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Background. Mastocytosis is a condition characterized by the expansion and accumulation of mast cells (MCs) in various organs.
The symptoms are related to the increased release of MC-derived mediators that exert local and distant effects. MCs are a source
and target of phospholipase enzymes (PLs), which catalyze the cleavage of membrane phospholipids releasing lipid mediators
(e.g., diacylglycerols (DAGs) and the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG)). To date, there are no data on
the role of these lipid mediators in mastocytosis. Here, we analyzed plasma levels of PLA,, PLC, DAG, ECs, and EC-related
N-acylethanolamines in patients with mastocytosis. Methods. In 23 patients with mastocytosis and 23 healthy individuals, we
measured plasma PLA, and PLC activities, DAG, 2-AG, anandamide (AEA), palmitoylethanolamide (PEA), and
oleoylethanolamide (OEA). Results. Plasma PLA, and PLC activities were increased in mastocytosis patients compared to
controls. Concentrations of DAG (18:1 20:4 and 18:0 20:4), two second messengers produced by PLC, were higher in
mastocytosis compared to controls, whereas the concentrations of their metabolite, 2-AG, were not altered. AEA was
decreased in mastocytosis patients compared to controls; by contrast, AEA congener, PEA, was increased. PLA, and PLC
activities were increased only in patients with mediator-related symptoms. Moreover, PLC activity was positively correlated
with disease severity and tryptase concentrations. By contrast, AEA was negatively correlated with tryptase concentrations.
Conclusions. PLs and some lipid mediators are altered in patients with mastocytosis. Our results may pave the way for
investigating the functions of these mediators in the pathophysiology of mastocytosis and provide new potential biomarkers
and therapeutic targets.

1. Introduction the skin and other organs [1]. The pathogenesis of masto-
cytosis is related to an activating mutation of the KIT
Mastocytosis is a disease characterized by the abnormal pro- receptor localized on MCs, which leads to uncontrolled

liferation and/or accumulation of clonal mast cells (MCs) in ~~ MC proliferation [2].
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Patients with mastocytosis can be classified into two main
groups characterized by different clinical courses and
prognosis: cutaneous mastocytosis (CM) and systemic
mastocytosis (SM) [3]. In CM, MC accumulation is limited
to the skin, whereas in SM, at least one extracutaneous tissue
is involved. The variants of mastocytosis are shown in
Supplementary Table 1 [4]. In the majority of patients with
mastocytosis, symptoms are due to the activation and
degranulation of MCs and are the consequences of their
local or systemic effects [5]. Mediator-related symptoms
and clinical signs are found in all variants of mastocytosis
and may involve different organ systems [6].

MCs produce a plethora of preformed (histamine,
tryptase, etc.) and de novo synthesized (lipids, cytokines,
etc.) mediators, which exert different biological effects
[7, 8]. Activated MCs express and release phospholipase
enzymes (PLs) which catalyze the cleavage of membrane
phospholipids [9, 10]. There are four classes of phospholi-
pases termed A (PLA), B (PLB), C (PLC), and D (PLD)
[11-13], distinguished by substrate specificity, subcellular
location, and functional importance of their phospholipid
metabolites. Enzymatic processing of phospholipids by PLs
converts them into lipid mediators or second messengers
(such as diacylglycerols (DAGs), endocannabinoids (ECs),
and arachidonic acid (AA)), which activate effector enzymes
(such as protein kinase C (PKC)) and regulate multiple
cellular processes of several cells including MCs [14-16].

Secreted PLA, (sPLA,s), expressed by MCs, are released
into the extracellular fluid upon cellular activation and
modulate cell degranulation [9, 17-19]. This feature of
sPLA s explains their presence in biological fluids of patients
with inflammatory diseases including asthma, autoimmune
diseases, allergic diseases, and cancer [20-25]. sPLA,s can
exert their function through cleavage of membrane phospho-
lipids or via receptors [26-29]. Murakami et al. reported that
the blocking of the heparin-binding domain of sPLA, sup-
presses PLA, group ITA-induced histamine release in murine
mast cells [30]. The sPLA,s are essential for the release of AA
from phospholipids and, thereby, for the production of
eicosanoids that are produced in large quantities in patients
with mastocytosis [31-34].

PLC together with PLD are essential signals for MC
activation and degranulation [10, 35-37]. Hydrolysis of
phosphatidylinositol 4,5-bisphospate by PLC, and of phos-
phatidylcholine by PLD followed by the action of phos-
phatidic acid hydrolase, is the major source of DAGs in
stimulated MCs [14, 38, 39]. DAGs are physiological acti-
vators of PKC, and in the case of sn-2-arachidonoyl-DAG
species, they are also precursors of the endocannabinoid
2-arachidonoylglycerol (2-AG) through the action of DAG
lipases (DAGLs). Apart from acting on cannabinoid recep-
tors, 2-AG can also be an alternative precursor of AA and
eicosanoids [14, 40].

The ECs 2-AG and anandamide (AEA), together with
non-EC AEA congeners, i.e., N-acylethanolamines like
oleoylethanolamide (OEA) and palmitoylethanolamide
(PEA), are biosynthesized “on demand” from membrane
phospholipids and modulate the functional activities of a
variety of cells including MCs [41-43]. However, unlike
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2-AG, N-acylethanolamines are produced from the action
serine hydrolases different from PLs [44]. Yet, PEA possess
the ability to reduce both acute and chronic inflammations
by downmodulating activated MCs [16, 43, 45-48]. MCs
express cannabinoid receptors (CB) [49] that regulate MC
activation [43]. Indeed, CB2 activation by 2-AG and AEA
downregulates MC degranulation [50, 51].

Owing to the ability of PLs, DAGs, ECs, and
N-acylethanolamines to modulate MC biology (either by
directly activating MCs or by catalyzing the production/de-
gradation of other molecules), we have analyzed the plasma
concentration or activity of these lipid mediators in patients
with mastocytosis.

2. Methods

2.1. Study Population. We studied 23 adult patients with mas-
tocytosis (10 males and 13 females; age range: 29-76 years;
median age 49 years) followed up at the University of Naples
Federico II and at the University of Salerno. Table 1 summa-
rizes the patients’ characteristics. None of the patients was on
treatment for mastocytosis at the time of blood sampling.
Twenty-three healthy individuals (10 males and 13 females;
age range: 29-70 years; median age 43 years) were studied
as the control group. Inclusion criteria were the absence of
any known chronic or acute pathological condition at the
time of enrollment, age > 18 years, ingestion of any anti-
inflammatory and immunomodulating drugs at the time of
the blood sampling, and expression of written informed con-
sent. Exclusion criteria were the presence of any condition
that, in the opinion of the investigator, could interfere with
the completion of the study procedures and pregnancy.

Mediator-related symptoms were classified according
to severity and frequency as follows: 6 patients had grade
0 (no symptoms), 7 had grade 1 (mild/infrequent: prophy-
laxis and/or as-needed therapy), 5 had grade 2 (moderate:
kept under control with antimediator-type drugs daily), and
5 had grade 3 (severe and frequent: not sufficiently controlled
with therapy). None of the patients had grade 4 characterized
by a severe adverse event which requires immediate therapy
and hospitalization [1].

The diagnosis and classification of mastocytosis were
based according to the recommendation of the World Health
Organization (WHO) on the histological examination of a
skin biopsy for CM and of a bone marrow biopsy for SM
[52]. Patients were divided according to cutaneous and/or
systemic involvement and assessing the severity and fre-
quency of symptoms. The first group (indolent) included
maculopapular cutaneous mastocytosis (MPCM) (n=2),
mastocytosis in the skin (MIS) (n = 4), bone marrow masto-
cytosis (BMM) (n =2), and indolent SM (ISM) (n =7). The
second group (advanced) included patients with smouldering
SM (SSM) (N =4), aggressive SM (ASM) (N = 3), and SM
associated with hematologic disease (SM-AHD) (N =1).
The most common mutation of KIT receptors found in
patients with indolent and aggressive SM is KIT D816V
[53]. The assessment of KIT D816V mutation was performed
in all patients with ASM (3 patients), SSM (5 patients),
and SM-AHD (1 patient). Among patients with indolent
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TaBLE 1: Characteristics of 23 adult patients with mastocytosis.

Patient no.  Sex Age CIZ;Z;E:)S;’ T(Zgi)s ¢ Sgggfg:
1 F 38 MIS 17.2 0
2 F 49 BMM 17.8 0
3 M 49 BMM 326 0
4 M 62 ISM 64.5 0
5 M 66 SSM 551 0
6 F 33 SM-AHD 7.9 0
7 F 29 MPCM 115 1
8 F 49  MPCM 5 1
9 F 26 MIS 15.8 1
10 F 45 MIS 476 1
11 M 50 MIS 127 1
12 M 54 SSM 216 1
13 M 57 ISM 58.4 1
14 F 42 ISM 184 2
15 F 49 ISM 56.5 2
16 M 71 ISM 17.6 2
17 M 50 SSM 454 2
18 F 57 SSM 112 2
19 M 35 ASM 145 2
20 F 35 ISM 324 3
21 F 55 ISM 129 3
2 F 45 ASM 362 3
23 M 76 ASM 390 3

ASM: aggressive systemic mastocytosis; BMM: bone marrow mastocytosis;
ISM: indolent systemic mastocytosis; MIS: mastocytosis in the skin;
MPCM: maculopapular cutaneous mastocytosis; SM-AHD: systemic
mastocytosis associated with hematologic disease; SSM: smouldering
systemic mastocytosis.

mastocytosis, the assessment of KIT mutation was per-
formed in those with high levels of tryptase (>100ng/mL).
Patient no. 14 and patient no. 21 show the presence of
activating KIT mutation. We invited patients with provi-
sional diagnosis of mastocytosis in the skin (4 patients)
to undergo a bone marrow biopsy, but they refused. Lipid
mediators, such as PLA,, are often lipoprotein-bound or
associated with the circulation; therefore, lipid profile
(cholesterol, low-density lipoprotein, high-density lipopro-
tein, and triglycerides) was assessed in all patients and
controls. Three patients had a low level of cholesterol (84,
89, and 73 mg/dL, respectively); the remaining patients and
controls had normal lipid profile.

2.2. Plasma Collection. The Ethical Committee Campania
ASL Napoli 3 Sud (protocol number 68863) approved that
plasma obtained during routine diagnostics could be used
for research investigating the physiopathology of mastocyto-
sis, and written informed consent was obtained from patients
according to the principles expressed in the Declaration of
Helsinki. The controls had been referred for routine medical
check-up and volunteered for the study by giving informed
consent. The samples were collected by means of a clean

venipuncture and minimal stasis using sodium citrate 3.2%.
In case of recent anaphylactic reactions, the measurement
of all metabolites was performed at least two weeks after
the acute event.

2.3. Tryptase. Plasma tryptase concentrations were measured
by a fluoroenzyme immune assay (FEIA) using Uni-CAP100
(Phadia Diagnostics AB, Uppsala, Sweden). This technique
allowed the measurement of both a-tryptase and f-tryptase.
Normal values are 12.5 ug/L.

2.4. Phospholipase Activity Assay. A modified liposomal-
based fluorescent assay was used to measure PLA, activity
in plasma (Life Technologies EnzChek® phospholipase A,
assay). Results are expressed as units/L of PLA, activity.

PLC activity was determined using the EnzChek® Direct
Phospholipase C Assay kit (Life Technologies). Results are
expressed as units/L of PLC activity.

PLD activity was assessed using a Sigma-Aldrich kit
(catalogue number MAKI137). This assay evaluates the
hydrolysis of phosphatidylcholine to choline by PLD. Results
are expressed as units/L of PLD activity.

2.5. Measurement of Endocannabinoids (AEA, 2-AG),
N-Acylethanolamines (PEA, OEA), and DAGs. Plasma was
sonicated and extracted with chloroform/methanol/Tris-
HCI 50 mmol/L pH 7.5 (2:1:1, vol/vol) containing internal
standards ([H,]8 AEA 5pmol; [H,]5 2-AG, [H,]5 PEA, and
[H,]4 OEA 50 pmol each) for EC quantification as well as
1,2-heptadecanoin (Larodan AB, Malmo, Sweden) for DAG
measurement. The lipid-containing organic phase was
dried down, weighed, and prepurified by open-bed chro-
matography on silica gel with 99:1, 90:10, and 50:50
(v/v) chloroform/methanol. The 90:10 fraction was used
for EC and N-acylethanolamine quantification by LC-APCI-
MS (LCMS-2020, Shimadzu) as previously reported [54].
DAG levels were measured by LC-MS-MS using an LC20AB
coupled to a hybrid detector IT-TOF (Shimadzu Corporation,
Kyoto, Japan) equipped with an ESI interface [55].

2.6. Statistical Analysis. Data were analyzed with the Graph-
Pad Prism 5 software package. Data were tested for normality
using the D’Agostino-Pearson normality test. If normality
was not rejected at the 0.05 significance level, we used
parametric tests. Otherwise, for not-normally distributed
data, we used nonparametric tests. Statistical analysis was
performed by an unpaired two-tailed -test or two-tailed
Mann-Whitney test as indicated in figure legends. Correla-
tions between two variables were assessed by Spearman’s cor-
relation analysis and reported as coefficient of correlation (r).
A p value < 0.05 was considered statistically significant.
Plasma levels of PLA,, PLC, DAGs, and ECs are shown as
the median (horizontal black line), the 25™ and 75" percen-
tiles (boxes), and the 5™ and 95" percentiles (whiskers) of 23
controls and 23 patients.

3. Results

3.1. PLA, and PLC, but Not PLD, Plasma Activities Are
Increased in Patients with Mastocytosis. We measured plasma



PLA,, PLC, and PLD activities in patients with mastocytosis
(N =23) and age- and gender-matched healthy controls
(N =23) (Figure 1). Both PLA, (Figure 1(a)) and PLC
(Figure 1(b)) activities were increased in patients with masto-
cytosis compared to controls. There was a positive linear
correlation between PLA, and PLC activities (Figure 1(c)).
By contrast, no difference in activity of PLD was found
between patients and controls (Figure 1(d)).

There was no correlation between the age and the activity
of PLA, and PLC in both patients and controls (data not
shown). PLA, and PLC activities were higher in male masto-
cytosis patients (Figures 1(e) and 1(f)) whereas there was no
gender difference in controls (Figures 1(g) and 1(h)).

PLA,, in particular group VII, are often lipoprotein-
associated [22]. Only three of our patients had altered plasma
cholesterol, but no correlation between lipid profile and PLA,
plasma activity was found in these patients (data not shown).

3.2. Increased DAG Concentrations in Patients with
Mastocytosis. To evaluate whether the enhancement of PLC
activity was accompanied by an increased production of
DAGs, we measured DAG 18:1 20:4 and DAG 18:0 20:4 con-
centrations in the plasma of mastocytosis patients. Figure 2
shows that both DAG 18:1 20:4 (a) and DAG 18:0 20:4 (b)
concentrations in the plasma of mastocytosis patients
were higher than in healthy controls. DAG 18:1 20:4 and
DAG 18:0 20:4 concentrations were positively correlated
with each other (Supplementary Figure 1). Like PLC, DAG
concentrations did not correlate with the age of our study
populations (data not shown) but were higher in male
patients (Figures 2(e) and 2(f)). In mastocytosis patients,
the concentrations of DAGs did not correlate with PLC
activities (Supplementary Figures 2A-2B), suggesting that
alternative sources of DAGs, or reduced DAG catabolism
(see below), may occur in these patients or that phospholipid
precursor availability, rather than PLC activity, is the
limiting step for DAG biosynthesis.

3.3. Endocannabinoids in Patients with Mastocytosis. Unlike
the concentrations of its precursors (DAGs) (see above), 2-
AG concentrations in patients with mastocytosis were similar
to controls (Figure 3(a)), although they correlated positively
with DAG concentrations (Figures 3(b) and 3(c)). Interest-
ingly, AEA concentrations were lower in patients with
mastocytosis compared to controls (Figure 3(d)). By con-
trast, PEA concentrations were increased in mastocytosis
(Figure 3(e)). OEA concentrations did not differ between
the two groups (Figure 3(f)).

No correlation was found between age and EC and
N-acylethanolamine concentrations in either patients or
healthy controls (data not shown). Males exhibited higher
levels of 2-AG in both controls and patients compared
to females (Figures 3(g) and 3(h)), whereas no gender
differences were found in AEA and PEA concentrations
(Supplementary Figures 3A-3F).

3.4. Relationships among PLA,, PLC, DAGs, and ECs and
Disease Severity. To understand whether altered concentra-
tions of PLs and their metabolites reflected different degrees
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of disease severity, we used a multiple experimental analysis.
First, we analyzed the correlation among lipid metabolites
and tryptase because a significant proportion of patients
with advanced forms of mastocytosis (ASM and SM-
AHD) exhibit markedly elevated serum tryptase levels
(often >200mg/L) compared to those with ISM [44, 56].
PLC (Figure 4(a)), but not PLA, (Figure 4(b)) and DAGs
(Figures 4(c) and 4(d)), positively correlated with tryptase
concentrations in mastocytosis patients. The concentrations
of AEA, which are lower in patients (Figure 3(d)), negatively
correlated with tryptase concentrations (Figure 4(e)). By
contrast, the concentrations of PEA (Figure 4(f)) did not
correlate with tryptase.

Next, patients with mastocytosis were grouped according
to the severity of mediator-related symptoms, and concentra-
tions of PL, DAGs, AEA, and PEA levels were compared
among groups. PLA, and PLC activities were not increased
in asymptomatic patients (grading 0) as compared to con-
trols (Figures 5(a) and 5(b)). Patients with mediator-related
symptoms (grading 1 to 3) had elevated PLA, and PLC activ-
ities compared to both asymptomatic patients and healthy
controls (Figures 5(a) and 5(b)). By contrast, DAG concen-
trations were increased in all groups of mastocytosis patients
compared to controls (Figures 5(c) and 5(d)). AEA were
generally lower (Figure 5(e)), and PEA were increased in all
mastocytosis patients compared to controls, respectively
(Figure 5(f)).

Finally, we grouped patients according to their clinical
variants in two groups (see Methods): indolent (MPCM/
MIS/ISM/BMM) and advanced (SSM/SM-AHD/ASM) mas-
tocytosis. Figure 6 shows that PLA, activities (Figure 6(a)),
DAGs (Figures 6(b) and 6(c)), AEA (Figure 6(d)), and PEA
(Figure 6(e)) concentrations did not differ between patients
with indolent and advanced variants but were altered in both
indolent and advanced variants when compared to controls.
PLC activity, like tryptase, was higher in patients with
advanced mastocytosis compared to indolent variants
(Figure 6(f)), but unlike tryptase, PLC activities were also
increased in indolent mastocytosis compared to controls

(Figure 6(g)).

4. Discussion

In this study, we describe for the first time that plasma PL
activities and concentrations of their metabolites (e.g., DAGs
and 2-AQ) are significantly altered in patients with mastocy-
tosis. Patients with mastocytosis have (1) increased plasma
activities of PLA, and PLC, (2) elevated DAGs and PEA
concentrations, and (3) decreased levels of AEA. It is well
known that PLs control MC degranulation [9, 35] and
eicosanoid production, two conditions associated with mas-
tocytosis [31-34]. Antagonists and/or inhibitors of synthesis
of eicosanoids are currently used to treat mediator-related
symptoms in patients with mastocytosis [57, 58]. These
observations are in line with the results of our study showing
that some of these molecules, in particular PLs, are signifi-
cantly increased in patients with more severe symptoms
and disease phenotype.
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FIGURE 1: Activity of PLA,, PLC, and PLD in plasma of patients with mastocytosis and healthy controls. Data are shown as the median
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23 mastocytosis patients for PLA, (a), PLC (b), and PLD (d) assessment. Correlation between PLA, and PLC (c) was assessed by
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200
. P <0.0001
kst
E —_—
« *5 150 —
=
iy
% =100
]
Q
£
3 50+
E- _ 1
 —
O T T
Healthy Mastocytosis
(a)
50
kS|
g 40 A —I_
=
=k
~ R 30 4
2
S
S w20 A I
< g
A=
£
A 10
p—— L
0 T T
Female Male
Healthy
(©
200 - p<0.05
3
-
« % 150 +
(=
3
- &
%100 o
Q
ZE
3 504
=
N 1
0 T T
Female Male
Mastocytosis

(e)

Journal of Immunology Research

2000 P < 0.0005

1500

1000 —

DAG 18:0 20:4
(pmol/mg of lipid extract)

500

—

0 — [

I I
Healthy Mastocytosis
(®)

600 —

400

200

DAG 18:0 20:4
(pmol/mg of lipid extract)

-+

JR
0 T T

Male

Female
Healthy

(d)

2000 p<0.05

1500 —

1000 —

DAG 18:0 20:4
(pmol/mg of lipid extract)

500

0 T T
Female Male

Mastocytosis

®

FIGURE 2: DAG 18:1 20:4 and 18:0 20:4 concentrations in plasma of patients with mastocytosis and healthy controls. DAG 18:1 20:4 (a) and
DAG 18:0 20:4 (b) concentrations in healthy controls and mastocytosis patients. DAG 18:1 20:4 and DAG 18:0 20:4 concentrations in healthy

females and males (¢, d) and in mastocytosis females and males (e, ).

Mastocytosis is caused by an activating mutation of KIT
that leads to uncontrolled proliferation and accumulation
of MCs with heterogeneous clinical manifestations ranging
from cutaneous and advanced forms with poor prognosis
[3, 4]. Our results suggest that PLA, and PLC could be
involved in the development of mediator-related symptoms
in patients with mastocytosis. In fact, PLA, and PLC activi-
ties are increased in symptomatic but not in asymptomatic
patients when compared to healthy controls. These data are
consistent with the known effects of PLA, and PLC on
MCs. Indeed, some evidence demonstrates the role of PLA,
in MC activation through cPLA, involvement. Kikawada
and coworkers reported that in MCs lacking PLA, group V,
the time course of phosphorylation of ERK 1/2 and cPLA,

was markedly decreased, leading to attenuation of eicosanoid
formation in response to stimulation through TLR2 but not
through c-kit or FceRI [59]. Phospholipase C- (PLC-) f33 is
crucial for FceRI-mediated MC activation [35]. MCs are a
source and target of sPLA,, in particular, of group IIA
(PLA2G2A) and groups V (PLA2G5) and III (PLA2G3)
[9, 18]. Overexpression of PLA2G2A in rat MCs augments
degranulation [9, 17] and triggers histamine [30] and
PGD, release [60], whereas overexpression of PLA2G3
leads to spontaneous skin inflammation [9, 61, 62].
Secretory phospholipases are increased in biological
fluids of patients with several disease such as inflamma-
tory, cardiovascular, and autoimmune diseases and cancer
[23, 63-67]. In this study, we have not assessed the specific
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PLA, group(s) secreted in mastocytosis; however, it is
reasonable to hypothesize that PLA2G2A, which is the
major secreted form of PLA, in human serum and plasma
[23, 63-67], is responsible for most of the detected PLA,
activity in mastocytosis. A time-resolved fluoroimmunoassay
(TR-FIA) on plasma and confocal microscopy analysis of
tissue biopsies could identify the existence of types of PLA,
involved in mastocytosis.

Tryptase is the most widely used circulating marker of
mastocytosis [68, 69] and is also an easy accessible predictor

for disease progression in patients with indolent mastocytosis
[56, 68]. Our results show that most patients with advanced
forms of mastocytosis have markedly increased plasma PLC
activities compared to those with indolent forms. In addition,
PLC activities were positively correlated with tryptase con-
centrations. It will be interesting to evaluate whether the
plasma levels of this enzyme at time of diagnosis could pre-
dict the clinical severity of mastocytosis.

Several PLC products such as DAG 18:1 20:4 and DAG
18:0 20:4 are increased in patients with mastocytosis, but
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their concentrations are similar in indolent and advanced
variants. Interestingly, DAG concentrations are positively
correlated with those of their metabolite 2-AG, even though
2-AG concentrations are not altered. Other sources of DAGs
and/or alternative biosynthetic precursors for 2-AG, rather
than shortage of DAGL activity, might explain this finding.
It is conceivable that the increased DAG concentrations in
mastocytosis reflect altered PKC activation, essential for
release of preformed mediators in MC granules [36], rather
than the production of 2-AG, which by activating CB, canna-
binoid receptors would instead counteract this effect [40].

In addition to previously discovered molecules aimed at
controlling cellular (MC) activation, N-acylethanolamines
(for example, AEA and its congener PEA) are involved in
endogenous, cannabinoid receptor-dependent and indepen-
dent, protective mechanisms that are activated as a result of
different types of tissue damage or stimulation of inflamma-
tory responses and nociceptive fibers [70]. We mentioned
above the large body of evidence indicating that PEA has
anti-inflammatory actions and inhibits MC degranulation
[40]. Thus, the increase of PEA plasma levels in mastocytosis
could represent an attempt to control the activation of MCs.
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By contrast, the decrease of AEA concentrations and its neg-
ative correlation with tryptase levels may contribute to the
underlying inflammation associated with this disorder.

Human tryptase is considered highly specific of MCs,
which may contain high amounts, up to 35pg per cell
[71-73]. Although basophils may produce small quantities
of tryptase, the vast majority of tryptase in the blood is
derived by MCs [74, 75]. Detection of tryptase provides
information about MC distribution, numbers, proliferation,
and activation status [76] and is, therefore, a major marker
of mast cell disorders, including mastocytosis [44, 56, 77, 78].

Unlike tryptase, PLs and the metabolites measured in this
study are produced not only from MCs but also from other
leukocytes such as neutrophils, eosinophils, and macro-
phages [9, 18, 41, 79-81]. The biologic activity of PLs is not
confined to MCs but includes other immune and nonim-
mune cells [41, 82-84]. Our data show that both PLA, and
PLC are increased in plasma of patients with mastocytosis
and that there is a correlation between PLC activity and
serum tryptase but not between PLA, and tryptase. These
results indicate that these enzymes are secreted by cells that
are activated in mastocytosis, but they do not allow to dis-
criminate whether they are released from MCs or by other
cells that could be indirectly activated in these patients. On
the other hand, the cellular sources of PLs, DAGs, and PEA
in the plasma of patients with mastocytosis are unknown,
and further studies are needed to understand the origin of
these enzymes in these patients.

It has been shown that the KIT activation generates PLC
signal, DAG formation, and PKC activation [85-87]. This
study shows an increase of PLs in patients with more symp-
toms and with advanced form of mastocytosis. A question that
remains to be answered is whether activating mutations of KIT
lead to an abnormal PL activation that could contribute to the
development of symptoms and to increase severity of masto-
cytosis. Future studies will compare the levels of PLs and their
metabolites in patients with and without KIT mutation.

In conclusion, we demonstrate that plasma levels of PLs,
DAGs, and some N-acylethanolamines are altered in patients
with mastocytosis and that PLC activity is further increased
in patients with symptomatic and aggressive forms of disease.
These results suggest a relevant but different and, in some
cases, opposing role of these mediators in mastocytosis.
Further studies are needed to evaluate the diagnostic and
prognostic value of PLs, DAGs, and N-acylethanolamines
in different forms of mastocytosis and to understand whether
pharmacological blockade of these molecules (e.g., PKC) may
improve the symptoms and severity of mastocytosis.
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