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ABSTRACT: Mass spectrometry is a ubiquitous technique capable of complex chemical analysis. The fragmentation patterns that
appear in mass spectrometry are an excellent target for artificial intelligence methods to automate and expedite the analysis of data to
identify targets such as functional groups. To develop this approach, we trained models on electron ionization (a reproducible hard
fragmentation technique) mass spectra so that not only the final model accuracies but also the reasoning behind model assignments
could be evaluated. The convolutional neural network (CNN) models were trained on 2D images of the spectra using transfer
learning of Inception V3, and the logistic regression models were trained using array-based data and Scikit Learn implementation in
Python. Our training dataset consisted of 21,166 mass spectra from the United States’ National Institute of Standards and
Technology (NIST) Webbook. The data was used to train models to identify functional groups, both specific (e.g., amines, esters)
and generalized classifications (aromatics, oxygen-containing functional groups, and nitrogen-containing functional groups). We
found that the highest final accuracies on identifying new data were observed using logistic regression rather than transfer learning on
CNN models. It was also determined that the mass range most beneficial for functional group analysis is 0−100 m/z. We also found
success in correctly identifying functional groups of example molecules selected from both the NIST database and experimental data.
Beyond functional group analysis, we also have developed a methodology to identify impactful fragments for the accurate detection
of the models’ targets. The results demonstrate a potential pathway for analyzing and screening substantial amounts of mass spectral
data.

■ INTRODUCTION
Functional group identification is an important strategy for
molecular structure analysis in analytical techniques such as
mass spectrometry.1−4 Mass spectrometry often looks at the
fragmentation of molecules so that the original (parent)
structure may be elucidated.5−7 Such analyses can be
challenging. The presence of functional groups can aid in
predicting where fragments will occur; however, identifying
specific fragments corresponding to the presence of functional
groups proves difficult.8 Machine learning (ML) methods aid
in pattern recognition when supplied with large data sets. This
couples nicely with mass spectrometry’s fragmentation
patterns, making ML a promising tool to identify functional
groups and, thus, fragments of interest.9−12

Generally, mass spectrometry is not as commonly used for
bulk functional group analysis without the use of extra sample

preparation or tandem mass spectrometry techniques (MS/
MS).13,14 For example, in previous works, the analysis of amino
acids has been aided by derivatization via ninhydrin prior to
using high-performance liquid chromatography and tandem
mass spectrometry for analysis.15,16 It is also possible to use
tandem mass spectrometry approaches including triple
quadrupole mass spectrometry to preform precursor ion
scanning to screen for functional groups.17 These approaches
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are invaluable to the mass spectrometry community because
they allow for the in-depth analysis of chemical compounds. In
addition, these approaches have created a higher level of
understanding of complex analyte mixtures inclusive of those
containing high mass molecules, for example, in the field of
proteomics. However, there are circumstances in which prior
derivatization, separation, and tandem methods are not
feasible; usually, time, resources, and/or location make such
analysis impossible, such as with field-based analyses and
planetary probes.
The employment of ML has the potential to overcome many

of the challenges faced in analyzing mass spectra under limiting
conditions. ML approaches have a strong backing in the
literature regarding their ability to classify organic molecules
through their fragmentation patterns. Examples include
CANOPUS,18 which works to predict thousands of classes of
molecules using MS/MS data, or MSNovelist,19 which was
able to identify the structures of molecules that the model had
never seen in the training phase. Similarly, CSI:FingerID20 also
utilizes MS/MS spectra to assist in searching a molecular
structure database. Another application that takes advantage of
the intersection of mass spectrometry and ML is in the
understanding of metabolite chemistry.21,22 There are also
many papers utilizing ML with mass spectrometry to perform
rapid screening methodologies for specific analytes of
interest.23,24 These ML methods have had powerful results
and have been revolutionary in our implementation of mass
spectral methods.
In this study, we aim to achieve meaningful fragment

analysis using ML methods that do not require the use of
tandem mass spectral techniques or controlled sample
preprocessing. We generate a simplified method that can be
applied in situations in which more sophisticated mass
spectrometry techniques are not feasible, opening the door
to many applications that have, to this point, been inaccessible
with the current analytical techniques. We achieve this goal by
only using single mass analyzer data, meaning that further
fragmentation information on parent fragments is unavailable.
By doing minimal preprocessing, particularly in not manually
selecting peaks of interest, we generate models that need to
develop their own understanding of fragmentation patterns,
which we can evaluate. In doing so, we explore how a
generalized method for analyzing mass spectra informs the
interpretation of mass spectra for functional group analysis.
Our methodology enables us to probe the model assignment
mechanism, which further improves how we understand the
functional group assignment and ML techniques.
Herein, we present a comparison of functional group

analysis methods from electron ionization−mass spectrometry
(EI-MS) spectra. We evaluate the success of two ML
approaches, transfer learning on a previously trained convolu-
tional neural network (CNN) and logistic regression (LR).
Transfer learning has previously been successful in identifying
functional groups from infrared (IR) spectral data;25 therefore,
its application to functional group analysis in mass spectra was
evaluated. In contrast to transfer learning, LR provides a
simpler architecture to allow for further analysis into the
impact of the features themselves on the outcome of the
models.
The transfer learning and LR algorithms were used with the

same set of mass spectral data to identify specific functional
groups (e.g., amines and esters) within molecules as well as
place the molecules into generalized classifications based on

these functional groups (aromatics, O-containing functional
groups, and N-containing functional groups). We first explain
the process of organizing the spectra obtained from the
National Institute of Standards and Technology (NIST)
Webbook through web scraping. We then show how the
classifications of molecules are assigned prior to training
followed by adjusting the different training parameters and
how they affect both the final training and testing accuracies of
the models. We then dive deeper into the LR-based models to
explore how adjusting the mass ranges affects the model
accuracies as well as the methods to quantify how the model is
making its predictions.

■ METHODS
Spectral Preprocessing and Machine Learning Pa-

rameter Selection. Prior to training the CNN and LR
models, the data was sorted and labeled. Jupyter notebooks
describing these processes along with the model training will
be available on our GitHub (https://github.com/Ohio-State-
Allen-Lab/Mass_Spec_Functional_Group_ML). Data sorting
and labeling was completed by identifying the functional
groups that each molecule contained; this identification was
done by looking at the InChiKeys. Certain segments of the
InChiKey correlate with specific functional groups, allowing for
the labeling of molecules. This process was tailored for our
purposes from another publication.26 After identifying the
presence or absence of individual functional groups, the
molecules were then sorted into the more generalized
functional group classifications (e.g., alcohol, amine, etc.;
Tables S1 and S2). After defining each of the functional
groups, the number of available spectra for each functional
group identification was determined. Figure 1 shows the
distribution of the functional groups present in the NIST mass
spectra.

All the mass spectra were normalized to their most intense
fragment peak to ensure that all the y axes were scaled the
same way. NIST mass spectra only reports intensities for mass
fragments over a certain intensity. For these data to be able to
be compared to each other, they all needed to have the same
dimensionality. To match up the data, the unreported peaks
were filled with a correlated 0 intensity. This was done based
on the fact that the non-reported peaks were assumed to be in
the noise of the instrument. This is a limitation because the
addition of the zeroes, although necessary for the training of
the models, does artificially inflate the signal-to-noise ratio of
the data. This preprocessing was sufficient to prepare the data
for the LR-based models. The CNN-based models required
further preprocessing.

For the CNN-based models, the data was plotted. These
plots were then used as the input data. All the spectra were
saved with the same output parameters, so the resolution of the
plots is consistent. However, further analysis of the pixel
resolution of the exported plots showed that the plots are fewer
pixels wide than there are mass values. This means that each
pixel is not defining one mass channel as one would expect;
this leads to an artificial reduction in mass resolution, which
likely is the source of the lack of success for this approach. We
do run into an artificial reduction in the resolution of the mass
spectral data. The exported plots are 2D representations of the
data and should not be confused with hyperspectral imaging,
which would generate 3D data.

For both methodologies, it was necessary to scale the
number of spectra that did not contain the model’s functional
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group of interest. The number of spectra that did contain a
given functional group or functional group classification was
always outnumbered by the number of spectra that did not
contain the given functional group or functional group
classification. Because of this, spectra were randomly removed
from the negative case in order to even out the classes
preventing the models from always predicting the not-present
class due to a disparity in the data. This also means that if a
molecule had multiple unique functional groups, that spectra
would be used in some way for each of the represented
functional group models. Figure 2 shows a histogram
demonstrating that the average number of unique functional
groups present in molecules from the NIST database is three.
After preprocessing the data, it was separated into training

and testing data sets (Figure S1). Once the model was trained,
the test data was then used to determine how well the models
performed on previously unseen data. The number of withheld
test spectra was different for the two different parts of the
project. When comparing the CNN- and LR-based approaches,
only 10 spectra from each class were withheld. This was
limited by computational expenses. The workstation that was
utilized to run all the training and analysis was insufficient to
run more than 10 test samples at a time. When focusing on
using only the LR-based models, 50 test spectra were withheld

from each class before training. This allowed for further
analysis of the accuracies of the models. After the testing data
had been removed, the remaining data was parsed into an
80:20 split of training and internal validation.19

Supplemental Experimental Data Collection. Mass
spectra for multiple compounds were collected for further
model analysis on experimental data outside of the NIST
dataset. The data was collected from an Agilent 8890 GC
coupled with a 5977B MSD.
Model Training and Testing. CNN and Inception V3.

The architecture for our CNN in this work was a retraining of
Inception V3,27 a computer vision model. Inception V3 was
trained on and has attained a greater than 78.1% accuracy on
the ImageNet dataset (a large data set of millions of images
with thousands of different words or word phrases labeled to
them, a common test dataset in the computer vision
realm28−30). ImageNet is certainly very different than a dataset
consisting of 2D representations of mass spectra; however, the
process of transfer learning on unrelated datasets has shown
success in the literature.31−33 The Inception architecture has
been used explicitly in the past for spectral processing
applications.34 Image-processing CNNs have been used in
other mass spec studies, for example, in 2019, Tran and
colleagues developed DeepNovo-DIA, which utilized intensity
vectors to train a model to identify peptides.35 This history in
the literature coupled with this approach’s success with image-
based IR data in our prior publication drove our decision to
utilize the retraining of Inception V3.25 These models were
trained using a learning rate of 0.1 and training step ranges
between 200 and 20,000 steps.
Logistic Regression through SciKit Learn. The LR

models were developed using SciKit Learn’s logistic regression
classifier. In our utilization, we use the newton-cg solver. LR
was chosen as our alternative ML approach due to its
simplicity. Using a less computationally complex and
specifically binary-classifying model allows for further analysis
of where the inferences and assignments of the models are
coming from. As we will show later, this simplicity allows us to
adjust the dataset and evaluate how those changes affect the
model outcomes.

LR is typically used as a binary classifier.36,37 This is because
of the mathematics behind the architecture; the training of the
models is working to identify the classification by maximizing

Figure 1. Distributions of available mass spectra from NIST included
in this study. (A) Generalized functional group classifications. (B)
Specific functional groups. Aromatics are listed as a specific functional
group to help correlate the relative distribution between the
generalized models and the functional group-specific ones.

Figure 2. Histogram depicting the number of unique functional
groups (duplicate functional groups within a molecule are not
counted) present in each molecule from the NIST database. The
largest distribution is molecules that contain three unique functional
groups. Because the majority of molecules contain multiple functional
groups, they can be used to represent the positive case for multiple
functional group models.
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the distance between the classes. This approach is very similar
to support vector machines as both models maximize
separation instead of minimizing an error function. This
restriction of being a binary classifier coupled with using the
entire mass spectrum as features are our reasoning for choosing
to generate each model for the purpose of either identifying
one specific functional group or one functional group
classification. As we will explore later, specializing each of
the models allows for the greatest model fit for that functional
group as well as providing an avenue in which we can also
describe how that greatest fit for each functional group was
achieved.

■ RESULTS AND DISCUSSION
Acquiring the Dataset. The mass spectra were web-

scraped from the NIST Webbook using a web-scraping
implementation, the details of which are described in our
previous publication.25 In short, a web-scraping script was
written to individually download the mass spectral files from
each of the NIST Webbook pages that are labeled by Chemical
Abstracts Service (CAS) number. We obtained a total of
21,166 mass spectra. The files that were downloaded were in a
JCAMP-DX file format. These files were then converted from
JCAMP-DX into CSV. The process does remove the
associated metadata; however, this information was not

necessary for our analyses. Once the files had been converted
to CSV, further preprocessing could be completed. More
information regarding the preprocessing steps are reported in
the SI.
Comparing Convolutional Neural Networks and

Logistic Regression Feasibility. Both CNN and LR
architectures were used to train functional group-specific
models and models to look at the functional group
classifications. CNN was initially chosen due to its success in
identifying functional groups using an IR dataset collected
from the NIST database in our previous publication.25 Both
approaches were each trained on a unique dataset, which was a
subset of all the data web-scraped from NIST. Once all the
models were trained, it was possible to look at the final training
accuracies to determine how well the final models fit the data
sets.

There are two metrics that we utilized to describe how well
the models were performing. The first of these is final training
accuracy. This metric describes the final ability to fit a
segmented subset of the testing data after all the training steps
have been completed. For our models, we do a 80:20 split of
training and internal validation data, which is cited as being the
most beneficial split.38 The training accuracy is a description of
how well the data can fit the data that it has been trained with.
The second metric of interest is the final testing accuracy. This

Figure 3. Results of the training and testing for four specific functional groups and the three functional group classifications. (A, B) Final training
accuracy and accuracy of identifying the training portion of the data after the final training step has passed for both the functional group-specific
and functional group-generalized models. For example, these plots would suggest that the CNN-based approach should be better at correctly
identifying the aldehydes and ketones and that the LR-based approach should have an edge on the nitro group and the alkyl aldehydes. This,
however, does not tell the full story. (C, D) Final test accuracies for the functional group-specific and functional group-generalized models. The
testing accuracy of the models is the accuracy of the models when presented with new previously unseen data shows that a high training accuracy
does not correlate necessarily with a high final testing accuracy. The final training and testing scores for each of the functional groups’ models are
presented in the SI (Tables S3 and S4 for specific functional groups and Tables S5 and S6 for the generalized functional groups).
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metric arises from how well the model can classify novel data.
This metric is determined by analyzing previously withheld
data using the models. Before generating the training datasets,
certain spectra are removed from the total dataset and withheld
for testing the final model accuracy. This metric is critical in
understanding how we can expect our models to perform with
data in the future. Figure 2 shows the final training and testing
accuracies for four different functional groups’ specific
functional group models. Here, we compare the training
accuracy (Table S3) and testing accuracy (Table S4) of the
specific functional group models for mass ranges of 0−250 and
0−500 m/z. Model training and testing accuracies for all 19
functional groups explored are shown in the SI.
Based only on the training accuracies, it appears that the

models generated through CNNs should show a greater final
accuracy in a specific case than the LR-based models. The
training accuracy values, however, do not tell the entire story.
This highlights one of the main erroneous assumptions that is
commonly made about ML. A model with an incredibly high
fit of the training data is not necessarily better at describing
novel samples. This metric is better described through the
testing accuracy. This trend holds true for both the functional
group-specific (Figure 3A,C) and functional group-generalized
models (Figure 3B,D).
A question that arose during this analysis was why the

transfer learning worked so well with the IR data and so poorly
with the MS data.25 The reasoning for this discrepancy likely
falls under the differences in the atomic processes that are
described with that technique. For the IR data, because it is
vibrational spectroscopy, we see the signals taking broader
peaks that are influenced by the bonding environment. This
means that phase and having other molecular species in
solution can lead to shifting those vibrational peaks. These
broad and shifting peaks are both benefited by the transfer
learning process. The broad peaks allow them to not be
computationally removed when the mathematical convolutions
occur. In fact, these convolutions make the model less sensitive
to peak shifting on the range of tens of wavenumbers. These
aspects make transfer learning promising for vibrational
techniques. On the other hand, comparing mass peaks that
are only a couple of mass units apart from each other are likely
describing entirely different fragmentation patterns or isotopic
ratios. MS data also has incredibly narrow peaks that can be
missed entirely if they are low in intensity during the
mathematical convolutions. These factors are likely why
transfer learning using Inception V3 was successful with the
IR based data and unsuccessful with the MS data. Upon the
determination that the LR-based models performed better on
correctly identifying new data compared to the CNN models,
we decided to use the LR-based models for the remainder of
this study.
Logistic Regression’s Ability to Manage Specific

Functional Group Classifications. The choice to switch
to logistic regression arose from wanting to utilize binary
classifiers. By simplifying each model to a binary classifier, it is
more feasible to fully explain the model output. Given our
dataset, it is easier to optimize one model per functional group
than one model predicting on all functional groups. For
example, there are thousands of aromatic-containing spectra
and less than 400 amide samples. This would impart artificial
bias that would have to be mathematically manufactured to
avoid. Training one model would likely lead to the functional

groups’ penalization because of less examples and ultimately
not being identified as consistently or frequently.

There is a large variation in the final training and testing
accuracies for each of the different functional group models.
This is to be expected due to the large variation between the
fragment fingerprint for each functional group. A total of 17/
20 of the models had a final testing accuracy of over 70%, and
13/20 of our models had a final test accuracy of over 75%.
Figure 4 shows the final training and test accuracies of all the
models.

The highest preforming models, in terms of final testing
accuracy, were the nitro, methyl, and aromatic (A)-containing
models. This makes sense because with each of these models,
there are fragments that we can point to that would assist the
model in its assignments. The nitro model could utilize the
NO+ and NO2

+ fragments. The methyl model can look for the
CH3

+ ion, and the A-containing model can look for the loss of
a benzene ring at 78 m/z.

Conversely, the poorest-performing models are those of
ketone, amine, and alcohol. These models likely struggle since
the current methods of identifying these functional groups rely
on looking at mass losses and looking for the products of
secondary processes including rearrangements and cleavages of
certain areas of the molecule. These processes include α and β
cleavages, McLafferty rearrangements, and radical losses,
among others.

Similarly, when looking at the generalized functional groups,
the N-containing and A-containing models both performed
better than the O-containing model, albeit the O-containing
model still had a final testing accuracy of approximately 70%.
This likely has to do with the fact that there is clear logic for
identifying odd numbers of both nitrogen and aromatics in
mass spectra. For the odd nitrogen spectra, we can look for
odd-numbered peaks suggesting the presence of nitrogen and
we can look for a mass at 78 m/z to look for benzene, a
common aromatic ring that shows up in organic molecules.
Identifying Mass Peaks that Guide Model Assign-

ments. Feature selection and feature engineering are common

Figure 4. Scatter plot depicting all the final training and testing
accuracies of each of the 20 different models. These final accuracies
are highly variable with respect to the functional group that they are
to be classifying.
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practices in the development of ML models, and there are a
large variety of methods to determine which features generate
the best model outcomes.39−43 Feature selection differs from
feature engineering; feature engineering works to reduce data
dimensionality through convolving or creating statistical
representations of the data through processes like principal
component analysis or linear discriminant analysis, among
others,44 and feature selection works to reduce the raw data
down to the most important features within.43,45,46 Both
processes can be done manually or automatically via a
statistical method.47 Using feature engineering and feature
selection processes provides different benefits to the modeling
process.
To evaluate and explain the logic behind the model’s

assignments, we looked at the coefficients that the model used
in its final iteration. For each feature, in our case each mass,
there is an associated coefficient describing the weight that that
mass is used to determine if the functional group is present for
that class. Positive peaks correlate to an increased likelihood
that that functional group is present, and negative peaks
correlate to the increased likelihood that that functional group
is absent. The larger the intensity in either direction, the higher
the correlation between that mass and the class that it is
referring to. Figure 5 shows the overlapped final coefficients for
both the generalized functional group models (Figure 5A) and
the specific functional group models (Figure 5B).
When looking at all the aggregated coefficients, it looks like

the most impactful mass region to the analysis is below 100 m/
z. This suggests that the model would perform similarly well if
those were the only features given to the training set. This is an
important conclusion that suggests that for this kind of
analysis, having a large mass range of available data is not

necessary as long as the low mass range (less than 100 m/z) is
thoroughly defined.

To further understand how the different models were doing
their assignments, we developed a method to look at the
impact of each peak on the final training and testing accuracies.
To analyze the features, we trained each model 300 times, and
in each iteration of training one mass was removed. These final
training and testing accuracies were compared to the accuracy
of the model when it had access to all 300 mass units. This was
used to identify peaks that were beneficial to the model’s
ability to identify functional groups and those that were
hindering the models in making their assignments. The peaks
that were beneficial led to a decrease in model accuracy when
removed; the larger the discrepancy, the more impactful the
peak. On the other hand, peaks that were causing more false
assignments, when removed, led to an increase in model
accuracy. Looking at the most beneficial peaks for the
generalized functional group classification models leads to
some interesting and promising results. Table 1 has these

values for the generalized functional group classifications. The
beneficial peaks for the specific functional groups as well as the
peaks that decreased the final accuracies (the peaks that
confuse the inference) are presented in the SI (Table S8 for
the beneficial peaks and Table S9 for the hindersome peaks.)

In Table 1, all the most impactful mass peaks for the N-
containing model are odd mass values, whereas the most
impactful peaks for the O- and A-containing models are even
mass values. This suggests that even without explicitly
“teaching” the model that there is an odd nitrogen rule, the
model was able to come to that conclusion on its own. We can
also look at the most impactful peak for the A-containing

Figure 5. Model coefficients for each of the different trained models
as a function of mass fragment. (A) Coefficients for the generalized
functional group models and (B) coefficients for the specific
functional group models. All the coefficient plots for the individual
models are presented in the SI.

Table 1. Mass Values of the Top 5 Most Impactful Positively
Correlated Peaks for Each of the Functional Group-
Generalized Modelsa

masses that reduce model accuracy
when removed

functional group classification mass value (m/z) % effect

A-containing 78 −0.5
42 −0.4
66 −0.3
50 −0.2
68 −0.2

N-containing 29 −2.5
105 −0.7
43 −0.6
38 −0.5
53 −0.4

O-containing 28 −0.4
42 −0.4
30 −0.6
26 −0.8
46 −1.0

aThese were determined by comparing the testing accuracies of the
model when it had access to all 300 mass units to when that mass unit
of interest was removed. The % effect shown in the rightmost column
is negative because when those masses were removed, the model
experienced a reduction in the final testing accuracy. The mass values
for the nitrogen-containing model are all odd mass values, and the
mass values for the oxygen-containing and aromatic-containing
spectra are all even, suggesting the utilization of the odd nitrogen
rule without explicit training on that detail.
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model and see that it is 78 m/z, which can be attributed to the
mass fragment of benzene. However, we can also see that
removing 78 m/z only leads to a 0.5% reduction in the final
training accuracy of the model. This means that although there
may be peaks that are important for assigning functional
groups, the model does not use a single peak or even a small
set of peaks to make an assessment. The next step in our
analysis shifted to the impacts of the number of available
features on the final accuracies.
Effects of Mass Range on Model Accuracy. To evaluate

whether more data leads to higher accuracies for these models,
we adjusted the dataset. We trained the models with 100, 300,
and 500 mass units. We decided to reduce this to 100 mass
units because the majority of the previously identified
impactful mass fragments occurred at less than 100 m/z. We
also increased to 500 mass units so that we can encompass
more of the high-mass range fragments. Both are compared to
our 300 mass units’ models for a basis.
For both decreasing the mass range from 300 to 100 m/z

and increasing the mass range from 300 to 500 m/z, we see an
inconsistent response in the final testing accuracy with respect
to the different functional groups (Figure 6). In Figure 4, we
observed no consistent trend in the mass range effect on the
final test accuracy. These results are consistent with what we
observed in our analysis of the model coefficients, suggesting
that at mass ranges greater than 100 m/z, the features aren’t
being as heavily utilized as they are at smaller masses.

Specific Examples of the Applications of this
Approach. After exploring some of the parameters that affect
the accuracy of these models, we then tested model success on
a real-world application. When mass spectrometry data is
returned, or downlinked, to Earth from planetary science
missions, tens of thousands of mass spectra may have been
collected. Yet only a small subset of spectra may be
scientifically significant. For example, a common target to
identification of life is amino acids. To mimic this process, we
examined the NIST mass spectrum of tryptophan to evaluate
the models’ assignments. We also report the analysis of the
mass spectra of histidine in Table S9. Table 2 shows the results
of our analysis of tryptophan.

Aside from the O-containing model, the LR model correctly
predicted the present functional groups and functional group
classifications for the tryptophan mass spectrum. This shows
promise in these models being a useful tool for screening large
numbers of mass spectra. In the example of planetary science
missions, this process can be done onboard the spacecraft to
help assist in the process of prioritizing spectra to downlink. It
could also be used on data after it has been transmitted to
prioritize spectral analysis.

Figure 6. Scatter plots depicting the effect of (A) decreasing the
utilized mass range from 300 to 100 mass units and (B) increasing the
utilized mass range from 300 to 500 mass units on the final testing
accuracy of the models. The presence of points that are positive on
the x axis (shaded in green, rightmost box) show a net benefit in
accuracy, whereas a negative x value (shaded in red, leftmost box)
indicates a worsening accuracy.

Table 2. Results of Selected Models on the Ability to
Correctly Identify the NIST Spectra of Tryptophana

presence in molecule model predicted

carboxylic acid present correct
amine present correct
aromatic present correct
alcohol absent correct
ketone absent correct
A-containing present correct
N-containing present correct
O-containing present incorrect

aThis example works to show how these tandem models may be
beneficial in screening large amounts of data to look for specific
spectra of interest. Results of all of the models on NIST’s spectra of
tryptophan and histidine are presented in the SI (Table S9)

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c01684
ACS Omega 2023, 8, 24341−24350

24347

https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c01684/suppl_file/ao3c01684_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01684?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01684?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01684?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01684?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01684?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c01684/suppl_file/ao3c01684_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c01684?fig=tbl2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c01684?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


To further benchmark the success of our models, we also
analyzed experimental data external to the NIST dataset. The
spectra for limonene, pyridine, and 2 furanmethanol were
preprocessed in the same way as the NIST data to ensure that
every mass had an associated intensity. These spectra were
then presented to each of the models. Table 3 shows the model

assignments for limonene. Pyridine and 2-furanmethanol are
presented in the SI (Tables S9 and S10). Each of these
compounds scored ∼80% accuracy for the identification of
their functional groups. When making errors, the models
tended to overestimate the number of functional groups rather
than underestimate.

■ CONCLUSIONS
We present an investigation of multiple ML methods and
parameters for mass spectral functional group analysis using
minimal spectral preprocessing. Our results indicated that the
CNN (Inception V3) did not perform as well as the LR
models. We determined that the aromatic, nitro, and methyl
functional groups are well defined though LR models, whereas
the alcohol, ketone, and amine functional groups are more
difficult for LR models to define based on their fragmentation
patterns alone. The most impactful peaks affecting model
accuracy were determined by iteratively training models and
removing one mass value in each model, and these results were
echoed in looking at the final model feature coefficients. We
observed that nitrogen-containing functional group models
independently learn the odd-nitrogen rule. We evaluated the

effect of mass range to determine whether model accuracy is
improved with additional spectral information; these results
vary between functional groups. Electron ionization fragmen-
tation of small molecules generally will result in mass values
below 100 m/z. Our model coefficients suggest that a mass
range of 0−100 m/z is most beneficial for describing functional
groups. The application of LR models to new sample mass
spectra is evaluated on an example target molecule of interest,
tryptophan, as well as experimental data from outside of the
NIST database. The success of these example analyses
highlights the promise of ML approaches for screening a
large volume of mass spectral data.

Future directions should further develop a methodology for
developing an ideal ML approach. For example, feature
optimization for each model would achieve the highest
possible final testing accuracy. Further validation of the models
on experimental data outside of the NIST database is also
necessary. Exploration of the LR method applied to other
fragmentation patterns would enable the implementation of
generalizable ML more broadly in the field of mass
spectrometry. The LR ML method explored herein provides
a benchmark for applications to space exploration, ultimately
improving analysis capabilities through the identification of
chemically interesting spectra.
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Table 3. Results of the Models on the Ability to Correctly
Identify Experimental Spectra of Limonenea

presence in molecule model predicted

alkane present present
alkane present present
alkyne absent present
methyl present present
alcohol absent present
A-containing absent absent
N-containing absent absent
O-containing absent present

aThe experimental spectra were preprocessed in the same way as the
NIST data used for training. The results for all the models on
limonene, pyridine, and 2 furan methanol are presented in the SI
(Table S10).
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