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Abstract
Scavenging	plays	a	vital	role	in	maintaining	ecosystem	health	and	contributing	to	eco-
logical	functions;	however,	research	in	this	sub-	discipline	of	ecology	is	underutilized	in	
developing	and	implementing	wildlife	conservation	and	management	strategies.	We	
provide an examination of the literature and recommend priorities for research where 
improved	understanding	of	scavenging	dynamics	can	facilitate	the	development	and	
refinement of applied wildlife conservation and management strategies. Due to the 
application	of	scavenging	research	broadly	within	ecology,	scavenging	studies	should	
be	implemented	for	informing	management	decisions.	In	particular,	a	more	direct	link	
should	be	established	between	scavenging	dynamics	and	applied	management	pro-
grams	related	to	 informing	pharmaceutical	delivery	and	population	control	through	
bait	uptake	for	scavenging	species,	prevention	of	unintentional	poisoning	of	nontarget	
scavenging	species,	the	epidemiological	role	that	scavenging	species	play	in	disease	
dynamics,	estimating	wildlife	mortalities,	nutrient	transfer	facilitated	by	scavenging	
activity,	and	conservation	of	imperiled	facultative	scavenging	species.	This	commen-
tary	is	intended	to	provide	information	on	the	paucity	of	data	in	scavenging	research	
and present recommendations for further studies that can inform decisions in wildlife 
conservation	and	management.	Additionally,	we	provide	a	 framework	 for	decision-	
making	when	 determining	 how	 to	 apply	 scavenging	 ecology	 research	 for	manage-
ment practices and policies. Due to the implications that scavenging species have on 
ecosystem	health,	and	their	overall	global	decline	as	a	result	of	anthropic	activities,	
it	is	imperative	to	advance	studies	in	the	field	of	scavenging	ecology	that	can	inform	
applied conservation and management programs.
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1  |  INTRODUC TION

Scavenging	is	an	important	ecological	function	that	plays	a	vital	role	
in	 maintaining	 ecosystem	 health	 by	 stabilizing	 food	 webs	 (DeVault	
et al., 2003;	Wilson	&	Wolkovich,	2011), reducing disease transmission 
by	decreasing	the	time	host	reservoirs	are	in	contact	(Ogada,	Torchin,	
et al., 2012),	and	increasing	nutrient	transfer	between	environments	
(Cederholm	 et	 al.,	1999)	 across	 the	 globe.	 Research	 in	 this	 growing	
sub-	discipline	of	ecology	continues	to	develop	our	understanding	of	
the role of carrion and scavenging in ecological processes. One topic 
of concern is the influence of anthropic activities on scavenger spe-
cies,	 and	 its	 detrimental	 effects	 to	 ecosystems	by	 altering	 competi-
tive	 interactions	 between	 microbes,	 invertebrates,	 and	 vertebrates	
and	reducing	ecosystem	services	and	functions	(Beasley	et	al.,	2015; 
Sebastián-	González	 et	 al.,	2019).	 Similarly,	wildlife	management	 and	
conservation	practices	can	have	both	direct	and	 indirect	 impacts	 to	
scavengers,	which	 can	 affect	 trophic	 interactions	within	 food	webs	
(DeVault	et	al.,	2003;	Wilson	&	Wolkovich,	2011). In addition to the im-
pacts of anthropic activities, it is important to consider the role of scav-
enging	in	other	areas	that	may	appear	unrelated,	such	as	documenting	
wildlife	 mortalities	 and	 estimating	 mortality	 correction	 factors	 for	
detectability	 and	 carcass	 removal	 (Smallwood	 et	 al.,	 2010; Teixeira 
et al., 2013),	and	understanding	how	aquatic	nutrients	can	be	moved	
across	terrestrial	landscapes	by	scavengers	(Cederholm	et	al.,	1999).

Although	research	in	this	area	is	growing,	there	is	an	apparent	dis-
connect	 between	 scavenging	 ecology	 and	 its	 use	 in	 the	 application	
of	 wildlife	 conservation	 and	 management	 practices	 (Mateo-	Tomás	
et al., 2019;	Newsome	et	al.,	2021).	Further,	 it	has	become	apparent	
that	immediate	action	should	be	taken	to	conserve	scavenger	species	
and	develop	policies	for	managing	carrion,	particularly	from	farming,	
hunting,	and	fishing	discards	(Mateo-	Tomas	&	Olea,	2018). This review 
aims	to	compile	and	summarize	the	specific	areas	where	scavenging	
ecology	 can	 be	 further	 integrated	 into	 management	 and	 conserva-
tion	plans	and	applications.	For	example,	although	there	has	been	a	

surge	 of	 research	 investigating	mortalities	 of	 birds	 and	mammals	 at	
wind	farms	in	response	to	the	acceleration	of	wind	energy	production	
(Johnson	et	al.,	2002),	 there	has	been	 little	effort	 to	elucidate	scav-
enging	dynamics	associated	with	animal	mortalities	at	these	facilities,	
despite the application of such information to management decision 
making	(DeVault	et	al.,	2017).	Similarly,	as	human	populations	increase,	
road	use	and	wildlife	vehicular	mortality	often	increases	as	well.	Hill	
et	al.	(2020)	noted	that	vehicle	mortality	of	North	American	mammals	
has	increased	4-	fold	in	the	last	five	decades	(1965–	2017),	highlighting	
the	need	for	scavenging	research	during	roadway	and	bridge	develop-
ment	and	planning.	Given	the	declining	populations	of	many	scavenger	
species	globally,	coupled	with	the	underrepresentation	of	scavenging	
ecology	in	the	literature	(Olea	et	al.,	2019), there is a need for more ex-
plicit integration of scavenging studies into the developmental stages 
of	wildlife	conservation	and	management	strategies.	Our	objective	is	
to	review	the	scientific	literature	to	identify	areas	within	the	broad	top-
ics	of	poisoning,	bait	uptake,	conservation,	wildlife	mortalities,	wildlife	
diseases,	 and	 nutrient	 transfer	 where	 scavenging	 ecology	 research	
should	be	focused	for	implementation	of	contemporary	wildlife	con-
servation and management practices. In addition, we provide a frame-
work	for	determining	if	and	how	scavenging	research	can	be	applied	
to	management	practices	and	policies	(Figure 1).	We	focus	our	review	
on	the	delivery	of	pharmaceuticals	through	baiting	operations,	poison	
bait	uptake	by	nontarget	scavengers	during	nuisance	wildlife	control	
operations,	 the	 epidemiological	 role	 that	 scavengers	 play	 in	wildlife	
disease	dynamics,	documenting	wildlife	mortalities	to	ensure	an	accu-
rate count of carcasses, the transfer of nutrients through scavenging, 
and conservation of imperiled scavengers.

2  |  METHODS

We	performed	a	systematic	literature	search	to	obtain	English	lan-
guage	 peer-	reviewed	 scientific	 articles	 for	 publication	 dates	 up	

F I G U R E  1 A	decision-	making	
framework for determining when and 
how to integrate scavenging research into 
management and conservation planning
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to	and	 including	April	2022.	The	search	was	conducted	 in	Google	
Scholar	and	Web	of	Science	by	combining	the	following	keywords:	
“scavenging	ecology*”	and	“management*”,	“nontarget	species*”	and	
“poison*”	 and	 “bait	 uptake*”,	 and	 “scavenging	 species*”	 with	 “bait	
uptake*”,	 “conservation*”,	 “carcass	 counts*”,	 “wildlife	mortalities*”,	
“wildlife	 diseases*”,	 and	 “nutrient	 transfer*”.	 Following	 the	 recom-
mendations	of	Haddaway	et	al.	 (2015), we focused within the first 
300	Google	Scholar	results	to	include	gray	literature	in	this	review.	
When	we	found	a	study	related	to	these	topics,	we	included	related	
manuscripts from the literature cited section and literature that 
referenced	 that	 publication.	 This	 search	 yielded	 107	 papers	 that	
we	 reviewed	 for	 this	 study.	Our	 primary	 goal	was	 to	 find	 articles	
on	scavenging	ecology	studies	and	knowledge	gaps	in	the	literature	
pertaining	to	scavenging	species	or	ecosystem	processes	 linked	to	
scavenging	 that	 could	 potentially	 be	 applied	 to	 future	 studies	 to	
inform conservation and management decisions. Therefore, this is 
a	review	that	compiles	relevant	scavenging	ecology	studies	with	a	
guide for application of scavenging research in conservation and 
management decisions.

3  |  BAIT UPTAKE FOR SC AVENGERS

The	 practice	 of	 bait	 uptake	 for	 pest	 eradication,	 invasive	 species	
population	control,	and	delivery	of	pharmaceuticals	is	used	globally	
for	a	broad	range	of	taxa	such	as	foxes	(Trewhella	et	al.,	1991), cats 
(Short	et	al.,	1997),	rodents	(Brunton	et	al.,	1993),	wild	pigs	(Sus scrofa; 
Beasley	et	al.,	2021; Cowled et al., 2007),	and	many	other	species.	In	
particular,	oral	vaccination	programs	have	been	established	to	man-
age	rabies	in	numerous	carnivore	species	such	as	red	foxes	(Vulpes 
vulpes)	in	Europe	(Brochier	et	al.,	1990)	and	raccoons	(Procyon lotor) 
in	the	US	(Slate	et	al.,	2009).	Similarly,	baiting	programs	have	been	
used for the control of parasites, such as Baylisascaris procyonis in 
Allegheny	woodrats	 (Neotoma magister; Page et al., 2011), and to 
protect	wild	Tasmanian	devils	 (Sarcophilus harrisii) from devil facial 
tumors	 (Dempsey	 et	 al.,	2022).	Many	 of	 these	 programs	 incorpo-
rate	species-	specific	flavor	preferences	into	the	formulation	of	bait	
matrices.	However,	baiting	efforts	for	facultative	scavengers	could	
benefit	 from	a	broader	 integration	of	assessments	routinely	quan-
tified	 through	 studies	 of	 scavenging	 dynamics,	 such	 as	 behavioral	
interactions	with	baits,	time	to	detection,	interspecific	interactions	
and	 competition	 for	 baits,	 and	 abiotic	 and	biotic	 factors	 affecting	
bait	acceptance	and	detection.

Another	area	primed	for	bait	uptake	research	focuses	on	 inva-
sive	vertebrate	scavengers,	which	have	been	introduced	to	all	parts	
of	the	world.	Although	some	non-	native	species	provide	resources	
and economic gains for humans, others cause serious detrimental 
effects such as the spread or introduction of diseases, environmen-
tal degradation, and competition with or predation of native species. 
In	 the	US	 alone,	 hundreds	 of	 vertebrate	 species	 have	 been	 intro-
duced	and	have	established	breeding	populations	(Pitt	et	al.,	2018), 
causing	 environmental	 damages	 and	 losses	 up	 to	 $120	 billion	 per	
year	(Pimentel	et	al.,	2005). It is estimated that invasive species are 

involved	in	86%	of	extinctions	of	island	species	and	are	endangering	
hundreds	of	extant	vertebrate	species	(Spatz	et	al.,	2017).	Many	of	
these	 invasive	mammals,	 including	 rats	 (Rattus sp.),	pigs,	cats	 (Felis 
catus),	dogs	(Canis familiaris),	and	mice	(Mus sp.), are facultative scav-
engers	that	may	be	eradicated	by	poison	bait	uptake.	For	example,	
feral	cats	are	eliminating	native	species	on	Little	Cayman	Island	 in	
the	 Caribbean.	 The	Department	 of	 Environment	 and	Department	
of	Agriculture	 intend	to	trap	and	humanely	euthanize	all	 feral	cats	
(Department	of	Environment,	2021); however, if the feral cat pop-
ulation requires additional measures for eradication, a scavenging 
study	to	assess	bait	type,	bait	flavor,	the	impact	on	non-	target	spe-
cies,	and	other	criteria	as	outlined	above	 is	recommended	prior	to	
implementation	of	a	plan.	Additionally,	along	with	red	foxes,	it	is	es-
timated	that	feral	cats	kill	over	2	billion	animals	per	year	in	Australia	
(Stobo-	Wilson	et	al.,	2022).	 Invasive	vertebrates	 tend	 to	be	highly	
efficient	facultative	scavengers	 (Abernethy	et	al.,	2016), so once a 
species	 is	established,	management	is	often	focused	around	eradi-
cation	and	control	(Genovesi,	2005),	and	scavenging	studies	can	be	
used	to	guide	decision-	making	(Figure 2a).	We	suggest	that	studies	
exploring	biotic	and	abiotic	factors	influencing	carcass	consumption	
across	scavenger	species	(DeVault	et	al.,	2017;	Stiegler	et	al.,	2020) 
become	more	 routinely	 integrated	 into	 the	management	 planning	
process	to	help	managers	pinpoint	the	most	effective	delivery	of	bait	
or pharmaceuticals for target species.

4  |  UNINTENTIONAL POISONING OF 
SC AVENGERS

4.1  |  Nontarget species

Poison	baits	are	used	worldwide	for	nuisance	wildlife	control,	yet,	
can	 be	 consumed	 by	 nontarget	 species,	 primarily	 scavengers	 that	
are	susceptible	to	secondary	poisoning	by	feeding	on	poisoned	car-
casses	of	the	target	or	other	nontarget	species	(Figure 2b). There is 
a	common	misconception	that	species	succumbing	to	toxicants	may	
perish	 in	 areas	 inaccessible	 to	 scavengers	 and	 be	 decomposed	by	
invertebrates	 and	microbes	 (Howald	 et	 al.,	1999); however, there 
is growing awareness that carcasses of poisoned animals are often 
readily	accessible	and	consumed	by	vertebrate	scavengers	 (Ogada	
et al., 2016;	Smith	et	al.,	2016) and even carcasses suspended in veg-
etation	or	underground	are	often	scavenged	by	vertebrates	(DeVault	
&	Krochmal,	2002).

Anticoagulant	 rodenticides	 (ARs)	 are	 used	 globally	 in	 poison	
baits	 for	 rodent	 population	 control,	 and	 although	 some	 risk	 miti-
gation	measures	have	been	instituted,	such	as	safe	disposal	of	poi-
soned	rodents	and	tamper-	resistant	bait	boxes	(Buckle	&	Prescott,	
2018),	the	efficacy	of	these	measures	and	sublethal	and	nontarget	
impacts	of	rodent	control	are	often	unknown.	Koivisto	et	al.	(2018) 
investigated	the	effects	of	ARs	on	scavenger	and	predator	species	
in	Finland,	and	discovered	AR	residues	in	82%	of	the	liver	samples	
taken.	Similarly,	Montaz	et	al.	(2014)	compared	seasonality	and	rich-
ness	of	species	scavenging	rodents	exposed	to	ARs	in	France.	They	
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concluded	multiple	scavenging	species	were	present	 in	their	study	
and	vulnerable	to	AR	exposure;	but	raptors,	particularly	the	red	kite	
(Milvus milvus)	 and	 common	buzzard	 (Buteo buteo),	 both	protected	
species	in	Europe,	may	be	declining	in	numbers	due	to	rodenticides	
after consuming poisoned rodent carrion. These and other studies 
evaluating	 effects	 of	 poison	 bait	 uptake	 on	 nontarget	 species	 are	
often	 undertaken	 after	 eradication	 plans	 have	 been	 implemented	
(Howald	et	al.,	1999;	Hughes	et	al.,	2013).	However,	we	advocate	the	
incorporation of scavenging studies into the developmental process 
of management practices for nuisance species, prior to field imple-
mentation	 of	management	 regimes	 using	 toxicants,	 to	 proactively	
mitigate	effects	on	nontarget	species.	For	example,	a	feral	cat	(Felis 
catus)	eradication	study	was	conducted	in	Australia	using	non-	toxic	

baits	to	assess	uptake	by	nontarget	species	before	deploying	toxic	
baits	(Hohnen	et	al.,	2020).	They	concluded	that	99%	of	identifiable	
bait	 takes	were	 consumed	by	 nontarget	 species,	 including	 several	
endangered	species,	indicating	an	alternative	bait	should	be	consid-
ered	for	feral	cat	eradication.	Furthermore,	many	poisons	can	bioac-
cumulate	(Geduhn	et	al.,	2015), highlighting the complexities of how 
bait	uptake	can	affect	food	web	dynamics,	apex	predators,	and	eco-
system	functions.	Such	proactive	assessments	of	nontarget	impacts	
of poisoning campaigns are infrequent; however, such assessments 
are	vital	in	the	developmental	stages	of	contemporary	management	
plans	for	nuisance	species.	For	example,	eradication	efforts	for	mice	
in	the	South	Farrallon	Islands,	USA	are	currently	in	the	planning	pro-
cess	(U.S.	Fish	and	Wildlife	Service,	2021). The goal is to restore local 

F I G U R E  2 Recommendations	of	scavenging	ecology	studies	for	wildlife	conservation	and	management	practices.	Photo	credits:	(a)	
black	bear	and	raccoon	(Jessy	Patterson),	vultures	on	elephant	carcass	(C	fallows,	AJ	Gallaghers,	N	Hammerschlag,	CC	License),	Norway	
rat	(reg	McKenna,	CC	License).	(b)	Lappet-	faced	vulture	(Bernard	Dupont,	CC	License),	California	condor	(chuck	Szmurlo,	CC	License).	(c)	
Fish	die-	off	(USFWS,	CC	License),	Indian	vulture	(Shantanu	Kuveskar,	CC	License),	coyote	feeding	on	deer	discards	(NPS,	CC	License),	
coyote	investigating	coyote	carcass	(Miranda	Butler-	Valverde).	(d)	Wind	turbines	(Raju	Kasambe,	CC	License),	CWD	deer	(Terry	Kreeger,	
CC	License).	(e)	Blow	flies	on	porcupine	carcass	(Paul	venter,	CC	license),	maggots	on	opossum	carcass	(Tim	Vickers,	CC	license),	bald	eagle	
(Yathin	S.	Krishnappa,	CC	license),	red-	shouldered	hawk	(Jessy	Patterson).	(f)	Vultures	on	cow	carcass	(Bernard	Dupont,	CC	license),	lion	
(Clement	Cardot,	CC	license)
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endemic	populations	of	species	that	are	decimated	by	mice	and	rat	
populations	 (e.g.,	camel	crickets,	arboreal	salamanders,	plants)	and	
petrels	that	are	preyed	upon	by	owls	that	are	attracted	to	the	island	
by	mice	 and	 rats.	 Prior	 to	 dissemination	 of	 AR-	laced	 grain	 pellets	
throughout the island for rodents to feed on, scavenging studies to 
determine	the	use	of	dead	rodents	by	scavengers	could	be	useful	in	
preventing	non-	target	species	consumption	and	potential	bioaccu-
mulation of local species.

As	the	only	 terrestrial	obligate	vertebrate	scavengers,	vultures	
are	especially	vulnerable	to	the	effects	of	unintentional	poisoning,	
and	many	vulture	species	are	in	decline	and	endangered.	Although	
the causes of vulture declines are complex and multifaceted, in-
tentional and unintentional poisoning remains a top threat to the 
recovery	 of	 populations.	 For	 example,	 poisoning	 of	 Asian	 (Gyps) 
vultures	through	ingestion	of	nonsteroidal	anti-	inflammatory	drugs	
administered	 to	 livestock,	 particularly	 diclofenac-	sodium,	 reduced	
the	vulture	numbers	by	over	95%	(Green	et	al.,	2004).	In	2006,	the	
India	government	enforced	a	ban	on	production,	 importation,	 and	
sale of diclofenac products that slowed vulture population declines. 
However,	diclofenac	is	still	used	in	other	countries	and	without	ade-
quate	regulation	there	could	be	detrimental	effects	to	other	vulture	
populations	 (Margalida	et	al.,	2014).	 In	Africa,	human-	wildlife	con-
flict	between	farmers	and	megafauna	led	to	the	poisoning	of	more	
than	400	vultures;	unintentionally	through	the	consumption	of	poi-
soned	baits	or	poisoned	carcasses,	and	intentionally	by	poachers	to	
prevent	detection	 (Ogada	et	al.,	2016;	Safford	et	al.,	2019). These 
circumstances have elucidated the detrimental effects that declin-
ing	vulture	populations	can	have	on	ecosystem	services,	economic	
activity,	and	human	health	(Markandya	et	al.,	2008;	Morales-	Reyes	
et al., 2017).

4.2  |  Lead poisoning

Unintentional lead poisoning through ingestion of spent shot and 
bullets	 has	 similarly	 been	 identified	 as	 a	 threat	 to	 many	 raptors,	
including	 the	 critically	 endangered	 California	 Condor	 (Gymnogyps 
califonianus; Figure 2b),	 declining	Andean	Condor	 (Vultur gryphus), 
and	 Old	 World	 vultures	 (Griffon	 vulture;	 Gyps fulvus), as well as 
mammals	(Mctee	et	al.,	2019). Lead exposure can result in reduced 
fecundity,	increased	bone	fragility,	and	higher	susceptibility	to	infec-
tion	 (Garvin	et	al.,	2020). To date, 33 countries have implemented 
restrictions	on	the	use	of	lead	ammunition	to	mitigate	this	problem	
(Garvin	et	al.,	2020),	and	efforts	should	be	made	to	determine	the	
efficacy	of	these	legislative	actions.	Recently,	Ellis	and	Miller	(2022) 
published	 results	 determining	 the	 efficacy	 of	 the	 lead	 ammuni-
tion	ban	in	Illinois,	USA,	indicating	a	reduction	in	crippling	rates	for	
both	ducks	 and	geese	 after	 implementation	of	 the	ban.	These	 re-
sults	 counter	 the	 expectations	 of	many	 hunters	 and	 show	 a	 posi-
tive	and	unexpected	outcome	for	lead	ammunition	bans.	In	addition,	
Green	et	al.	(2022) found lower levels of lead in raptor liver tissues 
in	Denmark	compared	with	data	from	countries	without	a	ban,	 in-
cluding	pre-	ban	Denmark.	We	recommend	similar	studies	be	applied	

across	the	globe	and	considered	when	discussing	implementation	of	
lead ammunition restrictions.

Due to the worldwide decline of scavenger species and the im-
perative	 roles	 they	 play	 in	 ecosystems	 (DeVault	 et	 al.,	 2016), we 
must focus our attention on understanding how various methods 
for	unintentional	poisoning	can	alter	 food	web	dynamics	and	eco-
system	function.	Additional	studies,	such	as	those	exploring	optimal	
bait	types	and	bait	distribution	strategies	that	minimize	impacts	to	
nontarget	species,	should	be	prioritized	in	any	control	strategies	im-
plementing	toxicants	 (Snow	et	al.,	2018).	We	also	recommend	fur-
ther exploration into alternative strategies of wildlife control other 
than	employing	toxicants,	such	as	lights,	noises,	and	electric	fences	
(Lozano	et	 al.,	2019), as well as further research into contaminant 
and	toxicant	biomagnification	in	scavenging	species,	and	sub-	lethal	
effects of contaminant/toxicant exposure to scavengers and other 
wildlife.

5  |  DISE A SE IMPLIC ATIONS

Another	 important	 area	of	 research	primed	 for	 growth	 is	 the	epi-
demiological	role	that	scavenging	species	play	in	disease	dynamics,	
for	both	wildlife	and	humans.	There	are	still	many	knowledge	gaps	
relative	 to	 the	effects	different	 species	have	on	disease	dynamics	
and	the	underlying	conditions	and	circumstances	in	which	scaveng-
ing	enhances	or	suppresses	disease	spread	(Figure 2c).

Carrion	 is	 available	 and	 sometimes	 abundant	 throughout	 var-
ious	 regions	 across	 the	 globe,	 accumulating	 large	 amounts	 of	 ani-
mal	 biomass	 through	 natural	 mortality,	 predation,	 mass	 die-	offs	
(e.g.,	 from	 natural	 disasters,	 algal	 blooms,	 diseases,	 spawning	
salmon),	 and	 human	 provisions	 (e.g.,	 culling,	 hunting/fisheries	 dis-
cards;	Moleón	et	al.,	2019).	Surpluses	of	carcasses	on	a	landscape,	
sometimes	abrupt	and	massive,	can	increase	potential	for	pathogen	
spread,	and	are	increasing	in	frequency	with	global	change	(Thomas	
et al., 2004).	Regardless	of	how	carrion	is	generated,	both	vertebrate	
and	invertebrate	scavenging	species	often	reduce	the	time	in	which	
a carcass is decomposing on the landscape, reducing the time avail-
able	for	diseases	to	spread	(Hill	et	al.,	2018;	Mackey	&	Kribs,	2021). 
Invertebrate	scavengers	are	particularly	productive	in	carrion	mass	
loss,	accounting	for	the	removal	of	up	to	90%	of	tissues	from	ver-
tebrate	carcasses	within	several	days	(Payne,	1965).	Consequently,	
there	can	be	a	cascading	effect	resulting	in	rampant	disease	spread	
when	scavenger	species	are	removed	from	the	landscape.	For	exam-
ple,	the	Asian	vulture	crisis	in	India	resulted	in	a >95%	decline	in	vul-
ture	numbers.	As	a	result,	feral	dogs	became	the	primary	consumer	
of	carcasses	and	their	population	numbers	increased.	As	feral	dogs	
are	a	main	 reservoir	 for	 rabies,	 this	may	have	 resulted	 in	 a	higher	
rate of virus transmission and increased human risk for infection 
(Markandya	et	al.,	2008; Ogada et al., 2016).

There	are	still	many	unanswered	questions	that	should	be	con-
sidered for future scavenging studies that can inform conservation 
and	management	decisions,	especially	regarding	mass	die-	offs	and	
pulses	in	carrion	resources.	Very	few	studies	have	focused	on	mass	
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mortality	events	(MMEs)	due	to	their	unpredictable	nature,	specifi-
cally	how	they	affect	scavenging	communities,	disease	spread,	and	
ecosystem	health	(Tomberlin	et	al.,	2017).	Consequently,	we	encour-
age future studies explore the influence of scavenging species on 
disease	dynamics	at	MMEs	and	changes	in	vertebrate	and	inverte-
brate	behavior	as	a	result	of	MMEs	(Frank	et	al.,	2020),	particularly	
given	 the	 anticipated	 increased	 frequency	 of	 these	 events	 due	 to	
climate	change	and	other	anthropogenic	 factors.	Additionally,	due	
to	their	unpredictability,	we	encourage	consideration	of	integrating	
simulated	MMEs	into	future	studies,	as	that	allows	replication	and	
gathering of data on initial conditions of the environment prior to 
the	MME.	Further,	simulations	provide	an	opportunity	to	control	the	
environment	(i.e.,	fencing	the	area	to	prevent	vertebrate	scavengers	
and	assess	only	invertebrate	activity)	to	assess	ecosystem	processes	
without	confounding	factors	(Lashley	et	al.,	2018).

Although	 scavengers	 provide	 ecosystem	 services	 by	 removing	
decomposing	carcasses	(Grilli	et	al.,	2019;	Markandya	et	al.,	2008), 
in some circumstances, scavengers also might act as pathogen vec-
tors	by	transporting	 infectious	materials	to	other	areas.	For	exam-
ple,	 though	 vultures	 are	 thought	 to	 be	 particularly	 well-	suited	 to	
inhibit	 disease	 spread	 when	 consuming	 carrion	 by	 utilizing	 highly	
acidic	stomach	secretions	that	destroy	nearly	all	microbes	(Houston	
&	Cooper,	1975)	and	might	greatly	 reduce	the	chance	of	 infection	
from	a	decomposing	carcass	(Ogada,	Keesing,	&	Virani,	2012), some 
microbes	can	survive	the	vulture	digestive	tract	and	be	regurgitated	
or	 passed	 through	 feces	 (Houston	 &	 Cooper,	 1975).	 Additionally,	
more	 recent	 studies	 show	 the	pH	of	New	World	 vulture	 stomach	
secretions	are	no	more	acidic	than	non-	scavenging	avian	species	and	
domestic	fowl	(Graves,	2017).	It	is	also	speculated,	but	has	not	been	
previously	investigated,	that	vultures	and	other	migratory	birds	can	
carry	pathogenic	organisms	from	carrion	sites	on	their	feet,	poten-
tially	 facilitating	 disease	 spread	 (Ogada,	 Keesing,	 &	 Virani,	 2012). 
Likewise,	 increased	pathogen	 transmission	 rates	between	hosts	at	
supplemental	 feeding	 stations	 (SFS)	 have	 been	 reported	 (Murray	
et al., 2016),	and	vultures	are	likely	infected	by	zoonotic	Salmonella 
strains	from	carcasses	provided	at	SFS	(Marin	et	al.,	2018).	Finally,	
VerCauteren	 et	 al.	 (2012)	 concluded	 that	American	 crows	 (Corvus 
brachyrhynchos),	 a	 common	 facultative	 scavenger,	 are	 able	 to	pass	
infectious	 prions	 in	 their	 feces	 after	 consuming	prion-	positive	 tis-
sues,	such	as	those	from	transmissible	spongiform	encephalopathy	
(TSE)	diseases	including	chronic	wasting	disease,	scrapie,	and	bovine	
spongiform	 encephalopathy.	 Alternatively,	 it	 was	 previously	 spec-
ulated	 that	 scavenging	 species	 played	 a	 critical	 role	 in	 the	 spread	
of	 anthrax	 by	 scavenging	 infected	 carcasses,	 but	 now	 it	 is	 under-
stood	they	do	not	increase	transmission	(Bellan	et	al.,	2013), adding 
to the complexities of our understanding of scavenging and disease 
dynamics.

As	outlined	above,	available	evidence	suggests	scavengers	act	to	
suppress	disease	spread	overall,	but	it	is	unclear	whether	scavenging	
species	might	contribute	to	the	spread	of	diseases	in	some	circum-
stances, and thus this remains an area where additional research is 
critically	needed.	Avian	scavengers,	in	particular,	could	facilitate	the	
spread	of	disease	between	SFS,	and	given	that	there	are	successful	

“vulture	restaurants”	in	countries	such	as	Nepal	and	India,	we	recom-
mend	further	studies	be	conducted	in	controlled	environments	like	
these	to	provide	data	that	can	inform	decision-	making	in	future	SFS	
management	policies	 and	practices.	 Further,	 Theimer	 et	 al.	 (2017) 
found	 the	 rabies	 virus	 was	 transmitted	 to	 scavenging	mesocarni-
vores	 after	 ingesting	 infected	 dead	 bats.	 Striped	 skunks	 (Mephitis 
mephitis)	were	the	primary	scavenger	consuming	bats,	but	raccoons,	
gray	 foxes	 (Urocyon cinereoargenteus), and domestic cats also con-
sumed	bat	carcasses,	acting	as	potential	vectors	for	the	rabies	virus.	
Although	recent	studies	have	elucidated	the	complexities	associated	
with the landscapes of fear and disgust and scavenging of conspe-
cifics, there are still areas to investigate such as animal responses 
to	signals	associated	with	parasite	risk	(Gonzálvez	et	al.,	2021), and 
parasite	risk	in	relation	to	carcass	size,	ecosystem	type,	and	season	
(Moleón	&	Sánchez-	Zapata,	2021).	 In	 addition	 to	 vertebrate	 scav-
engers,	we	advocate	for	further	studies	on	 invertebrates	that	visit	
carrion,	such	as	carrion	flies	(Hall	et	al.,	2019), ants, and mosquitoes, 
for	a	holistic	contribution	to	understanding	disease	spread	 in	rela-
tion to scavenging.

6  |  DOCUMENTING MORTALITIES

As	outlined	above,	wildlife	mortalities	occur	for	many	different	rea-
sons	 and	 result	 in	 carcasses	 distributed	 across	 broad	 landscapes.	
To understand population declines and anthropogenic causes of 
mortality,	 it	 is	 imperative	to	accurately	quantify	wildlife	carcasses.	
Previous studies have quantified carcass counts for various species 
or	 taxonomic	 groups	 due	 to	mortality	 from	many	 sources	 includ-
ing	poisoning	(Vyas,	1999),	roadway	collisions	(Langen	et	al.,	2007), 
collisions	 with	 infrastructure	 (Loss	 et	 al.,	 2015), and wildfires 
(Silveira	 et	 al.,	1999).	 Estimating	 carcass	numbers	 can	be	 complex	
due	 to	 difficulty	 in	 detecting	 carcasses	 and	 because	 carcass	 re-
moval	 is	 likely	 to	occur	by	 vertebrate	 scavengers	or	 decomposers	
(Smallwood	 et	 al.,	 2010; Teixeira et al., 2013)	 before	 counts	 can	
be	made.	Estimating	correction	 factors	 is	also	necessary	 for	accu-
rately	documenting	wildlife	mortalities.	However,	aside	from	avian	
mortalities, few studies estimate correction factors to account for 
scavenger	 removal.	This	 is	certainly	an	area	primed	for	 further	 in-
vestigation,	 as	 scavenging	 research	 can	 play	 an	 important	 role	 in	
better	 understanding	 mortality	 rates	 and	 estimating	 correction	
factors.	With	 increased	 recognition	 that	 scavengers	 skew	 carcass	
quantification and the known application of such information to 
structured	 decision-	making	 for	wildlife	 conservation	 and	manage-
ment	(DeVault	et	al.,	2017), we recommend further studies focus on 
how	specific	carcass	types	are	used	and	how	carcass	size	and	habi-
tat	 can	 influence	 scavenging	 rates	 to	 fine-	tune	our	understanding	
of	 the	 complexities	 of	 carrion-	scavenger	 relationships	 (Figure 2d). 
For	example,	unprecedented	wildfires	occurred	over	the	last	several	
years	across	Australia,	Russia,	the	western	United	States,	Brazil,	and	
many	more	countries	across	the	globe.	Carcass	counts	to	quantify	
the	number	of	 species	 and	 individuals	 that	 succumbed	 to	 the	 fire	
may	be	conducted,	but	an	estimation	factor	to	account	for	removal	
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of	carcasses	by	scavengers	would	result	 in	a	more	reliable	estima-
tion.	Additionally,	during	 the	environmental	 review	process	 for	 in-
frastructure	 project	 planning	 for	 roadway	 construction,	 wildlife	
fencing,	crossing	structures,	and	detection	systems	are	often	con-
sidered to mitigate impacts on wildlife. During assessment of the ef-
ficacy	of	these	mitigation	plans,	particularly	those	involving	wildlife	
vehicle collisions, scavenging of carcasses and producing estimation 
factors	to	account	for	skewed	counts	should	be	considered.

Accurately	quantifying	carrion	biomass	is	imperative	for	manag-
ing	carrion	resources,	which	play	a	critical	role	in	ecosystem	health	
and	function	through	nutrient	cycling	and	providing	food	resources	
for	scavenging	species.	However,	quantitative	data	on	carrion	bio-
mass	are	largely	lacking,	and	thus	the	direct	roles	that	carrion	plays	
in	ecosystem	health	are	not	fully	understood	 (Barton	et	al.,	2019). 
In	addition	to	MMEs,	there	are	many	incidences	resulting	in	the	dis-
tribution	 (or	 lack	 thereof)	of	 carrion	biomass.	For	example,	 recent	
studies	have	highlighted	 the	decline	 in	carrion	biomass	availability	
(both	from	livestock	and	big	game)	due	to	sanitary	restrictions	and	
regulations	imposed	on	carrion	removal	(Margalida	&	Moleon,	2014; 
Morales-	Reyes	et	al.,	2015). The removal of carcasses reduces a food 
source for scavenger species and could have detrimental effects 
on	 the	 ecosystem.	 Additionally,	when	 estimating	 carrion	 biomass,	
it	 is	 important	 to	make	 a	 distinction	 between	 carrion	 production,	
or	 a	 function	 of	mortality	 and	 carrion	 availability,	 which	 depends	
on	carrion	production	and	other	factors	 (i.e.,	habitat,	season,	etc.).	
Very	 few	studies	quantify	both	carrion	production	and	availability	
in	 space	 and	 time,	 and	 should	 be	 considered	 for	 future	 research	
(Moleón	et	al.,	2020).	Although	little	is	known	about	estimating	car-
rion	biomass,	recent	studies	have	provided	a	framework	that	can	be	
implemented	for	management	purposes	(Barton	et	al.,	2019;	Moleón	
et al., 2019;	Morant	 et	 al.,	2022); however, additional studies are 
needed	to	apply	this	framework	across	a	broad	range	of	ecosystems.	
In particular, we recommend the application of this framework to 
ecosystems	 or	 areas	 with	 imperiled	 and/or	 protected	 scavenging	
species, areas with growing populations of ungulates that are recol-
onizing	abandoned	rural	areas	(Morant	et	al.,	2022), and studies fo-
cusing	on	the	contribution	of	invertebrate	carcasses	to	total	carrion	
biomass.

7  |  NUTRIENT TR ANSFER

There is a growing understanding of the importance that scavenging 
plays	in	connecting	food	webs	(Beasley	et	al.,	2019), and facultative 
scavenging	can	result	in	an	estimated	16-	fold	increase	in	food	web	
linkages	(Wilson	&	Wolkovich,	2011).	As	more	linkages	are	formed,	
food	 webs	 become	 more	 connected	 and	 stable	 (McCann,	 2000). 
Although	 many	 scavenging	 links	 are	 poorly	 understood,	 linkages	
involving	 the	 transfer	 of	 nutrients	 between	 ecosystems	 are	 par-
ticularly	 unclear	 (Ballinger	&	 Lake,	 2006; Cederholm et al., 1999). 
Scavengers	 undoubtedly	 play	 a	 role	 in	 moving	 resources	 and	 nu-
trients	 between	 adjacent	 ecosystems,	 but	 the	 degree	 to	 which	
this	 occurs	 and	 the	 resulting	 effects	 on	 ecosystem	 health	 should	

be	investigated	further	(Schlichting	et	al.,	2019).	Also,	few	data	are	
available	discussing	 the	 importance	of	 aquatic	 carrion	 for	 survival	
and reproduction of terrestrial scavengers, and more detailed stud-
ies	are	needed	to	examine	these	linkages	(Rose	&	Polis,	1998). This 
is an area of research primed for growth that has extensive implica-
tions	for	species	and	ecosystem	conservation,	and	we	recommend	
studies	exploring	inter-		and	intra-	ecosystem	linkages	via	scavenging	
and	the	fate	and	scavenging	rate	of	aquatic	carcasses	by	terrestrial	
vertebrates,	(Figure 2e).

Food	web	 linkages	 and	 interactions	 between	 vertebrate	 scav-
engers,	 invertebrate	 scavengers,	 and	 decomposers	 in	 terrestrial	
environments	 have	 been	 addressed	 in	 the	 literature	 (DeVault	
et al., 2003, 2004;	Tomberlin	et	al.,	2017);	however,	many	questions	
remain. Understanding how changes in species interactions and 
carrion	 food	webs	could	modify	ecosystem	functions	 is	extremely	
important,	yet,	very	few	studies	have	compared	communities	across	
taxonomic	groups	(Barton	&	Bump,	2019).	Although	it	is	understood	
that	large	apex	predators	can	affect	invertebrate	assemblages,	little	
is	known	about	the	importance	of	predator-	produced	carrion	to	in-
vertebrates	and	decomposers	(Barry	et	al.,	2019).	Another	area	re-
quiring	attention	is	MMEs	and	the	affects	they	have	on	decomposer	
communities, how massive amounts of carrion in a single landscape 
modify	nutrient	 cycling,	 and	how	plant	 communities	 are	 impacted	
(Tomberlin	et	al.,	2017).	Finally,	more	studies	should	focus	on	interac-
tion	pathways	between	vultures,	carrion,	large	carnivores,	and	their	
prey,	with	emphasis	on	food-	web	dynamics	to	understand	ecosys-
tem	stability	as	vertebrate	scavenging	populations	decline	(Moleón	
et al., 2014).	We	recommend	the	incorporation	of	these	topics	into	
future	studies	to	fully	elucidate	nutrient	transfer	between	scavenger	
assemblages	and	decomposers.

Previous studies have focused on investigations of terrestrial 
inputs	into	aquatic	ecosystems;	yet,	the	flow	of	aquatic-	derived	nu-
trients	into	terrestrial	ecosystems	also	can	have	a	significant	impact	
on	 food	web	dynamics	by	altering	productivity	and	predator–	prey	
interactions	 (Ballinger	 &	 Lake,	 2006).	 Salmon	 carcasses	 provide	
marine-	derived	 nutrients	 to	 stream	 habitats,	 increasing	 nutrient	
contributions	to	freshwater	environments	(Cederholm	et	al.,	1999), 
whereas terrestrial environments can also receive an influx of these 
nutrients.	 Reproductive	 cycles	 and	 seasonal	 distributions	of	 some	
vertebrate	scavengers,	such	as	the	bald	eagle	(Haliaeetus leucoceph-
alus;	Hunt	et	al.,	1992),	mink	(Mustela vison;	Ben-	David,	1997), and 
grizzly	bear	 (Ursus arctos horribilis;	Hilderbrand	et	 al.,	 1996) corre-
spond	with	spawning	of	salmon,	and	salmon-	derived	nutrients	can	
have	a	 fertilizing	effect	on	riparian	plants	 through	carcass	decom-
position	or	deposition	of	fecal	matter	(Cederholm	et	al.,	1999). This 
is	still	a	poorly	understood	area	that	requires	more	focus	and	could	
inform	 management	 decisions	 for	 salmonids	 within	 the	 National	
Oceanic	 and	 Atmospheric	 Administration	 (NOAA)	 Fisheries	 man-
agement	plans	and	the	Pacific	Fishery	Management	Council,	which	
subsequently	could	affect	scavenger	species	and	ecosystem	health.	
Furthermore,	 if	 ecosystem-	based	 management	 is	 a	 priority,	 as	
seen	implemented	throughout	United	States	by	the	Environmental	
Protection	Agency	 (Lewis	et	al.,	2020),	 the	scavenging	community	
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should	be	considered	during	planning.	We	also	encourage	consider-
ation of this concept applied to the future management of freshwa-
ter fish species worldwide.

8  |  CONSERVATION OF SC AVENGERS

We	must	understand	carcass	acquisition	and	competition	between	
obligate	scavengers,	facultative	scavengers,	and	decomposers	to	ef-
fectively	conserve	rare	scavengers	and	maintain	properly	functioning	
ecosystems.	 However,	 some	 competitive	 interactions,	 particularly	
competition	between	vertebrates,	invertebrates,	and	microbes,	are	
not	well	described	 (Beasley	et	 al.,	2015).	For	example,	 the	endan-
gered	American	burying	beetle	(Nicrophorus americanus Olivier) is an 
obligate	scavenger	that	requires	larger	vertebrate	carcasses	than	are	
used	by	 congeners	 for	 feeding	 and	 reproductive	purposes,	 result-
ing	in	increased	competition	with	vertebrate	scavengers	in	addition	
to	other	invertebrates	such	as	flies	and	ants	(Szalanski	et	al.,	2000). 
Although	extensive	research	has	been	conducted	on	American	bury-
ing	beetle	ecology	(Bedick	et	al.,	1999),	there	are	still	many	questions	
concerning	the	decline	of	this	species	and	how	to	best	employ	con-
servation	strategies	(Howard	&	Hall,	2019),	particularly	in	the	case	of	
scavenging	competition	that	can	be	impacted	directly	and	indirectly	
through	management	practices	 (DeVault	et	al.,	2011).	Additionally,	
several	studies	(Burkepile	et	al.,	2006;	DeVault	et	al.,	2004) have elu-
cidated the complexities of interkingdom competition at carcasses, 
indicating	that	microbes	can	chemically	deter	vertebrate	scavengers	
from	carrion;	however,	more	 information	 is	needed	to	fully	under-
stand	the	competitive	interactions	between	microbes,	vertebrates,	
and	invertebrates,	and	the	roles	microbes	play	in	food	webs.

Supplementary	 feeding	 stations	 (SFS)	 have	 been	 implemented	
globally	and	contributed	to	conservation	strategies	for	many	scav-
enging	species.	Vultures	have	benefitted	from	SFS	and	studies	have	
documented	 increasing	 population	 numbers	 worldwide	 at	 these	
sites	 (Clements	 et	 al.,	 2013),	 likely	 due	 to	 the	 predictable	 nature	
of	 food	 resources.	 However,	 vulture	 species	 are	 also	 reported	 to	
have	large	home	ranges	extending	well	beyond	the	locations	of	SFS	
(Monsarrat	 et	 al.,	2013).	 The	 predictable	 and	 prolonged	 availabil-
ity	of	 resources	at	SFS	also	 represents	a	deviation	 from	 the	more	
ephemeral	 and	 variable	 availability	 of	 resources	 that	 occurs	 natu-
rally.	Thus,	although	proximate	increases	in	vulture	numbers	at	SFS	
may	be	a	desirable	conservation	outcome,	the	extent	to	which	the	
structure	 and	 function	 of	 feeding	 guilds	may	 be	 altered	 due	 to	 a	
shift	in	competition	at	SFS	and	the	predictability	of	resources	is	an	
area	where	further	study	 is	needed	(Cortés-	Avizanda	et	al.,	2016). 
Specifically,	we	suggest	focusing	on	reproductive	success	and	diver-
sity	of	the	scavenging	guild	for	populations	sustained	with	SFS,	and	
predation	pressure	for	small-		and	medium-	sized	prey	species	living	
in	the	same	areas	of	feeding	stations.	Additionally,	Cortés-	Avizanda	
et	 al.	 (2010) found that local characteristics and the differences 
in	carcass	 size	 supplied	at	SFS	can	 influence	how	scavenging	spe-
cies,	primarily	those	of	conservation	concern,	use	the	feeding	sta-
tions.	Providing	small	quantities	of	food	could	be	advantageous	for	

ecological relationships within the scavenger guild. The reoccurring 
and	abundant	resource	availability	could	have	cascading	effects	on	
the	 evolution	 of	 scavenger	 populations,	 and	 should	 be	monitored	
long term and considered in conservation and management plans.

There	are	many	apex	predators	that	are	facultative	scavengers	
currently	 listed	 as	 vulnerable,	 threatened,	 or	 endangered	 species,	
such	as	the	snow	leopard	 (Panthera uncia),	African	 lion	 (P. leo), and 
red	wolf	 (Canis rufus). Despite the extensive efforts made to pro-
tect	endangered	and	threatened	animals	globally,	little	research	has	
been	conducted	to	understand	how	carrion	provisioning	can	play	a	
role	in	facultative	scavenger	conservation,	particularly	for	mamma-
lian	predators.	Most	predators	are	facultative	scavengers,	consum-
ing	carrion	if	and	when	it	 is	available	(DeVault	et	al.,	2003;	Wilson	
&	 Wolkovich,	 2011),	 which	 can	 vary	 based	 on	 seasonality,	 diet,	
and	habitat.	Although	 some	 research	has	 focused	on	 carcass	pro-
visioning	for	scavenger	conservation	(Stiegler	et	al.,	2020) and the 
benefits	 derived	 from	 providing	 supplemental	 carcasses	 (Benbow	
et al., 2018), there is little focus on mammalian predator species and 
how scavenger management could improve conservation strate-
gies.	Additionally,	competition	between	other	predators	and	carrion	
resource	 partitioning	 has	 been	 examined	 to	 further	 elucidate	 the	
importance	of	scavenging	in	food	webs,	as	well	as	the	trophic	cas-
cade	that	could	occur	with	the	removal	of	those	predators	(Wilmers	
et al., 2003).	 Examinations	 of	 inter-	specific	 interactions	 between	
apex predator populations provided insight into the importance of 
a	diversity	of	carcass	sizes	 for	coexistence	of	 large	carnivores,	es-
pecially	in	small	protected	preserve	areas.	However,	given	the	pau-
city	of	data	on	the	 importance	of	carrion	to	many	apex	predators,	
studies	are	critically	needed	to	better	quantify	scavenging	dynam-
ics	and	carrion	acquisition	in	these	species	(Amorós	et	al.,	2020) for 
consideration in conservation planning strategies for apex predators 
(Figure 2f).
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