysis of single cell RNA seq data available in public repositories (https://​www.​prote​inatl​as.​org/​
human​prote​ome/​cellt​ype), the cell types in which PLXNA4 is expressed in is tissue dependent. For example, in 
liver it is expressed in endothelial cells together with a low expression in ITO cells but no expression in other cell 
types found, while in lung, it is found to be expressed in fibroblasts, T cells and granulocytes, but not identified in 
endothelial cells. In RNA seq data from sorted blood cell populations, PLXNA4 show expression predominantly 
in plasmacytoid dendritic cells, together with NK cells and low level of expression in some T cell populations. 
Together, this indicates an organ and cell type dependent regulation of PLXNA4 expression, which could sug-
gest different role in different tissues. Research based on animal studies suggest a role in immunity and immune 
function, where it has been shown to be a negative regulator of T cell activation58. One of the PLXNA4’s ligand, 
SEMA3, has also been described with a role in endothelial cell function in an autocrine loop, promoting processes 
involved in vascular remodeling59, and also in negatively regulating platelet aggregation60. While PLXNA4 thus 
has been described with a role in processes/pathways of relevance for thrombosis, little is known about PLXNA4 
in pulmonary embolism.

Symptoms of COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), include fever, fatigue, dry cough and dyspnea. While most individuals experience mild to moderate 
disease, a proportion progress of infected individuals progress to severe or critical disease with pneumonia, acute 
respiratory distress syndrome45, endotheliopathy leading to microvascular thrombotic complications61 contrib-
uting to the high incidence of pulmonary embolism observed in COVID-19 patients62. By plasma proteomics 
analysis of 339 samples from 112 hospitalized patients in the COMMUNITY STUDY, we found that plasma 
levels of PLXNA4 were associated with level of respiratory support needed in critically ill COVID-19 patients.

Nevertheless, we did not identify strong elements supporting a functional role of the intronic rs1424597 
polymorphisms or of any other polymorphisms in strong linkage disequilibrium with it. The rs1424597 has 
recently been observed to associate in trans with whole blood DNA methylation levels at the ATRIP locus. 
However, based on scRNAseq data, the cell type expression profile of ATRIP in different organs and tissues 
does not match that of PLXNA4 to any notable extent, making difficult any straightforward interpretation of 
the trans association. Besides, in the FinnGen study (http://​r3.​finng​en.​fi/), it has been reported to margin-
ally (p = 4.5 × 10–3) associate with pleural conditions that are inflammatory disorders of the lung. Consistent 
with this observation, we observed a positive correlation between the rs1424597-associated PE predictor and 
fibrinogen, a well-known inflammatory marker. Additional PLXNA4 polymorphisms have also been reported 
to demonstrate strong statistical evidence for association with various lung function markers63,64. Altogether, 
these observations strongly support for a role of PLXNA4 in lung function and its precise role in the etiology 
of pulmonary embolism deserve further investigation. Which polymorphisms could be truly responsible for 
the observed association with PE risk also merits further works as the rs1424597 is likely tagging for functional 
variant(s)/haplotypes yet to be characterized.

In addition to searching for common polymorphisms that could associate with our ANN based predictor and 
with PE risk, we also looked for rare variants that could explain the discrepancy between predicted and observed 
VTE outcome in our testing set. Two out of four patients with discordant predictions in the testing set have been 
sequenced for their whole genome. Both were female patients that experienced PE under OC. In one of them, 
we were able to identify a rare VTE causing mutation in PROC. It is not our intention to conclude to any general 
rule about the relevance of searching of rare variants responsible for any discordancy between ANN predictions 
and observed outcomes. Especially as we observed that the three PE patients wrongly predicted to be DVT were 
women who developed PE under OC. These observations could suggest that our plasma proteomics ANN derived 
predictions may not be valid in such subgroups of VTE patients and highlight the challenge to identify general 
prediction models for complex diseases. Several additional limitations must be addressed.

First, the under sampling strategy we deployed to select patients that will be used in the ANN approach have 
led to a selection of DVT patients that may no longer be representatives of the whole population of DVT patients 
as we have discarded DVT patients that are very close, with respect to their biological and proteomic data, to PE 
patients. As a consequence, the PLXNA4 locus we identified is likely a susceptibility locus for PE only in a sub-
group of VT patients with specific characteristics that need to be identified. Second, no plasma antibody targeting 
PLXNA4 was available when the screening phase of this work was initiated preventing us from validating further 
its association with PE. Third, no proteomic data was available in the EOVT study to formally replicate the asso-
ciation of our ANN and LIME predictors with PE risk. Fourth, our GWAS analysis on the ANN derived predictor 
was performed only in 574 samples which has likely hampered our power to identify genome-wide significant 
SNPs. We may have then missed additional polymorphisms that could be truly associated with the predictor and 
could have then helped us to better disentangle its underlying molecular biology. Finally, the moderate sample 
size of the EOVT study has also likely hampered our power for statistically replicating the association of the lead 
PLXNA4 polymorphism with PE. In addition, no information was available in the EOVT study to distinguish 
isolated PE From DVT + PE which prevented us from further testing whether the association of PLXNA4 with 
PE risk was mainly restricted to isolated PE as suggested from the MARTHA results.

https://www.proteinatlas.org/ENSG00000221866-PLXNA4/tissue
https://www.proteinatlas.org/humanproteome/celltype
https://www.proteinatlas.org/humanproteome/celltype
http://r3.finngen.fi/
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In conclusion, by implementing an original artificial neural network methodology integrating plasma pro-
teomics and genetic data, we identified PLXNA4 as a new candidate susceptibility gene for PE in VTE patients 
whose precise role in PE etiology deserves further investigations.

Data availability
Proteomics data used in this work are available at https://​zenodo.​org/​record/​42807​76#.​YCEVV​eoo-​vc.
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