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Abstract

High-throughput sequencing has become ubiquitous in biomedical sciences. As new tech-

nologies emerge and sequencing costs decline, the diversity and volume of available data

increases exponentially, and successfully navigating the data becomes more challenging.

Though datasets are often hosted by public repositories, scientists must rely on inconsistent

annotation to identify and interpret meaningful data. Moreover, the experimental heteroge-

neity and wide-ranging quality of high-throughput biological data means that even data with

desired cell lines, tissue types, or molecular targets may not be readily interpretable or inte-

grated. We have developed ORSO (Online Resource for Social Omics) as an easy-to-use

web application to connect life scientists with genomics data. In ORSO, users interact within

a data-driven social network, where they can favorite datasets and follow other users. In

addition to more than 30,000 datasets hosted from major biomedical consortia, users may

contribute their own data to ORSO, facilitating its discovery by other users. Leveraging user

interactions, ORSO provides a novel recommendation system to automatically connect

users with hosted data. In addition to social interactions, the recommendation system con-

siders primary read coverage information and annotated metadata. Similarities used by the

recommendation system are presented by ORSO in a graph display, allowing exploration of

dataset associations. The topology of the network graph reflects established biology, with

samples from related systems grouped together. We tested the recommendation system

using an RNA-seq time course dataset from differentiation of embryonic stem cells to cardio-

myocytes. The ORSO recommendation system correctly predicted early data point sources

as embryonic stem cells and late data point sources as heart and muscle samples, resulting

in recommendation of related datasets. By connecting scientists with relevant data, ORSO

provides a critical new service that facilitates wide-ranging research interests.
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Author summary

New sequencing technologies have rapidly transformed biomedical research. Public data

repositories now contain millions of datasets, which have the potential to accelerate and

bolster research projects. However, the sheer magnitude of available data makes naviga-

tion difficult. We created ORSO (Online Resource for Social Omics) to address these chal-

lenges. ORSO is a social network where entries are not status updates or tweets, but

biological datasets. Users may add their own data to ORSO, joining 30,000 validated data-

sets that are already hosted, and other users may find these data through intuitive search

functions and informative analytics. Users can then favorite datasets relevant to their

interests or follow contributing users. ORSO also uses a recommendation system like

those used on commercial websites to automatically recommend data to users based on

user interactions and dataset similarities. By making data more accessible and by connect-

ing users to relevant data, we anticipate that ORSO will be an important resource for sci-

entists. ORSO may be the first of many applications that use methods originating in social

media and ecommerce to enhance and further research projects in the life sciences.

This is a PLOS Computational Biology Software paper.

Introduction

Understanding and contextualizing public data is critical in many research projects. It can

focus early hypothesis generation or bolster experimental observations. Advancing technolo-

gies and the lowering costs of next generation sequencing (NGS) have led to an exponential

increase in available data. Scientists face a volume of public data with a size and complexity

that make it difficult to interpret and manage. It is often difficult to find relevant data for even

simple queries, such as data originating from a given cell type. Complex queries considering

multiple metadata fields, such as ChIP antibody target and cell type, can be even more

difficult.

With the rapid proliferation of public genomics data, curation is a persistent and increas-

ingly challenging problem. Outside of large consortial datasets, where consistent protocols and

standards are often used, there is little assurance of quality and consistency, even for published

data. Many tools have been developed to evaluate data quality, either by calculating sequence

quality metrics [1] or by comparisons against validated data [2]. Productive use of data by

independent groups may indicate sufficient data quality and be considered as additional vali-

dation of a dataset. However, use of data following release is not systematically documented.

Citations are indirect, pointing to associated publications and not datasets themselves, and

may not describe whether raw or processed data from the original publication are used.

To enhance access and utility of public genomics datasets, we present ORSO (Online

Resource for Social Omics), a web-based platform for data discovery and evaluation within a

social network framework (Fig 1). Using an advanced search engine supporting complex que-

ries over multiple metadata fields, users can find and favorite datasets relevant to their inter-

ests. Social interactions, such as favoriting, are used by ORSO to direct a user to new data.

First, ORSO presents the number of favorites for each dataset alongside metrics such as gene-

by-gene and average coverage values. Data favorited by many users may be amenable to differ-

ent applications, and these data may be prioritized for interpretation and comparison. Second,

ORSO: A social network connecting scientists to genomics datasets
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social interactions are used in a novel recommendation engine designed to connect users with

datasets based on past activity. Inspired by similar recommendation systems used in ecom-

merce, ORSO presents new datasets to the user based on their interactions with hosted data.

Upon favoriting a dataset, similar datasets in the network will be recommended to the user.

Dataset similarities are evaluated using primary read coverage values and annotated metadata.

Unlike other services [3], ORSO leverages machine learning applications to minimize curation

requirements. In addition to direct recommendations, ORSO provides graph-based views of

the data network, with datasets as nodes and similarities as edges. These views allow users to

explore similarities predicted by ORSO.

ORSO is designed to be an evolving resource. ORSO hosts data from major biomedical con-

sortia, including ENCODE [4], NIH Roadmap [5], modENCODE [6,7], and others [8]. In

total, ORSO provides access to over 30,000 datasets from human, mouse, D. melanogaster, and

C. elegans (summarized in S1 Table). Users can add additional datasets to ORSO. Any dataset

added to ORSO is compared in a pair-wise fashion to all other datasets, incorporating it into

the ORSO data network, and similar datasets are recommended to the user. Processing and

pair-wise analysis have been optimized for rapid integration into ORSO and takes only a few

minutes. Users may optionally elect to have their data be public to others, allowing their data

to be discovered by other users through search functions or the recommendation engine. As

social interactions and other data accumulate through community use, social network-based

recommendations will also be more meaningful, leveraging applications traditionally used for

business analytics [9].

Research is an inherently social enterprise, with dissemination of results a critical step in

any research project. To date, results have largely been disseminated through publication in

scientific journals. The acceleration of data generation and technological advances, such as

cloud-based computing, are pushing research toward direct dissemination of datasets. Recent

changes in publication models acknowledge that data are a key product of research and are in

many ways as important as the analysis applied to those data. ORSO anticipates this trend,

using a data-centric interconnected network and user-friendly format to empower dataset dis-

covery and contextualization.

Fig 1. Overview of the ORSO framework. ORSO constructs a data-driven network based on social interactions and identified similarities between

datasets. (1) Both validated public data and user-submitted data are hosted by ORSO. (2) Metadata and primary read coverage values are used to

construct a data network, where connections represent similarities between datasets. (3) Based on data similarities, individual datasets are recommended

to a user based on that user’s interests. (4) User interests are gauged by social interactions with datasets, such as favoriting and following. These

interactions are in turn used to connect datasets in the network and impact the data recommended to other users.

https://doi.org/10.1371/journal.pcbi.1007571.g001
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007571 January 24, 2020 3 / 12

https://doi.org/10.1371/journal.pcbi.1007571.g001
https://doi.org/10.1371/journal.pcbi.1007571


Design and implementation

Overview of the ORSO web application

ORSO provides a web-based interface to access hosted data and analytics. These views are

organized in a tab-based layout (S1 Fig). The “Experiments” and “Users” tabs provide different

views to access hosted data and public user profiles. Both tabs provide search functions that

allow for complex multi-field queries. The “Explore” tab gives views that allow exploration of

all datasets and predicted similarities. These views here include (1) a network view with all

datasets shown as nodes in a graph with similarities drawn as connections, (2) a PCA view

with dataset read coverage values transformed by principle component analysis, and (3) a den-

drogram based on hierarchical clustering of dataset similarities.

ORSO is implemented using Python and Javascript for the backend and frontend, respec-

tively. The web application uses Django framework with data passed to the client via a REST

application programming interface (API) [10]. Analytics are performed using Numpy and

Scipy [11], with machine learning applications performed using scikit-learn [12] and Keras

[13]. Data visualization and graph-based views are implemented using Plot.ly [14] and Sigma

[15], respectively. Visualizations made using Plot.ly [14] allow integrated image capture and

sharing. All plots use a consistent color scheme for cell types and protein targets. The color

scheme can be found at https://github.com/niehs/orso/tree/master/data/colors.

Adding data to the ORSO framework

ORSO is designed to accommodate NGS data from multiple technologies, including RNA-seq,

ChIP-seq, ATAC-seq [16], and others. Users can add new datasets to ORSO using a browser-

based form. This form includes fields for required metadata, such as associated assembly and

cell type. To create a new dataset, Primary data in the form of read coverage is also required.

ORSO does not perform direct upload of primary data. Instead, a user provides an HTTPS-

accessible URL to bigWig files containing NGS read coverage [17]. This requirement is consis-

tent with practices common in the field. Popular sequence aligners will generate whole-genome

read coverage as optional output files [18], and other tools, such as the popular UCSC Genome

Browser, require users to provide HTTPS-accessible bigWig files to display coverage data [19].

Once a dataset is added, ORSO will download the bigWig file and find read coverage values

across internally maintained lists of genomic features, including genes and enhancers. Tran-

scripts per million (TPM) values at each feature are saved for downstream analysis. Only feature

coverage and metadata fields are saved to the ORSO database; raw coverage information is not

retained after processing. After feature counts are found, a dataset is compared against other

data from the same experimental technique and organism to find similar datasets.

Genomic features are taken from validated sources in the literature. Feature lists of pro-

moter regions, gene bodies, and mRNA transcripts are taken from RefSeq alignments [20].

Enhancer lists for human and mouse are taken from the VISTA database [21]. Enhancer lists

for D. melanogaster and C. elegans are taken from validated genome-wide assays [22,23].

ORSO uses a hierarchical relationship to accommodate replicate datasets from the same

sample. In short, an “experiment” describing a single biological sample may have one or more

“datasets.” This is consistent with the ENCODE project schema [4]. When adding data to

ORSO, users have the option of adding multiple datasets to the same experiment. These data-

sets could be replicates of the same biological sample, or they may be the same replicate aligned

to different genome assemblies.

When data are added to ORSO, they may be set as public or private. If a dataset is set to

public, that dataset may be discovered by other users, either through the search function or by

ORSO: A social network connecting scientists to genomics datasets
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the recommendation engine. If set to private, a dataset may not be found or accessed by others.

However, private datasets are still considered by the recommendation engine, allowing a user

to find data similar to an unpublished dataset.

Dataset comparison methodology

When a dataset is added to ORSO, it is compared against all other datasets from the same

organism and experiment type (RNA-seq, ChIP-seq, etc.) to find similar datasets. Independent

comparisons are performed using primary read coverage and annotated metadata; datasets

may be considered similar by primary data, metadata, or both. Comparisons are knowledge-

based, using associations and parent-child relationships from biological ontologies. Different

ontologies are used to evaluate different metadata fields, as described below.

For each ontology, we selected important parent classes where children of that class would

generally be considered similar. Due to inherent structural differences in each ontology, selec-

tions were made manually based on known biology. For instance, parent classes in the

BRENDA Tissue and Enzyme Source Ontology were selected to reflect organ system-level

organization. Our selections included the parent classes “cardiovascular system” and “neuro-

logical system.” Classes such as “head” and “limb” are included to facilitate comparisons across

small organisms, such as D. melanogaster and C. elegans, where the size of the organisms pre-

vents excision of individual tissues. Parent classes in the Gene Ontology [24] were selected to

aid in the identification of transcription factors. A complete list of the key parent classes that

were selected can be found in S2 Table.

To facilitate comparisons of histone modifications, we created a custom ontology of epige-

netic modifications for use in ORSO. The ontology was adapted from literature [25] and orga-

nizes histone modifications based upon genomic locations of enrichments. For example,

histone modification H3K4me3 has parent classes “At active promoters” and “At poised pro-

moters”. This custom ontology is available for download at https://github.com/NIEHS/orso/

raw/master/ontologies.tar.gz.

Evaluating metadata similarity

To evaluate similarity by user-annotated metadata, ORSO considers the fields “cell/tissue

type” and “target.” The “target” field is a context specific field that depends on experiment

type. For instance, in a ChIP-seq experiment, the “target” field would describe the target of the

antibody pulldown. For an shRNA knockdown experiment, this would describe the shRNA

knockdown target. For some experimental methods, such as RNA-seq or ATAC-seq, the “tar-

get” field is not relevant. For two datasets to be considered similar, they must have similar cell

types and, if applicable, protein targets.

Metadata comparisons consider key parent classes in the ontology (S2 Table). To evaluate

cell type fields, ORSO considers the BRENDA Tissue and Enzyme Source ontology [26]. If two

compared cell types share organ system-level parent classes in the ontology, the cell types are

considered similar. To evaluate protein target fields, ORSO considers the Gene Ontology [24]

and a custom-made histone modification ontology. If key parent classes are shared, the protein

targets are considered similar. Because of the nature of this comparison, similarities are

recorded and presented in ORSO as categorical values.

An abundance of transcript factors is described in the Gene Ontology. If the two protein

target fields are considered transcription factors, ORSO will additionally compare the two tar-

gets against the STRING interaction network [27]. Two transcription factors are considered

similar only if they show evidence for interaction in STRING.

ORSO: A social network connecting scientists to genomics datasets
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Metadata evaluation requires user-provided terms to be matched to those in validated

ontologies. To mitigate the impact of clerical errors, ORSO uses a “fuzzy” string matching sys-

tem [28]. In short, the system scores a comparison of characters in two terms. If no direct

match is found in an ontology for a given term, ORSO considers ontology terms that exceed a

comparison score threshold.

Evaluating primary data similarity

Similarity based on primary read coverage values are evaluated independently of annotated

metadata comparisons. Conceptually, ORSO evaluates similarity of primary data by first pre-

dicting metadata classes based on read coverage values and then comparing the predicted

metadata of two datasets. Classification models consider the same key ontology parent classes

as used in annotated metadata comparisons, meaning that cell type predictions perform organ

system-level classification and protein target predictions differentiate between transcription

factor and histone modification classes.

Metadata is predicted using a multi-layer perceptron (MLP) neural network [29]. The MLP

is trained using read coverage values at genomic features, such as genes. Before applying to the

MLP, a filtering step is used to reduce the number of features, removing genes that are consti-

tutively or lowly expressed. Filtering is performed by considering importance in training a ran-

dom forest classifier to predict cell type or protein target. From an importance-ranked list, the

top 1,000 features are taken forward. For each assembly and experiment type, distinct MLPs

are trained for each metadata field (e.g. cell type and protein target). To ensure data quality of

the initial training set, validated ENCODE data was used to train each MLP model. Training

was only performed if at least 100 validated datasets were available. During training, 20% of

the datasets were reserved for validation and testing (80%, 10%, and 10% for training, valida-

tion, and testing, respectively). Test accuracies are listed in S3 Table.

Variation in MLP test accuracies reflect differences in dataset availability for different

experiment types (S1 Table and S3 Table). For instance, only 100 datasets from experiments

where CRISPR genome editing was followed by RNA-seq were available for hg19. Training

and testing of the MLP associated with these data were performed with only 80 and 10 datasets,

respectively. As more datasets are added to ORSO, we expect prediction accuracies to increase.

To evaluate primary data similarity, read coverage values for two datasets are applied to

trained MLPs, and cell type and protein target categories are predicted from lists of key onto-

logical classes (S2 Table). Like comparisons of user-annotated metadata, evaluated similarities

based on primary data are categorical. If read coverage-predicted cell type and protein target

categories are shared, the two datasets are considered similar.

Recommending datasets through the ORSO data network

After a user adds a dataset to ORSO, that dataset will be compared against all other datasets

and incorporated in the ORSO data network. Any similar datasets found will be recommended

to the user. Because primary data and metadata are evaluated independently, a dataset may be

similar by read coverage, annotated metadata, or both. Users may filter their recommenda-

tions such that only datasets with read coverage or metadata similarities are displayed. This

may be helpful in situations where annotated metadata may miss important aspects of the

experiment design, such as transformation studies where a cell type transition is induced.

Incorporating user interactions

If a user adds a dataset to ORSO, similar datasets will be recommended to the user. Additional

datasets from the ORSO network are also recommended to a user based upon its social

ORSO: A social network connecting scientists to genomics datasets
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interactions. If a user favorites a dataset, datasets similar to the favorite will be recommended

to the user. If a user follows another user, that user’s datasets will also be recommended.

Users may only be followed by other users if they set their accounts to public. Users may

still use ORSO even if they opt out of using social features. Search functions are available to

private users, and private datasets are still considered by the recommendation engine to direct

users to similar data.

Visualization of datasets and data networks

ORSO provides several views for users to browse datasets and perform summary-level evalua-

tions of associated data. For each individual dataset, ORSO provides plots of the average cover-

age at transcripts, gene bodies, promoters, and enhancers. Read coverage values for each

feature are also shown on a scatter plot where they are compared to median values across all

datasets of the same assembly and experiment type.

ORSO also provides network-level views to rapidly contextualize datasets. The network is

displayed in a graphical map where nodes correspond to datasets and edges correspond to

identified similarities. Datasets with the same annotated cell type and protein target are col-

lapsed together, and node size reflects the number of datasets with given cell type and target.

Positions of individual nodes are determined using a force-directed layout algorithm [30] such

that connected nodes are brought closer together. To provide an additional view, similarity

values are applied to a hierarchical clustering procedure, and the resulting dendrogram dis-

plays hierarchical relationships between datasets. Additionally, all ENCODE datasets from the

same assembly and data type are used to fit a PCA model, and the resulting projection can be

used to compare datasets.

Results

Recapitulation of known protein interactions and cell type associations

To evaluate the value of ORSO to potential users, we verified that the connections within its

network and the content of its displays correctly recapitulated underlying biology. To do this,

we used ORSO’s visualization functions to identify meaningful associations in its data network

through PCA, network, and dendrogram displays.

We first evaluated human RNA-seq data (an overview of hosted datasets is given in S1

Table). When projected into PCA space, datasets cluster by cell type (Fig 2A). Often, proximity

between cell types reflects relevant biology. For instance, datasets from muscle tissue or mus-

cle-derived cells (Fig 2A, green) are proximal to datasets derived from heart (cyan). Related

cell types are also co-localized in the network view, indicating that topology of the network

map is consistent with biology (Fig 2B). The dendrogram of hierarchical clustering results

shows organization of datasets into meaningful clusters (Fig 2C). In both network and dendro-

gram views, there is evidence of association between organ-derived samples and epithelial cell

lines (Fig 2B and 2C, blue and green, respectively). This may reflect the high composition of

epithelial cells in samples derived from organs such as kidney and stomach. Co-localization of

neuronal and pluripotent cells (Fig 2B and 2C, purple and red, respectively) may indicate simi-

larities in transcriptional programs between these two cell groups.

We then evaluated human ChIP-seq data. The human ChIP-seq PCA space (Fig 2D) is

dominated by histone modification datasets, with 44% of datasets from experiments targeting

histones (at the time of manuscript preparation, 1995 of 4502 datasets in hg19). Mutually

exclusive histone modifications H3K27ac and H3K27me3 segregate to opposite sides of the

PCA plot (Fig 2D, yellow and cyan, respectively; detailed in Fig 2E). Other active marks, such

as H3K4me3 (in red), aggregate with H3K27ac, while marks associated with repressed gene

ORSO: A social network connecting scientists to genomics datasets
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promoters, such as H3K4me1 (in orange), aggregate with H3K27me3 [25]. Taken together,

these marks create an activity axis in PCA space, with active marks on one side and repressive

marks on the other. Proximity in PCA space also recapitulates known protein interactions.

H3K27me3 datasets co-localize with EZH2 (blue), a member of Polycomb Repressive Complex

2 (PRC2), which deposits this mark (Fig 2F). Associated with active transcription, H3K4me3

associates with RNA polymerase II (Fig 2F, green).

Fig 2. Recapitulation of biological associations in ORSO network and PCA views. All plots were taken from ORSO without modification, except for label

overlays. (A) PCA view of human RNA-seq data (hg19 assembly; 1,180 ENCODE datasets). The PCA was constructed considering read coverage values across

models of mRNA transcripts. Similar cell types cluster in the same location in PCA space. (B) Network view of human RNA-seq data (805 experiments).

Network topologies reflect similarities across cell types. The network layout was generated using a force-directed algorithm that minimizes the distances

between connected nodes. (C) Dendrogram view of human RNA-seq data (805 ENCODE experiments). Network similarities were used in hierarchical

clustering to create a dendrogram of biologically relevant cell type clusters. (D) PCA view of human ChIP-seq data (hg19 assembly; 4,502 ENCODE datasets).

Similar protein targets, including histone modifications, are grouped together in a PCA created using promoter read coverage values. (E) Co-localization of

histone modifications associated with active genomic regions in the human ChIP-seq PCA. (F) Co-localization of histone modifications with relevant protein

targets in the human ChIP-seq PCA.

https://doi.org/10.1371/journal.pcbi.1007571.g002
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Evaluating changes during cellular differentiation

ORSO allows rapid evaluation and contextualization of user-added datasets in top-down PCA,

network, and dendrogram views. To demonstrate the utility of this feature, we added RNA-seq

datasets from a time-course experiment [31] measuring differentiation of human embryonic

stem cells (hESCs) into cardiomyocytes (Fig 3A; datasets detailed in S4 Table). Each timepoint

(0, 2, 4, and 30 days) was added as a distinct dataset. Clear and consistent evidence of differen-

tiation can be seen in the PCA view (Fig 3B). Early timepoints at day 0 (outlined in red) are

near other hESC datasets, while later timepoints at day 30 (outlined in cyan) are near datasets

associated with the cardiovascular system, including those from heart and cardiomyocytes.

Based on primary coverage information, early timepoints were predicted to be similar to

embryonic stem cells while later timepoints were predicted to be similar to samples derived

from muscle and heart tissue. These similarities are reflected as connections and placement

within the topology of the network view (Fig 3C). Early timepoints are positioned near other

embryonic stem cells while the 30-day timepoint is positioned near heart and muscle samples.

These network connections are in turn used to recommend datasets to the user (similar data-

sets are detailed in S5 Table). Upon adding data from early and late differentiation timepoints,

ORSO would recommend data to the user from hESCs and cardiovascular cells, respectively.

Availability and future directions

ORSO is publicly available at https://orso.niehs.nih.gov. Detailed documentation and the com-

plete source code are available at https://github.com/niehs/orso. Included are instructions for

Docker-based deployment of an ORSO instance. ORSO is open source software released

under the MIT License.

We anticipate ORSO to be refined through continuous development. Given the modular

nature of its codebase, additional features may be easily added within the ORSO framework.

To greatly expand the number of datasets hosted by ORSO, we hope to develop data validation

Fig 3. Application of RNA-seq data from a hESC to cardiomyocyte differentiation time course to ORSO. All plots

were taken from ORSO without modification, except for label and transparency overlays. (A) Schematic describing the

differentiation time course. (B) Differentiation datasets after integration in the human RNA-seq PCA. Early timepoints

co-localize with hESCs while later timepoints co-localize with heart muscle samples. (C) Network view after

integration of time course data with 805 ENCODE experiments. Localization of timepoints near hESC and heart data

points reflect similarities predicted by the ORSO recommendation system.

https://doi.org/10.1371/journal.pcbi.1007571.g003
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and natural language processing systems to regularize and incorporate datasets from reposito-

ries such as the GEO databank. Current development efforts will introduce gene-based views

that allow analysis of enrichment across all datasets and will expand comparison consider-

ations to include fields such as chemical treatment. Additional views could allow the integra-

tion of data from multiple experiment types, enabling comprehensive views of the interplay

between the epigenome and transcriptome.

Though its social functions are rudimentary compared to commercial social networks,

ORSO makes an important step in recognizing the value of measuring the consumption and

use of data by scientists. Dataset usage could be valuable in resource allocation and future

experiment design. Usage can also be used in a feed-forward strategy to refine ORSO’s recom-

mendation engine. Social interactions may ultimately be combined with data and metadata

into a single model that more accurately recapitulates scientist usage patterns.

Supporting information

S1 Fig. The ORSO web interface. The ORSO interface uses a tab-based organization. Each tab

brings the user to a collection of views. The “Experiments” tab presents a list of recommended

experiments and allows the user to search all experiments hosted by ORSO. Through the

“Users” tab, all public user accounts may be searched and accessed. The “Explore” tab gives the

user multiple top-down views to explore hosted data. These include a PCA view as well as den-

drograms and graph networks constructed from identified similarities between datasets. On

all ORSO pages, a “Help” button provides a link to documentation for users and developers.

(TIF)

S1 Table. Overview of ENCODE data hosted by ORSO. Datasets are organized by assembly

and experiment type. For each assembly and experiment type, the number of datasets and dis-

tinct cell types and protein targets are given.

(XLSX)

S2 Table. Ontology classes used in metadata comparisons. Listed are key ontology classes

whose children are considered similar by ORSO. Parent classes were selected to reflect biologi-

cal organization of samples. For instance, classes in the BRENDA Tissue and Enzyme Source

Ontology were selected to reflect organ system-level organization. For each selected ontology

class, the class ID, class name, and ontology are given.

(XLSX)

S3 Table. Test accuracies of trained MLP neural networks. MLP models were trained to pre-

dict which key parent ontology classes (described in S2 Table) describe a given dataset. Inde-

pendent models were trained for each combination of experiment type, metadata field,

assembly, and genomic feature type. Only validated ENCODE datasets were used to train each

model. Datasets were split into training, validation, and test sets using an 80/10/10 split.

(XLSX)

S4 Table. Details of an RNA-seq time course of hESC differentiation into cardiomyocytes.

The timepoint and cell line are taken from associated GEO repository entries [31]. For each

dataset, the ORSO cell type and target metadata fields are given as used in the example

vignette.

(XLSX)

S5 Table. Dataset recommendations based on time course data. Experiment name and cell

type are given for each recommended experiment. Recommended experiments may be similar

to multiple experiments from the RNA-seq time course. Multiple datasets are given in a
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comma-separated list; additional details about these datasets can be found in S4 Table.

(XLSX)
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