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Abstract
Scavenging plays a vital role in maintaining ecosystem health and contributing to eco-
logical functions; however, research in this sub-discipline of ecology is underutilized in 
developing and implementing wildlife conservation and management strategies. We 
provide an examination of the literature and recommend priorities for research where 
improved understanding of scavenging dynamics can facilitate the development and 
refinement of applied wildlife conservation and management strategies. Due to the 
application of scavenging research broadly within ecology, scavenging studies should 
be implemented for informing management decisions. In particular, a more direct link 
should be established between scavenging dynamics and applied management pro-
grams related to informing pharmaceutical delivery and population control through 
bait uptake for scavenging species, prevention of unintentional poisoning of nontarget 
scavenging species, the epidemiological role that scavenging species play in disease 
dynamics, estimating wildlife mortalities, nutrient transfer facilitated by scavenging 
activity, and conservation of imperiled facultative scavenging species. This commen-
tary is intended to provide information on the paucity of data in scavenging research 
and present recommendations for further studies that can inform decisions in wildlife 
conservation and management. Additionally, we provide a framework for decision-
making when determining how to apply scavenging ecology research for manage-
ment practices and policies. Due to the implications that scavenging species have on 
ecosystem health, and their overall global decline as a result of anthropic activities, 
it is imperative to advance studies in the field of scavenging ecology that can inform 
applied conservation and management programs.
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1  |  INTRODUC TION

Scavenging is an important ecological function that plays a vital role 
in maintaining ecosystem health by stabilizing food webs (DeVault 
et al., 2003; Wilson & Wolkovich, 2011), reducing disease transmission 
by decreasing the time host reservoirs are in contact (Ogada, Torchin, 
et al., 2012), and increasing nutrient transfer between environments 
(Cederholm et al., 1999) across the globe. Research in this growing 
sub-discipline of ecology continues to develop our understanding of 
the role of carrion and scavenging in ecological processes. One topic 
of concern is the influence of anthropic activities on scavenger spe-
cies, and its detrimental effects to ecosystems by altering competi-
tive interactions between microbes, invertebrates, and vertebrates 
and reducing ecosystem services and functions (Beasley et al., 2015; 
Sebastián-González et al., 2019). Similarly, wildlife management and 
conservation practices can have both direct and indirect impacts to 
scavengers, which can affect trophic interactions within food webs 
(DeVault et al., 2003; Wilson & Wolkovich, 2011). In addition to the im-
pacts of anthropic activities, it is important to consider the role of scav-
enging in other areas that may appear unrelated, such as documenting 
wildlife mortalities and estimating mortality correction factors for 
detectability and carcass removal (Smallwood et al.,  2010; Teixeira 
et al., 2013), and understanding how aquatic nutrients can be moved 
across terrestrial landscapes by scavengers (Cederholm et al., 1999).

Although research in this area is growing, there is an apparent dis-
connect between scavenging ecology and its use in the application 
of wildlife conservation and management practices (Mateo-Tomás 
et al., 2019; Newsome et al., 2021). Further, it has become apparent 
that immediate action should be taken to conserve scavenger species 
and develop policies for managing carrion, particularly from farming, 
hunting, and fishing discards (Mateo-Tomas & Olea, 2018). This review 
aims to compile and summarize the specific areas where scavenging 
ecology can be further integrated into management and conserva-
tion plans and applications. For example, although there has been a 

surge of research investigating mortalities of birds and mammals at 
wind farms in response to the acceleration of wind energy production 
(Johnson et al., 2002), there has been little effort to elucidate scav-
enging dynamics associated with animal mortalities at these facilities, 
despite the application of such information to management decision 
making (DeVault et al., 2017). Similarly, as human populations increase, 
road use and wildlife vehicular mortality often increases as well. Hill 
et al. (2020) noted that vehicle mortality of North American mammals 
has increased 4-fold in the last five decades (1965–2017), highlighting 
the need for scavenging research during roadway and bridge develop-
ment and planning. Given the declining populations of many scavenger 
species globally, coupled with the underrepresentation of scavenging 
ecology in the literature (Olea et al., 2019), there is a need for more ex-
plicit integration of scavenging studies into the developmental stages 
of wildlife conservation and management strategies. Our objective is 
to review the scientific literature to identify areas within the broad top-
ics of poisoning, bait uptake, conservation, wildlife mortalities, wildlife 
diseases, and nutrient transfer where scavenging ecology research 
should be focused for implementation of contemporary wildlife con-
servation and management practices. In addition, we provide a frame-
work for determining if and how scavenging research can be applied 
to management practices and policies (Figure 1). We focus our review 
on the delivery of pharmaceuticals through baiting operations, poison 
bait uptake by nontarget scavengers during nuisance wildlife control 
operations, the epidemiological role that scavengers play in wildlife 
disease dynamics, documenting wildlife mortalities to ensure an accu-
rate count of carcasses, the transfer of nutrients through scavenging, 
and conservation of imperiled scavengers.

2  |  METHODS

We performed a systematic literature search to obtain English lan-
guage peer-reviewed scientific articles for publication dates up 

F I G U R E  1 A decision-making 
framework for determining when and 
how to integrate scavenging research into 
management and conservation planning
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to and including April 2022. The search was conducted in Google 
Scholar and Web of Science by combining the following keywords: 
“scavenging ecology*” and “management*”, “nontarget species*” and 
“poison*” and “bait uptake*”, and “scavenging species*” with “bait 
uptake*”, “conservation*”, “carcass counts*”, “wildlife mortalities*”, 
“wildlife diseases*”, and “nutrient transfer*”. Following the recom-
mendations of Haddaway et al.  (2015), we focused within the first 
300 Google Scholar results to include gray literature in this review. 
When we found a study related to these topics, we included related 
manuscripts from the literature cited section and literature that 
referenced that publication. This search yielded 107 papers that 
we reviewed for this study. Our primary goal was to find articles 
on scavenging ecology studies and knowledge gaps in the literature 
pertaining to scavenging species or ecosystem processes linked to 
scavenging that could potentially be applied to future studies to 
inform conservation and management decisions. Therefore, this is 
a review that compiles relevant scavenging ecology studies with a 
guide for application of scavenging research in conservation and 
management decisions.

3  |  BAIT UPTAKE FOR SC AVENGERS

The practice of bait uptake for pest eradication, invasive species 
population control, and delivery of pharmaceuticals is used globally 
for a broad range of taxa such as foxes (Trewhella et al., 1991), cats 
(Short et al., 1997), rodents (Brunton et al., 1993), wild pigs (Sus scrofa; 
Beasley et al., 2021; Cowled et al., 2007), and many other species. In 
particular, oral vaccination programs have been established to man-
age rabies in numerous carnivore species such as red foxes (Vulpes 
vulpes) in Europe (Brochier et al., 1990) and raccoons (Procyon lotor) 
in the US (Slate et al., 2009). Similarly, baiting programs have been 
used for the control of parasites, such as Baylisascaris procyonis in 
Allegheny woodrats (Neotoma magister; Page et al.,  2011), and to 
protect wild Tasmanian devils (Sarcophilus harrisii) from devil facial 
tumors (Dempsey et al., 2022). Many of these programs incorpo-
rate species-specific flavor preferences into the formulation of bait 
matrices. However, baiting efforts for facultative scavengers could 
benefit from a broader integration of assessments routinely quan-
tified through studies of scavenging dynamics, such as behavioral 
interactions with baits, time to detection, interspecific interactions 
and competition for baits, and abiotic and biotic factors affecting 
bait acceptance and detection.

Another area primed for bait uptake research focuses on inva-
sive vertebrate scavengers, which have been introduced to all parts 
of the world. Although some non-native species provide resources 
and economic gains for humans, others cause serious detrimental 
effects such as the spread or introduction of diseases, environmen-
tal degradation, and competition with or predation of native species. 
In the US alone, hundreds of vertebrate species have been intro-
duced and have established breeding populations (Pitt et al., 2018), 
causing environmental damages and losses up to $120 billion per 
year (Pimentel et al., 2005). It is estimated that invasive species are 

involved in 86% of extinctions of island species and are endangering 
hundreds of extant vertebrate species (Spatz et al., 2017). Many of 
these invasive mammals, including rats (Rattus sp.), pigs, cats (Felis 
catus), dogs (Canis familiaris), and mice (Mus sp.), are facultative scav-
engers that may be eradicated by poison bait uptake. For example, 
feral cats are eliminating native species on Little Cayman Island in 
the Caribbean. The Department of Environment and Department 
of Agriculture intend to trap and humanely euthanize all feral cats 
(Department of Environment, 2021); however, if the feral cat pop-
ulation requires additional measures for eradication, a scavenging 
study to assess bait type, bait flavor, the impact on non-target spe-
cies, and other criteria as outlined above is recommended prior to 
implementation of a plan. Additionally, along with red foxes, it is es-
timated that feral cats kill over 2 billion animals per year in Australia 
(Stobo-Wilson et al., 2022). Invasive vertebrates tend to be highly 
efficient facultative scavengers (Abernethy et al., 2016), so once a 
species is established, management is often focused around eradi-
cation and control (Genovesi, 2005), and scavenging studies can be 
used to guide decision-making (Figure 2a). We suggest that studies 
exploring biotic and abiotic factors influencing carcass consumption 
across scavenger species (DeVault et al., 2017; Stiegler et al., 2020) 
become more routinely integrated into the management planning 
process to help managers pinpoint the most effective delivery of bait 
or pharmaceuticals for target species.

4  |  UNINTENTIONAL POISONING OF 
SC AVENGERS

4.1  |  Nontarget species

Poison baits are used worldwide for nuisance wildlife control, yet, 
can be consumed by nontarget species, primarily scavengers that 
are susceptible to secondary poisoning by feeding on poisoned car-
casses of the target or other nontarget species (Figure 2b). There is 
a common misconception that species succumbing to toxicants may 
perish in areas inaccessible to scavengers and be decomposed by 
invertebrates and microbes (Howald et al., 1999); however, there 
is growing awareness that carcasses of poisoned animals are often 
readily accessible and consumed by vertebrate scavengers (Ogada 
et al., 2016; Smith et al., 2016) and even carcasses suspended in veg-
etation or underground are often scavenged by vertebrates (DeVault 
& Krochmal, 2002).

Anticoagulant rodenticides (ARs) are used globally in poison 
baits for rodent population control, and although some risk miti-
gation measures have been instituted, such as safe disposal of poi-
soned rodents and tamper-resistant bait boxes (Buckle & Prescott, 
2018), the efficacy of these measures and sublethal and nontarget 
impacts of rodent control are often unknown. Koivisto et al. (2018) 
investigated the effects of ARs on scavenger and predator species 
in Finland, and discovered AR residues in 82% of the liver samples 
taken. Similarly, Montaz et al. (2014) compared seasonality and rich-
ness of species scavenging rodents exposed to ARs in France. They 
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concluded multiple scavenging species were present in their study 
and vulnerable to AR exposure; but raptors, particularly the red kite 
(Milvus milvus) and common buzzard (Buteo buteo), both protected 
species in Europe, may be declining in numbers due to rodenticides 
after consuming poisoned rodent carrion. These and other studies 
evaluating effects of poison bait uptake on nontarget species are 
often undertaken after eradication plans have been implemented 
(Howald et al., 1999; Hughes et al., 2013). However, we advocate the 
incorporation of scavenging studies into the developmental process 
of management practices for nuisance species, prior to field imple-
mentation of management regimes using toxicants, to proactively 
mitigate effects on nontarget species. For example, a feral cat (Felis 
catus) eradication study was conducted in Australia using non-toxic 

baits to assess uptake by nontarget species before deploying toxic 
baits (Hohnen et al., 2020). They concluded that 99% of identifiable 
bait takes were consumed by nontarget species, including several 
endangered species, indicating an alternative bait should be consid-
ered for feral cat eradication. Furthermore, many poisons can bioac-
cumulate (Geduhn et al., 2015), highlighting the complexities of how 
bait uptake can affect food web dynamics, apex predators, and eco-
system functions. Such proactive assessments of nontarget impacts 
of poisoning campaigns are infrequent; however, such assessments 
are vital in the developmental stages of contemporary management 
plans for nuisance species. For example, eradication efforts for mice 
in the South Farrallon Islands, USA are currently in the planning pro-
cess (U.S. Fish and Wildlife Service, 2021). The goal is to restore local 

F I G U R E  2 Recommendations of scavenging ecology studies for wildlife conservation and management practices. Photo credits: (a) 
black bear and raccoon (Jessy Patterson), vultures on elephant carcass (C fallows, AJ Gallaghers, N Hammerschlag, CC License), Norway 
rat (reg McKenna, CC License). (b) Lappet-faced vulture (Bernard Dupont, CC License), California condor (chuck Szmurlo, CC License). (c) 
Fish die-off (USFWS, CC License), Indian vulture (Shantanu Kuveskar, CC License), coyote feeding on deer discards (NPS, CC License), 
coyote investigating coyote carcass (Miranda Butler-Valverde). (d) Wind turbines (Raju Kasambe, CC License), CWD deer (Terry Kreeger, 
CC License). (e) Blow flies on porcupine carcass (Paul venter, CC license), maggots on opossum carcass (Tim Vickers, CC license), bald eagle 
(Yathin S. Krishnappa, CC license), red-shouldered hawk (Jessy Patterson). (f) Vultures on cow carcass (Bernard Dupont, CC license), lion 
(Clement Cardot, CC license)
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endemic populations of species that are decimated by mice and rat 
populations (e.g., camel crickets, arboreal salamanders, plants) and 
petrels that are preyed upon by owls that are attracted to the island 
by mice and rats. Prior to dissemination of AR-laced grain pellets 
throughout the island for rodents to feed on, scavenging studies to 
determine the use of dead rodents by scavengers could be useful in 
preventing non-target species consumption and potential bioaccu-
mulation of local species.

As the only terrestrial obligate vertebrate scavengers, vultures 
are especially vulnerable to the effects of unintentional poisoning, 
and many vulture species are in decline and endangered. Although 
the causes of vulture declines are complex and multifaceted, in-
tentional and unintentional poisoning remains a top threat to the 
recovery of populations. For example, poisoning of Asian (Gyps) 
vultures through ingestion of nonsteroidal anti-inflammatory drugs 
administered to livestock, particularly diclofenac-sodium, reduced 
the vulture numbers by over 95% (Green et al., 2004). In 2006, the 
India government enforced a ban on production, importation, and 
sale of diclofenac products that slowed vulture population declines. 
However, diclofenac is still used in other countries and without ade-
quate regulation there could be detrimental effects to other vulture 
populations (Margalida et al., 2014). In Africa, human-wildlife con-
flict between farmers and megafauna led to the poisoning of more 
than 400 vultures; unintentionally through the consumption of poi-
soned baits or poisoned carcasses, and intentionally by poachers to 
prevent detection (Ogada et al., 2016; Safford et al., 2019). These 
circumstances have elucidated the detrimental effects that declin-
ing vulture populations can have on ecosystem services, economic 
activity, and human health (Markandya et al., 2008; Morales-Reyes 
et al., 2017).

4.2  |  Lead poisoning

Unintentional lead poisoning through ingestion of spent shot and 
bullets has similarly been identified as a threat to many raptors, 
including the critically endangered California Condor (Gymnogyps 
califonianus; Figure 2b), declining Andean Condor (Vultur gryphus), 
and Old World vultures (Griffon vulture; Gyps fulvus), as well as 
mammals (Mctee et al., 2019). Lead exposure can result in reduced 
fecundity, increased bone fragility, and higher susceptibility to infec-
tion (Garvin et al., 2020). To date, 33 countries have implemented 
restrictions on the use of lead ammunition to mitigate this problem 
(Garvin et al., 2020), and efforts should be made to determine the 
efficacy of these legislative actions. Recently, Ellis and Miller (2022) 
published results determining the efficacy of the lead ammuni-
tion ban in Illinois, USA, indicating a reduction in crippling rates for 
both ducks and geese after implementation of the ban. These re-
sults counter the expectations of many hunters and show a posi-
tive and unexpected outcome for lead ammunition bans. In addition, 
Green et al. (2022) found lower levels of lead in raptor liver tissues 
in Denmark compared with data from countries without a ban, in-
cluding pre-ban Denmark. We recommend similar studies be applied 

across the globe and considered when discussing implementation of 
lead ammunition restrictions.

Due to the worldwide decline of scavenger species and the im-
perative roles they play in ecosystems (DeVault et al.,  2016), we 
must focus our attention on understanding how various methods 
for unintentional poisoning can alter food web dynamics and eco-
system function. Additional studies, such as those exploring optimal 
bait types and bait distribution strategies that minimize impacts to 
nontarget species, should be prioritized in any control strategies im-
plementing toxicants (Snow et al., 2018). We also recommend fur-
ther exploration into alternative strategies of wildlife control other 
than employing toxicants, such as lights, noises, and electric fences 
(Lozano et al., 2019), as well as further research into contaminant 
and toxicant biomagnification in scavenging species, and sub-lethal 
effects of contaminant/toxicant exposure to scavengers and other 
wildlife.

5  |  DISE A SE IMPLIC ATIONS

Another important area of research primed for growth is the epi-
demiological role that scavenging species play in disease dynamics, 
for both wildlife and humans. There are still many knowledge gaps 
relative to the effects different species have on disease dynamics 
and the underlying conditions and circumstances in which scaveng-
ing enhances or suppresses disease spread (Figure 2c).

Carrion is available and sometimes abundant throughout var-
ious regions across the globe, accumulating large amounts of ani-
mal biomass through natural mortality, predation, mass die-offs 
(e.g., from natural disasters, algal blooms, diseases, spawning 
salmon), and human provisions (e.g., culling, hunting/fisheries dis-
cards; Moleón et al., 2019). Surpluses of carcasses on a landscape, 
sometimes abrupt and massive, can increase potential for pathogen 
spread, and are increasing in frequency with global change (Thomas 
et al., 2004). Regardless of how carrion is generated, both vertebrate 
and invertebrate scavenging species often reduce the time in which 
a carcass is decomposing on the landscape, reducing the time avail-
able for diseases to spread (Hill et al., 2018; Mackey & Kribs, 2021). 
Invertebrate scavengers are particularly productive in carrion mass 
loss, accounting for the removal of up to 90% of tissues from ver-
tebrate carcasses within several days (Payne, 1965). Consequently, 
there can be a cascading effect resulting in rampant disease spread 
when scavenger species are removed from the landscape. For exam-
ple, the Asian vulture crisis in India resulted in a >95% decline in vul-
ture numbers. As a result, feral dogs became the primary consumer 
of carcasses and their population numbers increased. As feral dogs 
are a main reservoir for rabies, this may have resulted in a higher 
rate of virus transmission and increased human risk for infection 
(Markandya et al., 2008; Ogada et al., 2016).

There are still many unanswered questions that should be con-
sidered for future scavenging studies that can inform conservation 
and management decisions, especially regarding mass die-offs and 
pulses in carrion resources. Very few studies have focused on mass 
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mortality events (MMEs) due to their unpredictable nature, specifi-
cally how they affect scavenging communities, disease spread, and 
ecosystem health (Tomberlin et al., 2017). Consequently, we encour-
age future studies explore the influence of scavenging species on 
disease dynamics at MMEs and changes in vertebrate and inverte-
brate behavior as a result of MMEs (Frank et al., 2020), particularly 
given the anticipated increased frequency of these events due to 
climate change and other anthropogenic factors. Additionally, due 
to their unpredictability, we encourage consideration of integrating 
simulated MMEs into future studies, as that allows replication and 
gathering of data on initial conditions of the environment prior to 
the MME. Further, simulations provide an opportunity to control the 
environment (i.e., fencing the area to prevent vertebrate scavengers 
and assess only invertebrate activity) to assess ecosystem processes 
without confounding factors (Lashley et al., 2018).

Although scavengers provide ecosystem services by removing 
decomposing carcasses (Grilli et al., 2019; Markandya et al., 2008), 
in some circumstances, scavengers also might act as pathogen vec-
tors by transporting infectious materials to other areas. For exam-
ple, though vultures are thought to be particularly well-suited to 
inhibit disease spread when consuming carrion by utilizing highly 
acidic stomach secretions that destroy nearly all microbes (Houston 
& Cooper, 1975) and might greatly reduce the chance of infection 
from a decomposing carcass (Ogada, Keesing, & Virani, 2012), some 
microbes can survive the vulture digestive tract and be regurgitated 
or passed through feces (Houston & Cooper,  1975). Additionally, 
more recent studies show the pH of New World vulture stomach 
secretions are no more acidic than non-scavenging avian species and 
domestic fowl (Graves, 2017). It is also speculated, but has not been 
previously investigated, that vultures and other migratory birds can 
carry pathogenic organisms from carrion sites on their feet, poten-
tially facilitating disease spread (Ogada, Keesing, & Virani,  2012). 
Likewise, increased pathogen transmission rates between hosts at 
supplemental feeding stations (SFS) have been reported (Murray 
et al., 2016), and vultures are likely infected by zoonotic Salmonella 
strains from carcasses provided at SFS (Marin et al., 2018). Finally, 
VerCauteren et al.  (2012) concluded that American crows (Corvus 
brachyrhynchos), a common facultative scavenger, are able to pass 
infectious prions in their feces after consuming prion-positive tis-
sues, such as those from transmissible spongiform encephalopathy 
(TSE) diseases including chronic wasting disease, scrapie, and bovine 
spongiform encephalopathy. Alternatively, it was previously spec-
ulated that scavenging species played a critical role in the spread 
of anthrax by scavenging infected carcasses, but now it is under-
stood they do not increase transmission (Bellan et al., 2013), adding 
to the complexities of our understanding of scavenging and disease 
dynamics.

As outlined above, available evidence suggests scavengers act to 
suppress disease spread overall, but it is unclear whether scavenging 
species might contribute to the spread of diseases in some circum-
stances, and thus this remains an area where additional research is 
critically needed. Avian scavengers, in particular, could facilitate the 
spread of disease between SFS, and given that there are successful 

“vulture restaurants” in countries such as Nepal and India, we recom-
mend further studies be conducted in controlled environments like 
these to provide data that can inform decision-making in future SFS 
management policies and practices. Further, Theimer et al.  (2017) 
found the rabies virus was transmitted to scavenging mesocarni-
vores after ingesting infected dead bats. Striped skunks (Mephitis 
mephitis) were the primary scavenger consuming bats, but raccoons, 
gray foxes (Urocyon cinereoargenteus), and domestic cats also con-
sumed bat carcasses, acting as potential vectors for the rabies virus. 
Although recent studies have elucidated the complexities associated 
with the landscapes of fear and disgust and scavenging of conspe-
cifics, there are still areas to investigate such as animal responses 
to signals associated with parasite risk (Gonzálvez et al., 2021), and 
parasite risk in relation to carcass size, ecosystem type, and season 
(Moleón & Sánchez-Zapata, 2021). In addition to vertebrate scav-
engers, we advocate for further studies on invertebrates that visit 
carrion, such as carrion flies (Hall et al., 2019), ants, and mosquitoes, 
for a holistic contribution to understanding disease spread in rela-
tion to scavenging.

6  |  DOCUMENTING MORTALITIES

As outlined above, wildlife mortalities occur for many different rea-
sons and result in carcasses distributed across broad landscapes. 
To understand population declines and anthropogenic causes of 
mortality, it is imperative to accurately quantify wildlife carcasses. 
Previous studies have quantified carcass counts for various species 
or taxonomic groups due to mortality from many sources includ-
ing poisoning (Vyas, 1999), roadway collisions (Langen et al., 2007), 
collisions with infrastructure (Loss et al.,  2015), and wildfires 
(Silveira et al., 1999). Estimating carcass numbers can be complex 
due to difficulty in detecting carcasses and because carcass re-
moval is likely to occur by vertebrate scavengers or decomposers 
(Smallwood et al.,  2010; Teixeira et al.,  2013) before counts can 
be made. Estimating correction factors is also necessary for accu-
rately documenting wildlife mortalities. However, aside from avian 
mortalities, few studies estimate correction factors to account for 
scavenger removal. This is certainly an area primed for further in-
vestigation, as scavenging research can play an important role in 
better understanding mortality rates and estimating correction 
factors. With increased recognition that scavengers skew carcass 
quantification and the known application of such information to 
structured decision-making for wildlife conservation and manage-
ment (DeVault et al., 2017), we recommend further studies focus on 
how specific carcass types are used and how carcass size and habi-
tat can influence scavenging rates to fine-tune our understanding 
of the complexities of carrion-scavenger relationships (Figure  2d). 
For example, unprecedented wildfires occurred over the last several 
years across Australia, Russia, the western United States, Brazil, and 
many more countries across the globe. Carcass counts to quantify 
the number of species and individuals that succumbed to the fire 
may be conducted, but an estimation factor to account for removal 
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of carcasses by scavengers would result in a more reliable estima-
tion. Additionally, during the environmental review process for in-
frastructure project planning for roadway construction, wildlife 
fencing, crossing structures, and detection systems are often con-
sidered to mitigate impacts on wildlife. During assessment of the ef-
ficacy of these mitigation plans, particularly those involving wildlife 
vehicle collisions, scavenging of carcasses and producing estimation 
factors to account for skewed counts should be considered.

Accurately quantifying carrion biomass is imperative for manag-
ing carrion resources, which play a critical role in ecosystem health 
and function through nutrient cycling and providing food resources 
for scavenging species. However, quantitative data on carrion bio-
mass are largely lacking, and thus the direct roles that carrion plays 
in ecosystem health are not fully understood (Barton et al., 2019). 
In addition to MMEs, there are many incidences resulting in the dis-
tribution (or lack thereof) of carrion biomass. For example, recent 
studies have highlighted the decline in carrion biomass availability 
(both from livestock and big game) due to sanitary restrictions and 
regulations imposed on carrion removal (Margalida & Moleon, 2014; 
Morales-Reyes et al., 2015). The removal of carcasses reduces a food 
source for scavenger species and could have detrimental effects 
on the ecosystem. Additionally, when estimating carrion biomass, 
it is important to make a distinction between carrion production, 
or a function of mortality and carrion availability, which depends 
on carrion production and other factors (i.e., habitat, season, etc.). 
Very few studies quantify both carrion production and availability 
in space and time, and should be considered for future research 
(Moleón et al., 2020). Although little is known about estimating car-
rion biomass, recent studies have provided a framework that can be 
implemented for management purposes (Barton et al., 2019; Moleón 
et al.,  2019; Morant et al., 2022); however, additional studies are 
needed to apply this framework across a broad range of ecosystems. 
In particular, we recommend the application of this framework to 
ecosystems or areas with imperiled and/or protected scavenging 
species, areas with growing populations of ungulates that are recol-
onizing abandoned rural areas (Morant et al., 2022), and studies fo-
cusing on the contribution of invertebrate carcasses to total carrion 
biomass.

7  |  NUTRIENT TR ANSFER

There is a growing understanding of the importance that scavenging 
plays in connecting food webs (Beasley et al., 2019), and facultative 
scavenging can result in an estimated 16-fold increase in food web 
linkages (Wilson & Wolkovich, 2011). As more linkages are formed, 
food webs become more connected and stable (McCann,  2000). 
Although many scavenging links are poorly understood, linkages 
involving the transfer of nutrients between ecosystems are par-
ticularly unclear (Ballinger & Lake,  2006; Cederholm et al.,  1999). 
Scavengers undoubtedly play a role in moving resources and nu-
trients between adjacent ecosystems, but the degree to which 
this occurs and the resulting effects on ecosystem health should 

be investigated further (Schlichting et al., 2019). Also, few data are 
available discussing the importance of aquatic carrion for survival 
and reproduction of terrestrial scavengers, and more detailed stud-
ies are needed to examine these linkages (Rose & Polis, 1998). This 
is an area of research primed for growth that has extensive implica-
tions for species and ecosystem conservation, and we recommend 
studies exploring inter- and intra-ecosystem linkages via scavenging 
and the fate and scavenging rate of aquatic carcasses by terrestrial 
vertebrates, (Figure 2e).

Food web linkages and interactions between vertebrate scav-
engers, invertebrate scavengers, and decomposers in terrestrial 
environments have been addressed in the literature (DeVault 
et al., 2003, 2004; Tomberlin et al., 2017); however, many questions 
remain. Understanding how changes in species interactions and 
carrion food webs could modify ecosystem functions is extremely 
important, yet, very few studies have compared communities across 
taxonomic groups (Barton & Bump, 2019). Although it is understood 
that large apex predators can affect invertebrate assemblages, little 
is known about the importance of predator-produced carrion to in-
vertebrates and decomposers (Barry et al., 2019). Another area re-
quiring attention is MMEs and the affects they have on decomposer 
communities, how massive amounts of carrion in a single landscape 
modify nutrient cycling, and how plant communities are impacted 
(Tomberlin et al., 2017). Finally, more studies should focus on interac-
tion pathways between vultures, carrion, large carnivores, and their 
prey, with emphasis on food-web dynamics to understand ecosys-
tem stability as vertebrate scavenging populations decline (Moleón 
et al., 2014). We recommend the incorporation of these topics into 
future studies to fully elucidate nutrient transfer between scavenger 
assemblages and decomposers.

Previous studies have focused on investigations of terrestrial 
inputs into aquatic ecosystems; yet, the flow of aquatic-derived nu-
trients into terrestrial ecosystems also can have a significant impact 
on food web dynamics by altering productivity and predator–prey 
interactions (Ballinger & Lake,  2006). Salmon carcasses provide 
marine-derived nutrients to stream habitats, increasing nutrient 
contributions to freshwater environments (Cederholm et al., 1999), 
whereas terrestrial environments can also receive an influx of these 
nutrients. Reproductive cycles and seasonal distributions of some 
vertebrate scavengers, such as the bald eagle (Haliaeetus leucoceph-
alus; Hunt et al., 1992), mink (Mustela vison; Ben-David, 1997), and 
grizzly bear (Ursus arctos horribilis; Hilderbrand et al.,  1996) corre-
spond with spawning of salmon, and salmon-derived nutrients can 
have a fertilizing effect on riparian plants through carcass decom-
position or deposition of fecal matter (Cederholm et al., 1999). This 
is still a poorly understood area that requires more focus and could 
inform management decisions for salmonids within the National 
Oceanic and Atmospheric Administration (NOAA) Fisheries man-
agement plans and the Pacific Fishery Management Council, which 
subsequently could affect scavenger species and ecosystem health. 
Furthermore, if ecosystem-based management is a priority, as 
seen implemented throughout United States by the Environmental 
Protection Agency (Lewis et al., 2020), the scavenging community 
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should be considered during planning. We also encourage consider-
ation of this concept applied to the future management of freshwa-
ter fish species worldwide.

8  |  CONSERVATION OF SC AVENGERS

We must understand carcass acquisition and competition between 
obligate scavengers, facultative scavengers, and decomposers to ef-
fectively conserve rare scavengers and maintain properly functioning 
ecosystems. However, some competitive interactions, particularly 
competition between vertebrates, invertebrates, and microbes, are 
not well described (Beasley et al., 2015). For example, the endan-
gered American burying beetle (Nicrophorus americanus Olivier) is an 
obligate scavenger that requires larger vertebrate carcasses than are 
used by congeners for feeding and reproductive purposes, result-
ing in increased competition with vertebrate scavengers in addition 
to other invertebrates such as flies and ants (Szalanski et al., 2000). 
Although extensive research has been conducted on American bury-
ing beetle ecology (Bedick et al., 1999), there are still many questions 
concerning the decline of this species and how to best employ con-
servation strategies (Howard & Hall, 2019), particularly in the case of 
scavenging competition that can be impacted directly and indirectly 
through management practices (DeVault et al., 2011). Additionally, 
several studies (Burkepile et al., 2006; DeVault et al., 2004) have elu-
cidated the complexities of interkingdom competition at carcasses, 
indicating that microbes can chemically deter vertebrate scavengers 
from carrion; however, more information is needed to fully under-
stand the competitive interactions between microbes, vertebrates, 
and invertebrates, and the roles microbes play in food webs.

Supplementary feeding stations (SFS) have been implemented 
globally and contributed to conservation strategies for many scav-
enging species. Vultures have benefitted from SFS and studies have 
documented increasing population numbers worldwide at these 
sites (Clements et al.,  2013), likely due to the predictable nature 
of food resources. However, vulture species are also reported to 
have large home ranges extending well beyond the locations of SFS 
(Monsarrat et al., 2013). The predictable and prolonged availabil-
ity of resources at SFS also represents a deviation from the more 
ephemeral and variable availability of resources that occurs natu-
rally. Thus, although proximate increases in vulture numbers at SFS 
may be a desirable conservation outcome, the extent to which the 
structure and function of feeding guilds may be altered due to a 
shift in competition at SFS and the predictability of resources is an 
area where further study is needed (Cortés-Avizanda et al., 2016). 
Specifically, we suggest focusing on reproductive success and diver-
sity of the scavenging guild for populations sustained with SFS, and 
predation pressure for small- and medium-sized prey species living 
in the same areas of feeding stations. Additionally, Cortés-Avizanda 
et al.  (2010) found that local characteristics and the differences 
in carcass size supplied at SFS can influence how scavenging spe-
cies, primarily those of conservation concern, use the feeding sta-
tions. Providing small quantities of food could be advantageous for 

ecological relationships within the scavenger guild. The reoccurring 
and abundant resource availability could have cascading effects on 
the evolution of scavenger populations, and should be monitored 
long term and considered in conservation and management plans.

There are many apex predators that are facultative scavengers 
currently listed as vulnerable, threatened, or endangered species, 
such as the snow leopard (Panthera uncia), African lion (P. leo), and 
red wolf (Canis rufus). Despite the extensive efforts made to pro-
tect endangered and threatened animals globally, little research has 
been conducted to understand how carrion provisioning can play a 
role in facultative scavenger conservation, particularly for mamma-
lian predators. Most predators are facultative scavengers, consum-
ing carrion if and when it is available (DeVault et al., 2003; Wilson 
& Wolkovich,  2011), which can vary based on seasonality, diet, 
and habitat. Although some research has focused on carcass pro-
visioning for scavenger conservation (Stiegler et al., 2020) and the 
benefits derived from providing supplemental carcasses (Benbow 
et al., 2018), there is little focus on mammalian predator species and 
how scavenger management could improve conservation strate-
gies. Additionally, competition between other predators and carrion 
resource partitioning has been examined to further elucidate the 
importance of scavenging in food webs, as well as the trophic cas-
cade that could occur with the removal of those predators (Wilmers 
et al.,  2003). Examinations of inter-specific interactions between 
apex predator populations provided insight into the importance of 
a diversity of carcass sizes for coexistence of large carnivores, es-
pecially in small protected preserve areas. However, given the pau-
city of data on the importance of carrion to many apex predators, 
studies are critically needed to better quantify scavenging dynam-
ics and carrion acquisition in these species (Amorós et al., 2020) for 
consideration in conservation planning strategies for apex predators 
(Figure 2f).
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