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Abstract: Bone and periodontium are tissues that have a unique capacity to repair from harm.
However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult
as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders
such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical
operations, and successful techniques for tissue regeneration are still required. Even with significant
limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best
solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive
chemicals as hormones as alternative options. This is a promising method for removing the need for
autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no
single approach that can reproduce all the physiologic activities of autogenous bone transplants. The
localized bioengineering technique uses biomaterials to administer different hormones to capitalize
on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current
study adds to the comprehension of the principle of hormone redirection and its local administration
in both bone and periodontal tissue engineering.

Keywords: tissue engineering; periodontium; bone; hormones; drug repositioning

1. Introduction

Hormones are unique regulatory chemicals that govern fertility, growth, maturation,
and microenvironmental maintenance, in addition to power generation, usage, and stor-
age [1]. Hormones play a fundamental function in the maintenance of the integrity of both
periodontium and bone. Many hormones are involved in the maturation, growth, and
maintenance of both periodontium and bone, including IGF-1 and thyroid hormone, as
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well as sexual hormones, calcium-regulating hormones, parathyroid hormone, and vitamin
D. Overall, the hormonal effect on periodontal health, bone development, and maximal
bone mass is considerable [2–6]. The periodontium is a functionally organized system
of several tissues that encircle and reinforce the tooth, in addition to other periodontal
tissues, such as periodontal ligament (PDL) and alveolar bone (AB) [7]. Periodontitis is a
chronic irritating illness that affects the periodontium. Periodontal disease is described as
the deterioration of periodontal tissue, which includes gums, alveolar bone, periodontal
ligament, and cementum.

Periodontal diseases have a wide range of pathophysiology.
The interaction between etiological factors and the host’s immune responses results

in the creation of many enzymes, chemokines, and mediators, which induces periodontal
disease [8].

Bone tissue is made up of many cell types and an extracellular matrix that is mostly
made up of collagen proteins. Bone’s primary roles are structural support, mechanical
motions, blood cell formation, and tissue preservation; it also serves as a depot of calcium
and phosphate ions in the body [9,10]. To maintain skeletal structure, bone resorption
and production are closely controlled and managed by bone equilibrium. Osteoblasts,
osteoclasts, and osteocytes are all kinds of cells found in bone tissue. Mesenchymal
stem cells (MSCs) are responsible for the formation of osteoblasts and osteocytes, while
hematopoietic stem cells give rise to osteoclasts.

Osteocytes make about 90% of the bone cell population and serve as the major cells
for bone production, mineralization, and cell signaling regulation.

During remodeling, osteoclasts decompose naturally damaged bone and osteoblasts
produce new bone, which is then replenished [11]. The rhythm between bone creation
driven by osteoblasts and bone degeneration facilitated by osteoclasts is essential for bone
homeostasis. Abnormal bone loss occurs when this equilibrium is disrupted, promoting
osteoclastic activity, as observed in pathological conditions including periodontitis [12].

Numerous substances have already been discovered as being significant in bone
morphology and performance maintenance. Current treatment modalities of both of
periodontal and bone diseases, such as, but not confined to, guided tissue regeneration,
guided bone regeneration, and surgery, have limited results and can only repair damaged
tissues, rather than their regeneration [13].

An innovative alternative is provided by tissue engineering, which is capable of the
regeneration of tissues and restoration of their complete function. Tissue engineering is an
interdisciplinary approach along with chemistry, pharmaceutics, genetics, and biomedical
engineering [14]. Tissue engineering has received attention as a viable strategy in the disci-
pline of tissue regeneration in recent decades, providing a new option for the rehabilitation
of teeth, periodontium, bone [15], as well as blood vessels [16,17]. The scaffold, cells, and
signaling molecules are three key components of biomedical engineering, as shown in
Figure 1 [18]. Several studies have described distinct scaffolds for various types of tissue
regeneration; for instance, oral bone and periodontal tissues [19,20]. Stem cells are cate-
gorized into totipotent, pluripotent, or multipotent based on their ability to develop into
various cell types. [21–24]. Totipotent cells may give rise to the entire organism, whereas
pluripotent cells (iPSC, such as embryonic stem (ES) cells), can actually lead to all cell types
in an organism excluding extra-embryonic organs such as the placenta.

Mature stem cells that can develop into a particular cell lineage are known as multi-
potent stem cells (MSC) [25]. Biologically active substances, such as growth factors [26],
medicines [26], and hormones [27], can be delivered locally [28], and were reported to
induce oral bone and periodontal regeneration. In this review, we aim to highlight the
current strategies and the importance of hormonal repositioning as a viable, economic and
safe alternative for growth factors in bone and periodontal tissue engineering, including
their opportunities and limitations.
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Figure 1. Schematic illustrations of tissue engineering triad. Cell, biomaterials, scaffolds, and
regulatory signals.

2. Properties of Scaffolds for Periodontal and Bone Regeneration

Scaffolds serve as the foundation of tissue-engineered constructions, since they provide
dynamical guidance for cells through architectural and biological cues. Scaffolds offer
exogenous and/or endogenous cells with geometric support and guidance [29,30]. In
general, 3D frameworks with porous structure and interconnections are preferred for
anatomical and physiological restoration because the architecture provides an appropriate
milieu for cellular contact and scaffold-to-tissue adaptation at the implanted location [31,32].
Given the massive amount of studies, scientific breakthroughs, and technologies, there is
frequently a schism between studies and practical implementation, which is commonly
known as the “Valley of Death” as a result of the huge amount of enterprises that “die”
in between the evolution of innovation and relevant production and marketing [33]. One
essential aspect in bridging this gap is the ability to adjust scaffold features in order to meet
specific biochemical, clinical, industrial, commercial, and regulatory standards.

An optimal BTE framework should enable or increase cell survival, adhesion, multipli-
cation, and migration, osteogenic differentiation, angiogenesis, and, if needed, mechanical
resistance [34]. Furthermore, it should be simple to handle without requiring significant
pre-operative procedures and enable minimally invasive insertion. It should be sterilizable
using standard procedures and massive-scale replication using economic technologies.
Eventually, all of its features must fulfil the standards of the relevant agency or responsible
body. The qualities of a scaffold that may be regulated, enhanced, or adjusted to make it
acceptable for BTE purposes are classified into three categories: biological needs, structural
aspects, and biomaterial composition, as represented in Figure 2.
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Figure 2. Features of ideal framework for tissue engineering implementations.

2.1. Biological Requirements

Biocompatibility is the fundamental factor in the implementation of biomaterial frame-
works in in situ tissue engineering. The scaffold is biocompatible, produces no immunolog-
ical rejection, produces harmless breakdown products, and allows cells to attach, develop,
proliferate, and grow on the scaffold surface [33,35,36].

2.2. Structural Features

Scaffolds must have some porous structure that is required for cell development and
motility, nutritional demands, angiogenesis, and spatial arrangement [37]. They ought to
have a tailored form to suit the regenerated tissue [38]. They should be thick enough for a
prolonged duration to withstand biomechanical pressures until regenerated tissue can bear
forces [39]. Another important aspect is morphology, which may be changed by the modifi-
cation/integration of synthetic ECM and/or biomolecules (hormones, anti-inflammation
medications, etc.) to be given in the microenvironment following administration [34].

2.3. Biomaterial Composition

They can be injectable or stiff, according to their structure and specific purpose [40,41].
Polymers may be both natural and man-made. Naturally occurring polymers, such as
chitosan and collagen, have high biocompatibility, osteo conductivity, and insignificant im-
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mune responses [16,42,43]. However, drawbacks include a difficult-to-control deterioration
rate and limited mechanical properties.

Synthetic polymers, such as Polylactic acid (PLA), are synthetic materials with a
governed biodegradation, the ability to develop or optimize tissue characteristics and
construct sophisticated structures, cell adhesion-improved performance, and the capability
to release molecules. Furthermore, these polymers can be made at a low cost, in vast
homogeneous numbers, and have a long lifespan. One significant disadvantage is that it
has a weaker capacity to interact with cells than natural polymers, which have superior
bioactive capabilities due to their inherent nature [16].

Hydrogels, polymeric networks that can absorb moisture up to hundreds of times their
dry weight, are important forms of polymers used in BTE [44]. This characteristic enables
cells to attach, multiply, and differentiate. Natural (chitosan and gelatins) and synthetic
(poly(vinyl alcohol)-based) hydrogels can imitate ECM architecture and distribute bioactive
compounds [45–47]. Gelatin, which is made from the hydrolysis of collagen, is mostly used
in the creation of micro particles. Because of their non-toxicity, they are one of the most
commonly utilized drug delivery carriers, with storage longevity, cost-effectiveness, and
ease of use preparation [48].

Bioactive ceramics (Hydroxyapatite (HA) and bioactive glass might be natural or
manufactured. They are chemically comparable to bone and have great compressive
strength but low flexibility, offering high rigidity but also fragility [49,50]. Composites are
made up of two or more materials with distinct qualities, each with its own set of benefits
and drawbacks [50–52].

Co-polymeric hydrogels are formed by the combination between different monomers [53],
such as PLGA, which is a mixture of poly lactide and polyglycolide and is reported
as an ideal contender for BTE implementations, thanks to its biodegradation, and sim-
plicity of production. Polymer composites are mixes of polymeric networks, such as a
PLGA-polyphosphazenes blend, that aids in resolving issues caused by PLGA’s harmful
breakdown of substances, which can cause tissue inflammation and implant dysfunction,
whereas polyphosphazenes do not result in biohazards. As a result, the mix yields degra-
dation products that are almost neutral. Because bone is a composite substance made up
of many components of crystalline, HA particles, and organic collagen, polymer-ceramic
composites are really biomimetic [52]. They are successful in bone regeneration. In organic
inclusions, such as bio ceramic and metal particles, they appear to improve framework
mechanical characteristics [54,55]. Table 1 discusses biomaterials’ benefits, drawbacks, and
therapeutic applications [56].

Table 1. Biomaterials’ benefits, drawbacks, and therapeutic applications.

Biomaterial Advantages Disadvantages Clinical Application

Ceramics

• Hard surface
• Mechanical stability
• Biocompatibility
• Osseo-conductivity

• Brittleness
• Slow degradation
• Difficult processing

• Bone cements
• Alveolar bone preservation
• Guided bone

regeneration procedures

Natural
Polymers

• Biocompatibility
• Bioactivity

• Poor mechanical properties
• Fast biodegradation rate

• Bone tissue engineering
• Periodontal drug delivery
• Periodontal dressing

Synthetic
polymers

• Capability to modulate structure,
porosity, and mechanical properties
during fabrication.

• Low biocompatibility
• Low mechanical strength

• Sutures
• Bone cements
• Periodontal drug delivery

Composites • Biocompatibility
• Enhanced mechanical features • Processing difficulties • Hard and soft

tissue regeneration

Hydrogels

• Biocompatibility
• Controlled drug delivery
• Possibility to modulate their

features during fabrication process

• Hard and soft
tissue regeneration
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3. Growth Factors

To offer an osteogenic milieu, GFs are an essential element of periodontal and bone
regenerative techniques that regulate essential cellular functions in bone, such as migra-
tion, multiplication, development, and matrix synthesis [57] and periodontium [57,58].
Although GFs have been shown to have osteoinductive properties, their clinical value
is restricted because of intrinsic features such as limited longevity, short time of action,
and rapid processing. As a result, therapeutic doses frequently need large amounts of
GFs to establish therapeutic effectiveness. As a result of supraphysiological GF dosages,
undesirable effects such as abnormal tissue formation, immunologic response, and cancer
risk might arise [59]. All these drawbacks impose searching for viable alternatives for
growth factors in periodontal and bone tissue engineering.

4. Drug Repurposing

Repurposing a medicine involves using pharmaceuticals that have been licensed for a
new indication by regulatory authorities.

An innovative medicine must follow strict criteria to be approved for sale. Because
of the varied physicochemical features of chemical entities and the challenge of scaling
up manufacturing, identifying a medicine and further developing it requires significant
expenditure [60]. This restriction also allows pharmaceutical corporations or academic
institutions to use already-approved drugs swiftly and effectively for a novel indication to
which patients with that condition do not now have access.

When experimental compounds fail to show effectiveness for a predefined applica-
tion, repurposing is usually a smart place to start. They can be reintroduced for novel
purpose(s), eventually becoming viable medicines, which is especially important in situa-
tions of uncommon illnesses, which offer major hurdles in diagnosis, therapy, and limited
resources [61–63].

Some autoimmune illnesses, infectious diseases, and uncommon malignancies, for
example, are not hereditary, making treatment more challenging because they are unpre-
dictable [64]. In comparison with the time-consuming traditional research and development
methods, drug repurposing offers a more economical and faster way to bring effective
medicines to patients. Furthermore, this technique aids in overcoming the rising costs of
drug research, cutting expenditures for consumers and, eventually, lowering the real cost
of treatment [65]. Safety and effectiveness information for a novel exploratory molecule
are not yet known, leading to higher dropout throughout the drug development process
and the most failures in terms of safety or effectiveness [66,67]. In contrary, all toxicology,
experimental, and clinical trials effectiveness data for a recycled drug are easily accessible,
allowing the investigator to make an educated judgement at each stage of pharmaceutical
research [66,67]. The availability of existing information about safety, effectiveness, and the
proper delivery route considerably saves research costs and time, resulting in less work
being necessary to effectively bring a repurposed medicine to market [45].

The importance and difficulties of medication repurposing are shown in Table 2.
Many pharmaceutical firms are presently using medication repositioning to reconstruct

authorized, in addition to previously failed compounds into innovative medicines for a
variety of illness conditions, thanks to the enormous promise of a reduced development
phase. The current review provides an overview of some of the repositioned hormones and
highlight their potential for bone and periodontal tissue engineering.

Table 2. The importance and difficulties of medication repurposing.

No. Significance Ref. Challenges Ref.

1 Ensures safety [68] Inadequate understanding of regulatory standards [69]

2 It results in lowering tome and costs [70] Insufficient revenue motives [69]
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Table 2. Cont.

No. Significance Ref. Challenges Ref.

3 Opportunity for branding: increased
worldwide income; drives market expansion [65,68] Clinical trial issues include the possibility of failed

proof-of-concept studies for novel indications [70,71]

4 Out licensing likelihood: new purposes while
keeping rights to the old indication [68] Patent constraints obstruct the marketing of

repurposed molecules [70]

5

Satisfy unfulfilled medical needs through
discovering new applications for existing
medications to cure uncommon disorders and
targeting tumors with non-cancer therapies

[69,72] Economic needs assessment [72,73]

5. Hormones

Hormones are essentially characterized as a stimulants, inhibitors, or chemical mes-
sengers that, after being released into the systemic circulation, cause a specific alteration in
the cellular activity of target sites. Figure 3 shows main glands in the human body.

Figure 3. Main glands in the human body.

Hormones are classified according to their composition, such as amino acids, tyrosine
(catechol amines and thyroid hormones), tryptophan (serotonin), etc., as shown in Table 3.
Hormone action could be endocrine (site of their actions distant from the site of release),
and may also be paracrine (functioning on nearby cells by diffusion), autocrine (acting on
the secreting cells by diffusion), or intracrine (working in secreting cells without release).
Agents that work in this manner are frequently referred to as factors instead of hormones,
as shown in Figure 4. Indeed, these substances (for example, hormones) may be generated
in the majority of cells throughout the body instead of defined endocrine glands [74].
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Figure 4. Mechanisms of hormonal actions.

Table 3. Classification of hormones.

Peptides Glycoproteins Amines Eicosanoids Steroid Hormones

Source: made up of
amino acid residues

Source: conjugated
protein bound
to carbohydrate

Source: modification of
amino acids

Source: small fatty
acid derivatives with
a variety of
arachidonic acid

Source: derived
from cholesterol

• Short peptides
e.g., Thyrotropin-
releasing hormone
(TRH).

• Intermediate
peptides e.g.,
Insulin, and PTH

e.g., Thyrotropin (TSH) e.g., thyroid hormones
and catecholamines e.g., Prostaglandins

Examples:
• Sex hormones,

e.g., testosterone
and estrogen

• Adrenal cortex
hormones e.g.,
aldosterone,
and cortisol

Short peptides
e.g.,
• Melanocyte-stimulating hormone (MSH)
• Thyrotropin-releasing hormone (TRH)

Intermediate peptides
e.g.,
• Insulin
• Parathyroid hormone (PTH)

Glycoproteins • Follicle-stimulating hormone (FSH)
• Thyrotropin (TSH)

Peptide-based hormones

Amino acid derivatives

Iodothyronines • Thyroxin (T4)
• Triiodothyronine (T3)

Amines i.e.,
• Melatonin
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Table 3. Cont.

Peptides Glycoproteins Amines Eicosanoids Steroid Hormones

Steroidal hormones

• Estrogens
• Testosterone (T)
• Cortisol
• Vitamin D

6. Examples of Repositioned Hormones for Bone and Periodontal Tissue Engineering

As previously stated, GFs-based therapies are costly and may cause side effects and
immunological reactions in certain individuals. To counteract these disadvantages, various
hormones have been designed and tested as viable replacements to growth factors. Hor-
mones are inexpensive to produce, can be readily designed and manufactured, and have
little immunogenicity due to their flexibility [75]. Figure 5 shows examples of the action of
some hormones on osteoblasts and osteoclasts.

Figure 5. Examples of action of some hormones on osteoblasts.

The current research focuses on various hormones locally applied for bone and peri-
odontal tissue engineering, as shown in Table 4.

Table 4. Current research is focuses on various hormones locally applied for bone and periodontal
tissue engineering.

Hormone Current Indication Used Carrier Repurposed Application Reference

Thyroxin Hypothyroidism and
thyroid cancer Chitosan/collagen hydrogel Angiogenesis and

neovascularization [76]

Oxytocin
Postpartum hemorrhage, labor
induction, and incomplete or
inevitable abortion

Micro porous β-TCP Osseo induction and
enhanced osteogenesis [77]
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Table 4. Cont.

Hormone Current Indication Used Carrier Repurposed Application Reference

Dexamethasone

Arthritis, blood/hormone issues,
allergic responses, skin illnesses,
vision difficulties, respiratory
problems, gastrointestinal
problems, tumors, and
hypersensitivity reactions are all
examples of medical conditions

Chitosan-alginate-
gelatin matrix

Increased proliferation
and osteogenic-enhanced
bone marrow

[78]

Androgens Estradiol production, sex drive
and muscular mass

PLGA-coated
pericardial membranes

Enhanced implant
Osseo-integration and repair
of bone defects and fractures

[79]

Parathyroid
Hormone

Calcium/Phosphorus
homeostasis

Injectable Gelatin
Methacrylate (GelMA)
hydrogel

Increased ALP activity
and mineralization [80]

Insulin Treatment of Diabetes

Poly lactic-co-glycolic-acid
(PLGA) nano spheres were
incorporated into nano
hydroxyapatite/collagen
(nHAC) scaffolds

Increased bone regeneration
in rabbit mandible critical
size defects

[81]

Raloxifene Treatment and prevention of
postmenopausal osteoporosis

Chitosan composite
encapsulated with
PLGA microspheres

Increased cell proliferation,
greater mineralization
capability, and ALP activity

[82]

Erythropoietin Treatment of cancer
induced anemia Cs/β-GP/Gelatin hydrogel

Anti-inflammation and
improved periodontal
regeneration

[83]

Estrogen
• Primary ovarian

insufficiency
• Female hypogonadism

β-cyclodextrin/silk
fibroin (SF)

Improved cell proliferation
and osteoblast
differentiation markers

[84]

Vitamin D Osteomalacia, Osteoporosis
Polycaprolactone/gelatin
scaffold incorporating HA
nanoparticles.

Increased hADSC osteogenic
development and maturation [85]

Melatonin Insomnia Chitosan micro particles
Accelerating osteogenic
differentiation of
preosteoblast cells in vitro

[86]

Calcitonin Hypercalcemia, Paget’s disease
of bone Local injection

Reduced alveolar bone
resorption by controlling the
action of osteoclasts

[87]

6.1. Thyroxin

Thyroxin is an essential hormone that performs a range of physiological tasks in the
human body. One of them is its capacity to stimulate angiogenesis through a variety of
methods [88]. By stimulating integrin v3, thyroxin promotes the production of mediators
of angiogenesis [89]. Thyroid hormones also influenced cellular metabolic reactions and
cell growth [90]. Chitosan/collagen-based thyroxin-loaded hydrogels have a neovascular-
ization capability, which suggests that they might be useful materials for prospective tissue
engineering applications [88]. Chitosan composite enclosed with varying doses of thyroxin
were demonstrated to be biocompatible, and these hydrogels with pro-angiogenic activities
have a high promising applications in periodontal regeneration [76]. In comparison to
chitosan, thyroxin-containing membranes demonstrated significant revascularization and
rapid wound healing in rats [91].
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6.2. Oxytocin

Oxytocin (OT) is a fundamental anabolic hormone found in animals during breast-
feeding that also has local impacts on bone turnover in addition to the systemic endocrine
route [92]. This hormone improves bone production by favorable control of osteoblast
development, osteoclast activities, and overexpression of bone morphogenic protein 2
(BMP2) [93,94]. Despite oxytocin being researched in a variety of medicinal applications,
its influence on in situ osteogenesis has not been explored, most likely because of its lim-
ited half-life and instability versus hydrolysis [95]. The impact of this hormone is only
temporary in the absence of an adequate carrier and encapsulation technique, and the
physicochemical stabilization cannot be preserved over the bone healing period. Thanks to
their unique features, poly (D, Llactide coglycolide) PLGA copolymers have been used as
local drug carrier for different types of biomolecules [96]. Sustained release micro spherical
oxytocin hormone in a polymeric hydrogel scaffold mixed with biphasic calcium phos-
phates combination promotes bone repair in the rat calvarias [97]. Furthermore, OT-loaded
b-TCP increases osteogenesis in rats with calvarias bone defects via an osteoinductive
mechanism of action [77]. In vitro, OT increased PDLSC proliferation, aggregation, and
osteogenic differentiation. Additionally, OT’s influence on osteogenic development was
driven by the ERK and AKT pathways. As a result, OT has the potential to be used in
periodontal regeneration [98].

6.3. Dexamethasone

Dexamethasone (DEX) has been demonstrated to enhance osteoblast development
in vitro and bone tissue creation in vivo by enhancing osteoblast-related gene transcrip-
tion [99,100]. DEX has long been employed as an osteoinductive factor due to its excellent
integrity as well as osteogenesis [101,102]. High DEX concentrations, on the other hand,
would inhibit osteoblast growth and create hazardous adverse effects [101,103], As a result,
its additional functional applicability in bone tissue engineering is limited. Thus, prolonged
release of DEX is essential to maximize effectiveness while minimizing negative effects on
bone regeneration. Porous bio composite matrices comprise the chitosan-alginate-gelatin
scaffold in addition to the accumulation of calcium phosphate and DEX-loaded nano silica.
Doping was manufactured and demonstrated increased growth and osteogenesis in rats,
suggesting that they might be extremely good as potential local insertable frameworks for
possible uses in bone tissue engineering [78]. Dexamethasone (DEX) has been demonstrated
to initiate bone marrow differentiation as well as guide cells toward maturation [104,105].
Injectable hydrogels loaded with dexamethasone have a promising potential as an injectable
drug-depot for bone repair therapy in cases of chronic inflammation [106].

6.4. Androgens

In males, testosterone is the major sexual hormone and anabolic factor. In humans,
testosterone is crucial in the male sexual organs, for example the testes, as well as in the
promotion of secondary sexual traits such as increased muscular and bone mass [107].
PLGA-coated pericardial inserts or membranes combining topical gradual administration
of supplementary quantities of testosterone and alendronate may be a viable approach
for stimulating in situ osteogenesis, leading to enhanced implant osseo-integration and
repair of bone defects and fractures [79]. In mice, testosterone delivered with a scaffold has
similar effects to the Bone Morphologic Protein-2 in enhancing bone regeneration [108].

6.5. Parathyroid Hormone (PTH)

The endogenous parathyroid hormone is a critical mediator of bone remodeling as
well as a crucial regulator of calcium-phosphate equilibrium. This hormone promotes bone
formation by activating numerous mechanisms involved in stem/preosteoblast cell osteo
differentiation. Inhibiting osteoblast apoptosis can also increase the quantity of osteoblasts.
PTH causes osteoblasts to release a number of growth factors, and it causes osteocytes
to produce less sclerostin and DKK, two anti-osteoclastic and Wnt signaling inhibitors.
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Furthermore, PTH may indirectly trigger osteoclasts to accomplish bone resorption. PTH
stimulates osteoblast RANKL synthesis and increases RANKL binding to osteoclast surface
receptors, resulting in osteoclast activation [109]. The amount and duration of PTH expo-
sure influence bone production (anabolism) and bone resorption (catabolism). Constant
and high hormone dosages promote bone breakdown, whereas minimal and inconsistent
levels promote osteogenesis and increased mineral density [110].

PTH has been demonstrated to significantly speed up fracture healing [111,112]. As
a result, local PTH delivery to bone abnormalities might be a practical solution and al-
ternative to auto graft [113]. Huang et al. have developed a controlled delivery method
using a parathyroid hormone derivative (PTHrP-2) and a meso-porous bioactive glass
scaffold. In the PTH-loaded scaffold, BMSC responses to this scaffold revealed increased
osteogenesis and osteoinduction. Furthermore, the PTHrP-2-loaded scaffold had lower
osteoclastogenesis than the unmodified peptide-loaded scaffold [114]. Ning et al. created
an injectable Gelatin hydrogel for the delayed release of abaloparatide in a trial. This
scaffold resulted in a greater bone formation and mineral density [115].

6.6. Insulin

Insulin is a hormone which affects energy production and balance, as well as being
an important part in bone formation metabolism. Skeletal anomalies linked to Diabetes
type I can be cured with insulin treatment [116,117]. Clinically, it is frequently noted that
insulin shortage increases the possibility of fracture. The use of insulin therapy dramatically
boosted bone formation in patients with type 2 diabetes, which can minimize the risk of
fracture [118,119]. Insulin/IGF-1 has been proven in vivo to induce angiogenesis and give
nourishment for bone growth. [120–122]. Insulin can successfully enhance local skull bone
growth in the mouse skull by raising the quantity of bone forming cells and the surface area
of the osteoid [123], and has the ability to control osteoclastic activity [124]. In recent years,
research has discovered that IGF-1 can also influence the formation and maturation of
osteoblasts, hence increasing bone repair [125]. Given the success of nanoparticles in drug
loading, a variety of insulin carriers have been innovated, which could be breakthroughs in
bioengineering technology [126]. In another study, insulin-loaded poly lactic-co-glycolic-
acid (PLGA) Nano spheres were incorporated into nano hydroxyapatite/collagen (nHAC)
scaffolds, where insulin was successfully distributed from the nano spheres and aided
bone regeneration in significant size impairments in the rabbit mandible [81]. Furthermore,
insulin-encapsulated PLGA microspheres greatly enhanced the insert’s stability in rabbits
at Week 4, indicating that it is possible to lower the implant’s early failure rate without
affecting serum biochemical markers [127]. New bioactive injectable composites loaded
with insulin have been developed and might be used to treat bone defects, notably as an
economic promotion/substitute to BMP-2 approaches [128]. Local insulin infiltration at
the implant–bone contact has the potential to have significant therapeutic ramifications by
spontaneously increasing the effectiveness of oral implantation in diabetic rats [129].

6.7. Estrogen

Estrogen is a natural steroidal hormone that regulates bone mass and maintains bone
tissue balance. The estrogen’s activity is directly connected to the regulation of osteoblast
proliferation and differentiation. In addition, estrogen reduces apoptosis in osteocytes and
osteoblasts while inducing apoptosis in osteoclasts. By decreasing the synthesis osteoclastic
mediators, estrogen reduces the creation of active osteoclasts. Moreover, it increases the
creation of osteoprotegerin by osteoblasts and osteocytes (OPG) [130,131]. 17-estradiol (E2)
is the most powerful hormone in the body system, and it adheres to estrogen receptors (ERs)
in both bone cells and MSCs. Estradiol can encourage MSCs to differentiate into osteoblasts
and improve osteogenesis by boosting the expression of BMP-2, TGF-1, and IGF-1 [132].
Estrogen activity causes bone remodeling to be balanced and bone metabolism to be
modulated. As a result, estrogen deprivation reduces osseous density, raises the possibility
of osteoporotic fractures, and causes bone loss [133]. Systemic estrogen treatment can help
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reduce osteoporotic fractures in postmenopausal women. Accumulation in organs, on the
other hand, generates negative consequences, for example, cardiovascular disease and
breast cancer [134]. A controlled release to administer the lowest therapeutic dosage while
avoiding systemic adverse effects may be a desired method for extending estrogen clinical
uses. Various tissue-engineering technologies have been investigated in order to create local
delivery for an osteoporotic bone fracture. Nano materials have recently been identified as
an excellent choice for the transport of biomolecules. 17-estradiol (E2) was put into a nano
fibrous matrix, which demonstrated improved cell growth and osteoblast development
mediators [84]. Chen et al. recently created a core-shell nano composite for bone-targeted
hormone administration, loading E2 in an EDTA- adjusted nano composite. Sustained
E2 release resulted in increased ALP, OPN, OCN, and calcium deposition in MC3T3-E1
preosteoblasts. Furthermore, intraperitoneal injection of an E2-loaded nano composite
decreased bone deterioration in ovariectomized rats [135]. Morales et al. employed a
mixture of 17-estradiol and BMP2 to cure calvarias bone deficiency in rats in another
investigation. The injectable hydrogel scaffold is made up of BMP2-loaded PLGA micro
particles and 17-estradiol-loaded PLA microspheres. Therapy with BMP-2 coupled with
17-estradiol has a synergistic impact and restored the estrogen shortage in osteoporotic mice,
resulting in more bone production enhancement than the BMP2-alone treated group [136].

6.8. Selective Estrogen Receptor Modulators (SERMs)

Selective estrogen receptor modulators (SERMs) are non-steroidal compounds that
have estrogenic actions on the bone, vascular system, and lipid profile, while also having
anti-estrogenic effects on the breast and uterine [137,138]. Through an estrogenic action
on the skeletal structure, they promote endochondral ossification, bone production, and
callus remodeling [139]. By reducing osteoblast and osteoclast bone turnover, selective
estrogen receptor modulators decrease bone degradation and lessen the fracture probabil-
ity [140,141]. Several SERMs are now being used in clinical settings, including Raloxifene,
Tamoxifene, bazedoxifene, Lasofoxifene, Ospemifene, Arzoxifene, Droloxifene, Idoxifene,
and Fulvestrant [142,143]. Tamoxifen is a therapy for breast cancer that reduces osteoclast-
mediated bone resorption [144,145]. Both raloxifene and bazedoxifene are SERMs that have
been demonstrated to reduce bone resorption activity in postmenopausal osteoporosis
patients [141,143,146,147] and have been utilized to keep bone fragility fractures at bay.
SERM binding to estrogen receptors (ERs) modifies the receptor’s structure or capacity to
form a combination with co-regulators, altering their expression levels [148–152].

Raloxifene

Raloxifene (RLX) is a second-generation selective estrogen receptor modulator (SERM)
that is now approved as an osteoporosis medication. Raloxifene has an estrogen-like action
on bone, and has been found to improve bone mass density (BMD) and preserve bone
health [153]. In comparison with untreated tibia perforations, poly-lactic-co-glycolic acid
(PLGA) loaded with raloxifene hydrochloride accelerated bone growth in non-critical sized
lesions in the rats’ tibia [154]. In a recent study [155], in vitro testing was performed using a
scaffold loaded with PLGA microspheres containing RLX, with RLX dosages ranging from
0.1 to 10 g. The conclusions demonstrated that the frequency of RAL liberation from the
microparticles was slow and regulated, resulting in superior cell survival at all concentra-
tions, considerably increased cell proliferation, greater mineralization capability, and ALP
activity. In osteoporotic rabbits, a TiO2 nanotube arrays (TNT)/raloxifene (RLX)/layer-
by-layer/alendronate (RLX/LBL-Aln) implant may effectively accelerate the creation of
new bone surrounding the implant and improve bone binding [82]. A new nano-fibrillated
cellulose/cyclodextrin-derived 3D framework loaded with raloxifene hydrochloride im-
proved cell aggregation and alkaline phosphatas expression, all of which are required for
bone mineralization. The findings revealed a unique, risk-free, and advantageous strategy
to bone engineering [156]. A thin meso-porous TiO2 carrier matrix combined with both
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Alendronate (ALN) and Raloxifene (RLX) can be utilized to speed up implant retention in
trabecular bone in rats [157].

6.9. 1, 25(OH) 2 Vitamin D3

Vitamin D is a fat-soluble hormone that governs bone development and strength
and helps to maintain calcium-phosphorus proportions. Scientific proof suggests that
vitamin D plays an autocrine function in bone production, mineralization, and degenera-
tion. 1, 25(OH) 2 D3 influences osteoblastic protein production via the (MAPK) ERK1/2
system [158,159]. Many studies have demonstrated that vitamin D has a high capability in
both osteoinduction and odontiinduction. At modest doses of this chemical, the expression
of OCN, OPN, DSPP, DMP-1, and bone mineralization has enhanced [160]. Bordini et al.
created a scaffold loaded with 1 nM 1, 25-dihydroxy vitamin D3. They discovered that
vitamin D3 can boost odontoblastic marker expression [161].

A cellulose/hydroxyapatite/mesoporous silica scaffold was created and supple-
mented with vitamin D3 in a similar work. In vitro research revealed that vitamin D3
might improve cell adhesion and proliferation (MG63). Furthermore, the ALP activity
and calcium accumulation assays validated the synergistic effects of hydroxyapatite and
vitamin D [162]. Sattary et al. recently created a polycaprolactone/gelatin scaffold incorpo-
rating HA nanoparticles. They discovered that including vitamin D into the framework
blends increased osteogenic development and hardening potential in hADSCs. On day 14,
the synergistic impact of vitamin D and HA nanomaterials resulted in an increase in the
osteogenic marker in the PCL/Gel/nHA/Vit D3 scaffold group [85].

6.10. Melatonin

Melatonin’s (ML) involvement in hard tissues has gotten a lot of attention [163,164].
The indoleamine ML (N-acetyl-5-metoxy-tryptamine) is produced and released by the
pineal gland in a circadian rhythm [165]. Melatonin is also produced in possibly all organs
in numbers of orders of magnitude greater than in the pineal gland and bloodstream [166].
ML may be implicated in the formation of hard tissues such as bone and teeth [167]. ML
stimulates alkaline phosphatase activity and tissue mineralization [168]. As previously
indicated, ML has been employed for its anti-inflammatory, antioxidant, and free-radical-
scavenging qualities [169,170] and cytoprotective properties [171,172]. When there is a
large quantity of ML, the generation of inflammatory mediators decreases via modulating
the NFkB activity, which contributes to the signaling route.

While the favorable benefits of ML on periodontal regeneration have been proven in
gingival fibroblasts as well as in experimental animals, more research is needed. [171]. ML
has a circulation half-life of around 23 min [173]. As a result, a few writers have advocated
for the use of vehicles in ML to slowly release it and enhance the duration of action in tissues.
Steady ML release using poly-lactic-co-glycolic acid micro particles has been demonstrated
to convert human mesenchymal stem cells into osteoblasts. Melatonin-loaded chitosan
(ML-CS) micro particles (MPs) can modulate Mel release over time, accelerating osteogenic
differentiation of preosteoblast cells in vitro [86]. Local administration of 2 mg melatonin gel
is a viable treatment method for effective bone and PDL regeneration in diabetic rats [174].
Melatonin has the potential to be a promising implant coating. When powdered melatonin
was applied to implant sites, it caused considerably increased bone growth and bone
mineralization in canines in comparison with control groups [175]. Melatonin improves the
osteogenic properties of bone grafts around dental implants in canines [144]. The findings of
a 3-month clinical investigation demonstrate that melatonin may be therapeutically useful
in improving the Osseo integration of dental implants [176] Novel ML delivery methods,
such as ML microspheres, have demonstrated tremendous potential for application in
regenerative medicine and dentistry, particularly in bone-grafting techniques, to stimulate
new bone growth [177].
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6.11. Erythropoietin

Erythropoietin (EPO), a glycoprotein that is generally known as an important stim-
ulant of erythropoiesis, is released by kidneys in adult animals and in the liver during
intrauterine life [178]. Erythropoietin (EPO) is a glycoprotein hormone with a low molec-
ular weight (30–36 kDa) that stimulates erythropoiesis. RhEPO received FDA approval
in 1989, and it is now used to treat anemia caused by renal insufficiency, chemother-
apy, bone marrow transplant, and AIDS [179–181]. EPO has non hematopoietic cellular
receptors in skin, and the presence of EPO receptors on endothelial cells [150,151] and
macrophages has been documented [182,183] in macrophages [184], fibroblasts, and mast
cells [185,186]. Erythropoietin and its ligands are found in both the central and periph-
eral nervous systems [187,188]. Erythropoietin boosts anti oxidative enzyme synthesis,
antagonizes glutamate cytotoxicity, influences neurotransmitter release, and induces neo
angiogenesis [189]. Unlike previously held beliefs that EPO was exclusively beneficial
in the formation of erythropoiesis, Epo has been shown to have multiple effects, such
as tissue modulation in a variety of cell types [190–193]. There is growing evidence that
EPO plays biological roles in tissues outside than the hematopoietic system, which has
sparked major experimental interest. EPO is a tissue-protective hormone that promotes
wound healing in a variety of damage scenarios such as tissue/organ inflammation [194].
The healing of skin lesions in rats with intentionally induced diabetes is expedited by
the local administration of recombinant human EPO to the wounds, which stimulates
angiogenesis, reepithelialization, and collagen deposition, while inhibiting inflammatory
process and apoptosis [195]. Fibronectin supplements EPO’s positive effects on wound
healing in diabetics (FN). FN promotes the establishment of the preliminary wound matrix
and keeps it from dissolving [196].

Recent research has discovered that EPO also has a function in bone homeostasis. EPO
may promote bone formation by boosting the production of vascular endothelial growth
factor, among the most crucial factors in promoting angiogenesis and vascularization in
bone repair and regeneration [197] and bone morphogenetic protein 2 [198]. Furthermore,
EPO modulates bone growth via mTOR signaling [199]. According to the findings of a study
conducted by Li, C. et al., EPO promotes osteoblastic activity via EphB4 signaling while
increasing the amount of ephrinB2-expressing osteoclasts while reducing their resorptive
actions. The combination of bidirectional signals induced by EPO via ephrinB2/EphB4
signaling resulted in bone growth [200].

Additionally, topical EPO treatment promotes palate wound healing during the early
weeks following free gingival transplant surgeries [201]. A preliminary research published
in 2021 by Aslroosta, H et al. demonstrated that EPO showed promise in the periodontal
therapy [202]. Wang et al. discovered that erythropoietin stimulates osteogenesis and
osteoinduction in a research [203]. Li, D et al. demonstrated that an injectable thermo
responsive hydrogel laden with erythropoietin may successfully increase maxillary sinus
floor repair in a research study led by them. [204]. It was discovered that injectable
thermo sensitive hydrogels containing erythropoietin and aspirin stimulate periodontal
regeneration [83].

6.12. Calcitonin (CTN)

Calcitonin (CTN), a hormone secreted by par follicular cells (C cells) in the thyroid
gland, is crucial in bone maintenance and calcium metabolic control [205]. CTN binds
to osteoclasts only in bone tissues, demonstrating the greatest expression of calcitonin
receptor (CTR), and triggers osteoclast activity to cease [205,206]. CTN, according to
Granholm et al., suppresses osteoclast development in mouse hematopoietic cells through
modulating RANK signaling [207]. CTN has also been used to treat hypercalcemia from
cancer and postmenopausal osteoporosis [208]. In rats with periodontitis, local injection of
CTN reduced alveolar bone resorption through controlling osteoclast activation [87].
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7. Limitations of Local Hormone Delivery Systems in Bone and Periodontal
Tissue Engineering

Despite advances in local drug delivery systems over the last several years, the inclu-
sion of treatments into carriers to optimally stimulate bone and periodontal regeneration
remains difficult and restricts the clinical efficiency of bone and periodontal regeneration
in vivo.

Natural drug carriers are biocompatible and have a minimal immune reaction.
They promote cell adhesion, proliferation, and the creation of new tissue and are

ingested by biochemical breakdown [209]. However, like with any natural substance, there
are drawbacks related to changes in the material’s integrity, resulting in low repeatability
and restricted control over the physical characteristics [209–212]. Synthetic vehicles have a
structured format, consistent material resources, extended shelf life, a low risk of toxicity,
and can be produced in huge quantities with high repeatability.

Their principal drawbacks include low bioactivity, acid residues, and a monotonous
architecture that provides little biological information to cells [213,214]. Despite extensive
study in the sector, there are still significant limits in the use of synthetic materials as local
drug carriers, mostly due to insufficient sustained release of the drugs from the scaffolds.

Although other techniques, such as the implementation of liposomes and nanoparti-
cles, are being investigated, a quick burst release of the loaded compounds is still frequently
described in research.

It implies that the outcomes of lengthier healing durations will be ineffective [215]. As
a result, synthetic biomaterials may be utilized in combination with naturally occurring
materials to accommodate for these drawbacks [216]. The difficulty of hormonal admin-
istration to achieve therapeutic amounts of medications at disease locations due to the
hydrophobic nature of the hormone, burst release, and nonspecific absorption in healthy
tissues is its fundamental drawback [215]. Furthermore, because certain compounds may be
more beneficial in later phases of bone and periodontal regeneration, it would be preferable
if they were delivered in a continuous and regulated manner by the biomaterials.

Furthermore, more biomaterials should be investigated in order to have a better
knowledge of the impact of localized hormone administration on bone and periodontal
regeneration. Figure 6 shows challenges in bone and periodontal tissue engineering.

Figure 6. Challenges in bone and periodontal tissue engineering, reproduced and modified from
Zafar et al. [217].
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8. Conclusions and Future Perspectives

As previously stated, there are new advances in recent years in improving the clinical
result of oral bone and periodontal therapy. The enormous research accomplishments in
tissue engineering technologies, especially in periodontium and oral bone, have empow-
ered the research community to embrace several of the viable options for the innovation of
clinically useful strategies to regenerate not only the oral bone but also the periodontium
and preserve their integrity. Growth factors are very potent oral bone and periodontal
growth mediators; however, they have several drawbacks, such as sophisticated, expensive
processing techniques, short-half times, and poor stability. Drug repositioning regarding
hormones has been considered a viable alternative for growth factors. They are better than
growth factors, because hormones are much cheaper, need simple processing techniques,
are more therapeutically effective, and have lower side effects. Local application of repur-
posed hormones shows tremendous promise for controlling processes involved in oral
bone and periodontal repair. Because of the positive results obtained by these repositioned
hormone delivery scaffolds, they are expected to have good therapeutic applications in the
treatment of fractures, osteoporosis, periodontics, and other conditions.

However, clinical adaptations of this delivery method are currently ongoing. Nonethe-
less, because of the potential to promote oral bone and periodontal tissue regeneration,
these delivery methods may be developed for clinical application in the near future.
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