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Abstract. Cellular prion protein (PrPC) can replace other 
pivotal molecules due to its interaction with several partners 
in performing a variety of important biological functions that 
may differ between embryonic and mature stem cells. Recent 
studies have revealed major advances in elucidating the putative 
role of PrPC in the regulation of stem cells and its application in 
stem cell therapy. What is special about PrPC is that its expres-
sion may be regulated by hypoxia‑inducible factor (HIF)‑1α, 
which is the transcriptional factor of cellular response to 
hypoxia. Hypoxic conditions have been known to drive cellular 
responses that can enhance cell survival, differentiation and 
angiogenesis through adaptive processes. Our group recently 
reported hypoxia‑enhanced vascular repair of endothelial 
colony‑forming cells on ischemic injury. Hypoxia‑induced 
AKT/signal transducer and activator of transcription 3 phos-
phorylation eventually increases neovasculogenesis. In stem 
cell biology, hypoxia promotes the expression of growth 
factors. According to other studies, aspects of tissue regenera-
tion and cell function are influenced by hypoxia, which serves 
an essential role in stem cell HIF‑1α signaling. All these data 
suggest the possibility that hypoxia‑mediated PrPC serves an 
important role in angiogenesis. Therefore, the present review 
summarizes the characteristics of PrPC, which is produced by 
HIF‑1α in hypoxia, as it relates to angiogenesis.
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1. Introduction

Prions are neuro‑degenerative disease‑causing agents, that are 
responsible for changing cellular prion protein (PrPC) to the 
infectious β‑structure‑rich insoluble conformer (PrPSC) in the 
neurons of the brain and spinal cord, as in Creutzfeldt‑Jakob 
disease in humans and Bovine Spongiform Encephalopathy in 
animals (1). PrPC is known for its involvement in regenerative 
processes including adhesion, proliferation, differentiation and 
angiogenesis. According to Stella et al (2), muscles with low 
PrPC grow slowly compared with wild‑type muscles, suggesting 
that PrPC serves a role in tissue recovery and/or regeneration. 
For these reasons, recent research has focused on obtaining 
more conclusive information about the functional role of PrPC 
in tissue regeneration. Additionally, regulating PrPC expression 
by hypoxia has become an important topic (3). Hypoxia occurs 
when blood oxygen concentrations are insufficient and long 
periods of hypoxia can induce cell death. However, temporary 
or short periods of exposure to hypoxic conditions actu-
ally enhances cell survival by increasing hypoxia‑inducible 
factor‑1 (HIF‑1), composed of α‑ and β‑subunits, in addition to 
other transcription factors (4‑6). During hypoxia, an alteration 
in HIF‑1 expression is essential for metabolic adaptation (7,8), 
as HIF‑1α is associated with angiogenesis and growth factors, 
glucose uptake, and metabolism (8). Therefore, the present 
review focuses on the association between HIF‑1α and PrPC 
in stem cells. It will also examine how HIF‑1α‑mediated PrPC 
expression can serve a role in angiogenesis.
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2. The effect of hypoxia‑preconditioning in cultured stem 
cells

According to previous studies, under hypoxic conditions, 
aged mesenchymal stem cells (MSCs) increase the secre-
tion of angiogenic and anti‑apoptotic related growth factors 
including vascular endothelial growth factor (VEGF), fibro-
blast growth factor (FGF)‑2, human growth factor (HGF) 
and insulin growth factor‑1, resulting in enhanced angiogenic 
properties (9‑12). To demonstrate the effect of growth factor 
secretion in MSCs under hypoxic conditions, a recent study 
transplanted hypoxia‑conditioned stem cell media into rats 
with traumatic brain injury and demonstrated excellent 
rescue effects when compared to animals transplanted with 
normoxia‑conditioned media (13). To observe the effect of 
restorative neurological function Chang et al (13) transplanted 
media from hypoxia‑treated bone marrow (BM)‑MSCs into 
rats with brain injury rat model and demonstrated that it was 
more efficient compared with normoxia conditioned medium. 
Chang et al (13) also demonstrated that the neuroprotective 
effect of hypoxia‑conditioned media involved the generation 
of VEGF and HGF, which are associated with the inducement 
of endogenous neurogenesis. In another study, the therapeutic 
activity of MSCs under hypoxia or normoxia was compared 
in a massive hepatectomy rat model. In vitro, the levels of 
VEGF in MSCs under hypoxia were markedly higher than 
normoxia condition. In vivo, MSCs under hypoxia significantly 
elevated the expression of cyclin D1, proliferating cell nuclear 
antigen‑positive hepatocytes, the liver weight/body weight 
ratio and survival when compared with normoxia. Notably, the 
therapeutic effect of hypoxia was negated by anti‑VEGF anti-
body‑induced blockade of VEGF in vivo (14). Increasing the 
activity of matrix metalloproteinase‑2 also had a therapeutic 
effect that was associated with the protection of cardiomyocytes 
via the inhibition of caspase‑3, transforming growth factor β1 
and the upregulation of B‑cell lymphoma 2 apoptosis regu-
lator/Bcl‑2 associated protein X apoptosis regulator ratio (15). 
According to Lee et al (16), the proliferation and migration 
of mouse embryonic stem (ES) cells increases upon activa-
tion of fibronectin‑integrin β1 production through HIF‑1α and 
phosphoinositide 3‑kinase/Akt pathways under conditions of 
hypoxia. Additionally, mouse ES cells that have undergone 
hypoxic preconditioning exhibit HIF‑1α‑, mitogen‑activated 
protein kinase‑ and nuclear factor κB‑stimulated interleukin‑6 
production (17). Hypoxia preconditioning also facilitates the 
functional bioactivities of endothelial progenitor cells by 
mediating the regulation of the signal transducer and activator 
of transcription 3 (STAT3)‑B‑cell CLL/lymphoma 3 (BCL3) 
axis. Therefore, expansion and functional bioactivities of 
endothelial progenitor cells (EPCs) through modulation of 
the hypoxia‑induced STAT3‑BCL3 axis can be triggered 
by a hypoxic preconditioned ex vivo expansion protocol. It 
has been suggested that hypoxia preconditioning of EPCs 
may offer a therapeutic strategy for accelerated neovasculo-
genesis in ischemic diseases (18). In summary, the hypoxic 
conditioning of cultured stem cells can result in increased 
production and secretion of trophic factors, augmentation of 
angiogenic effects and enhanced anti‑apoptotic activity from 
conditioned cells compared with normoxic conditioned 
culture.

3. PrPC expression is increased under hypoxic conditions

Oxygen is an indispensable element required for biological 
energy (19). Thus, it is not surprising that a lack of oxygen 
causes cell damage (20). Oxygen concentrations within the 
vascular system that supplies mammals with oxygen vary: 
The heart and arteries have oxygen concentrations that range 
from 10‑14% (21); however, the majority of tissues contain 
<5% oxygen, while bone marrow and the thymus contain 
<1% oxygen (22‑24). At the cellular level, microenvironment 
changes are important for cell function. For example, EPC 
proliferation and cell functions have been demonstrated to be 
enhanced in hypoxic cultures (18). Jeong et al (25) revealed that 
hypoxia can protect neurons from PrP fragment‑induced apop-
tosis and can increase PrPC expression, suggesting that HIF‑1α 
mediates PrPC expression. PrPC is generated in the early stages 
of embryogenesis (26,27) and exists in high levels in neurons 
of the brain and spinal cord (28). However, glial cells of the 
central nervous system, and a number of peripheral cell types 
in adults, possess lower levels of PrPC (29,30). The majority of 
PrPC molecules lie on the cell surface and are attached to the 
lipid bilayer through a C‑terminal, glycosyl‑phosphatidylino-
sitol anchor (31).

4. HIF‑1α regulates PrPC

Under hypoxic conditions, HIF, a protein with a basic helix 
loop helix‑Per/ARNT/Sim structure (32), regulates the expres-
sion of various target genes (33‑35). HIF can be categorized 
into several types according to its subunits, which comprise 
an O2‑regulated α‑subunit (i.e., HIF‑1α, ‑2α or ‑3α) and a 
constitutively expressed β‑subunit of the Aryl hydrocarbon 
nuclear translocator (ARNT) family (i.e., ARNT, ARNT2 
or ARNT3). Under hypoxic conditions, HIF is inactivated 
by HIF‑a degradation via von Hippel‑Lindau E3 ubiquitin 
ligase (36); however, HIF can still function as a transcription 
factor by binding HIF‑1α and ARNT, consequently increasing 
the expression of cell growth, proliferation and pro‑angiogen-
esis factors. This is particularly the case for HIF‑regulated 
pro‑angiogenic genes including TEK receptor tyrosine 
kinase, monocyte chemoattractant protein‑1, VEGF, basic 
FGF, angiopoietin (ANGPT)1, ANGPT2 and platelet‑derived 
growth factor  (37). HIF‑regulated pro‑angiogenic factors 
initiate the HIF‑specific angiogenic program by increasing 
propagation, adhesion, tube formation, migration, vascular 
permeability and endothelial cell proliferation  (38,39). 
HIF broadly targets pro‑angiogenic genes and comprehen-
sively regulates angiogenesis. Thus, HIF is often termed a 
‘master‑regulator of angiogenesis’. As previously mentioned, 
PrPC also is regulated by HIF, and PrPC expression is increased 
under hypoxic conditions. Park et al (3) demonstrated that 
the effects of HIF‑1α and PrPC on neuronal cell death are 
prion peptide‑induced. In hypoxic conditions, neurons are 
protected from PrP‑induced cell death via the activation of 
p65 and HIF‑1α and subsequent inactivation of p21 and p53 
signals. Deferoxamine‑elevated HIF‑1α has similar effects 
to the hypoxia‑mediated inhibition of neuronal cell death 
under normoxic conditions. Furthermore, knockdown of 
HIF‑1α leads to the downregulation of PrPC expression under 
hypoxic conditions.
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5. Anti‑oxidative effect of PrPC

Numerous enzymes have copper or zinc as essential cofac-
tors, as in the case of cytochrome c oxidase, tyrosinase, 
various metalloproteinases and Cu/Zn superoxide dismutase 1 
(SOD1) (40,41). It has been demonstrated that PrPC has an anti-
oxidant effect relative to the level of copper, and that the level 
of this effect does not significantly vary between recombinant 
and tissue‑purified PrPC, although the molecular mechanism 
of the antioxidant properties exhibited by PrPC remains to 
be elucidated (42,43). Nonetheless, it has been indicated that 
the decrease in oxidative stress is mediated by the interaction 
of copper and PrPC (44). Therefore, it is suggested that PrPC 
has a similar effect to the function of antioxidant enzymes 
including SOD1 (45). However, changes in expression levels 
of PrPC do not induce changes in the activation levels of 
SOD1 (46). PrPC knockout cells are more sensitive to copper 
toxicity by oxidative stress when compared with wild‑type 
cells (47). Similarly, cerebellar cells obtained from PrPC null 
mice are more vulnerable to oxidative stress than wild type 
cells (45,47). The deletion of octapeptide repeats within PrPC 
inhibits the antioxidant properties of PrPC (42). Indeed, PrPC 
null mice are more sensitive to acute seizures (48). Therefore, 
it appears that the status of anti‑oxidative defense in PrPC null 
mice serves as an important factor in determining their lower 
thresholds of damage when reflecting the severity of injury 
and clinical pathology (49‑51). Furthermore, in the skeletal 
muscles, heart and liver of PrPC null mice, its absence greatly 
increases protein and lipid oxidation, leading to a lower 
catalase activity  (50). Thus, being reduced in free Cu/Zn, 
via SOD and glutathione reductase in oxidative stress, PrPC 
may have influence in the resistance against oxidative stress. 
Sauer et al  (52) demonstrated that overexpression of PrPC 
completely inhibits reactive oxygen species generation, even 
with increased activation treatment with adenosine triphos-
phate. This is in accordance with the hypothesis that PrPC may 
have a function in protecting against oxidative stress as a free 
radical scavenger or a molecular sensor (52).

6. Role of PrPC in endothelial cells under angiogenesis

Endothelial cells express and present PrPC on their surface (53). 
As resting vascular endothelial cells exhibit minimal or no 
PrPC in vivo, normal resting endothelial cells of the umbilical 
cord and adult blood vessels (aorta, saphenous vein and normal 
transplant endothelial cells) did not produce detectable quanti-
ties of PrPC (54). PrPC is expressed in endothelial cells of the 
blood capillaries in the intestinal wall of the digestive tract and 
in renal capillaries (55). Another study noted a sudden increase 
in expression of PrPC on the surface of endothelial cells, 
astrocytes and neurons in penumbra regions in a rat model of 
cerebral ischemia (56). Endothelial cells can express PrPC and 
release it through the cell membrane, as a soluble protein and 
as a form bound to microparticles, while vascular endothelium 
may be an origin for PrPC released within the blood (53,57,58). 
PrPC has been demonstrated to be a component of caveolae, 
which are the lipid raft of flask‑shaped membrane invagina-
tions in endothelial cells that take part in signal transduction 
associated with cell survival, differentiation and angiogen-
esis (59). Another study suggested that caveolae have functions 

in angiogenesis, as implied by the involvement of caveolae in 
VEGF signaling in the endothelium (60). This signaling mech-
anism confirms a key function for caveolae, and possibly PrPC, 
in the regulation of angiogenesis (59). Satoh et al (61) identified 
that disruption of the PrPC gene results in abnormal regulation 
of genes important for cell proliferation, differentiation and 
survival, including Ras and Rac signaling pathways connected 
to angiogenesis. During development, neonatal brain endo-
thelial cells temporarily express PrPC transcripts, indicating 
a role in central nervous system angiogenesis and blood‑brain 
barrier maturation (62,63). PrPC expression may be regulated 
by various growth factors through protein‑protein interactions 
with normal protease sensitive PrPC (52,64,65).

7. The function of PrPC in tissue regeneration

Muscle regeneration and its association with PrPC has been 
investigated in a cardiotoxin‑induced injury animal model (2). 
Adult stem cells have the ability to regenerate specific tissues, 
recapitulating mechanisms observed during morphogen-
esis (17). Experiments conducted by Stella et al (2) indicated 
that cardiotoxin‑degenerated skeletal muscles release tumor 
necrosis factor‑α (TNF‑α), which is affected by PrPC, a factor 
that is involved in both muscle differentiation and down-
stream signaling pathways. Thus, in vivo morphogenesis of 
adult injured muscle tissue can be influenced by PrPC. Their 
data also support the possibility that the activity of TNF‑α 
converting enzyme (TACE), which hydrolyzes TNF‑α from its 
precursor, is modulated by PrPC. Prospective in vitro studies 
may investigate this hypothesis and elucidate whether the 
two proteins (PrPC and TACE) interact directly or indirectly. 
The current review has provided a number of examples of the 
interaction of PrPC with extracellular proteins or neuronal 
membranes, e.g., its interaction with β‑secretase 1, which is 
glycosaminoglycan‑mediated, attenuates β‑secretase cleavage 
of the amyloid precursor protein  (66). Furthermore, the 
binding of PrPC to the N‑Methyl‑D‑aspartic acid receptor 
2D subunit attenuates glutamate‑induced Ca2+ influx (67). 
Lastly, the results also substantiated that in muscle tissue, 
the Akt signaling pathway and the regulation of p38 by PrPC 
have specific physiological significance. This also suggested 
that PrPC serves a significant role in the regeneration process, 
specifically in the proliferation and differentiation of myogenic 
precursor cells (2).

8. Conclusion

Recent studies have clearly established hypoxia and 
HIF‑1α as master regulators of stem cell growth factors. 
In hypoxia‑pretreated stem cells, HIF‑1α mainly controls 
angiogenesis and tissue regeneration factors, including HGF, 
VEGF and FGF. Hypoxia has also been revealed to increase 
the expression of the prion protein and growth factors involved 
in the function of cells and PrPC has been shown to be regu-
lated by HIF‑1α. Stella et al (2) have suggested that PrPC is 
involved in muscle differentiation and that it influences the 
morphogenesis of adult injured tissue in vivo. Additionally, 
regulation of the p38 and Akt signaling pathways by PrPC has 
clear physiologic importance in tissue in vivo, in addition to 
the promotion of tissue regeneration. In conclusion, the present 
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review summarized the essential roles of PrPC and HIF‑1α in 
the promotion of tissue regeneration and in the function of 
stem cells.
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