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A B S T R A C T   

No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and 
glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming 
increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself 
should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may 
antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally 
occurring molecule is a promising agent to ameliorate COVID-19. We posit at least seven different mechanisms 
by which AAT may alleviate COVID-19. First, AAT is a serine protease inhibitor (SERPIN) shown to inhibit 
TMPRSS-2, the host serine protease that cleaves the spike protein of SARS-CoV-2, a necessary preparatory step 
for the virus to bind its cell surface receptor ACE2 to gain intracellular entry. Second, AAT has anti-viral activity 
against other RNA viruses HIV and influenza as well as induces autophagy, a known host effector mechanism 
against MERS-CoV, a related coronavirus that causes the Middle East Respiratory Syndrome. Third, AAT has 
potent anti-inflammatory properties, in part through inhibiting both nuclear factor-kappa B (NFκB) activation 
and ADAM17 (also known as tumor necrosis factor-alpha converting enzyme), and thus may dampen the hyper- 
inflammatory response of COVID-19. Fourth, AAT inhibits neutrophil elastase, a serine protease that helps recruit 
potentially injurious neutrophils and implicated in acute lung injury. AAT inhibition of ADAM17 also prevents 
shedding of ACE2 and hence may preserve ACE2 inhibition of bradykinin, reducing the ability of bradykinin to 
cause a capillary leak in COVID-19. Fifth, AAT inhibits thrombin, and venous thromboembolism and in situ 
microthrombi and macrothrombi are increasingly implicated in COVID-19. Sixth, AAT inhibition of elastase can 
antagonize the formation of neutrophil extracellular traps (NETs), a complex extracellular structure comprised of 
neutrophil-derived DNA, histones, and proteases, and implicated in the immunothrombosis of COVID-19; indeed, 
AAT has been shown to change the shape and adherence of non-COVID-19-related NETs. Seventh, AAT inhibition 
of endothelial cell apoptosis may limit the endothelial injury linked to severe COVID-19-associated acute lung 
injury, multi-organ dysfunction, and pre-eclampsia-like syndrome seen in gravid women. Furthermore, because 
both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non- 
COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an 
excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once 
weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 
and should be studied.  

Abbreviations: AAT, alpha-1-antitrypsin; ACE2, angiotensin converting enzyme 2 (receptor for SARS-CoV-2); SERPIN, serine protease inhibitor. 
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Introduction 

“I have devised seven separate explanations, each of which would cover 
the facts as far as we know them. But which of these is correct can only be 
determined by the fresh information which we shall no doubt find waiting 
for us.” 

Sherlock Holmes – The Adventure of the Copper Beeches 
The number of COVID-19 cases worldwide is approaching 30 million 

as of September 2020. One of the most serious manifestations of COVID- 
19 is acute respiratory distress syndrome, especially in the elderly and 
those with cardiopulmonary disorders [1]. Curiously, the onset of res-
piratory compromise often occurs >7 days following known or sus-
pected exposure or 5–7 days after symptom onset [2]. This delayed onset 
of respiratory compromise has been attributed to various pathophysio-
logic processes including diffuse alveolar damage, in situ microthrombi 
formation, venous thromboembolism, immunothrombosis, cardiac 
dysfunction, and hyper-inflammatory cytokine responses [3–7]. 

There is currently no definitive treatment for COVID-19 [8]. No ef-
ficacy was seen with combined lopinavir and ritonavir [9]. Despite 
initial optimism with hydroxychloroquine, a recent observational study 
found that it had no significant impact on the composite end point of 
endotracheal intubation or death in hospitalized COVID-19 patients 
[10]. Remdesivir initially showed a trend in reducing the time to clinical 
improvement [11]. A more recent, double-blind, placebo-controlled 
study showed that remdesivir significantly reduced the recovery time 
from COVID-19 by approximately four days and there was a trend to-
ward improved mortality [12]. 

Glucocorticoid was initially not recommended by some during the 
early period of the COVID-19 pandemic [13,14]. A plausible rationale – 
which may still be true – is that a potent, initial pro-inflammatory 
response is necessary for viral clearance. However, in the more 
delayed severe cases, where an overzealous inflammatory response 
(“cytokine storm”) may result in lung tissue damage, there is increasing 
evidence that glucocorticoids are therapeutic. Thus, timing of 

administration and severity of disease are likely important factors in 
whether glucocorticoids are effective or not [15]. The large RECOVERY 
trial showed that compared to placebo, daily intravenous or oral dexa-
methasone 6 mg – beginning ≥ 7 days into the symptomatic phase for up 
to 10 days of treatment – reduced death rate by one-third in ventilated 
patients and by 20% in patients who required supplemental oxygen only 
[16]. This benefit of delayed glucocorticoid administration coincides 
with the belated onset of respiratory insufficiency and lends credence to 
the notion that a delayed hyper-inflammatory response is implicated in 
the oxygenation failure. In contrast, the use of dexamethasone in milder 
COVID-19 cases showed a trend toward increased mortality in the RE-
COVERY trial [16]. In a meta-analysis of 7 randomized clinical trials of 
systemic glucocorticoid use in critically ill COVID-19 patients, gluco-
corticoid was associated with a lower 28-day all-cause mortality [17]. 
Hydrocortisone for 7 days was also linked to reduced number of days 
requiring ICU-based respiratory or cardiovascular support for those with 
severe COVID-19 [18]. Other, more targeted anti-inflammatory drugs 
are also being investigated as treatments for COVID-19, including in-
hibitors/antagonists to Janus kinase, interleukin-1 (IL-1), IL-6, IL-6 re-
ceptor, and tumor necrosis factor-alpha (TNFα) in the hope of further 
limiting the hyper-inflammatory response and resultant multi-organ 
damage [7]. Despite initial optimism with the use of neutralizing 
agents against IL-6 signaling [19], the recent multicenter, randomized, 
double-blind, placebo-controlled COVACTA trial of hospitalized pa-
tients with severe COVID-19 pneumonia found that tocilizumab (anti-IL- 
6 receptor antibody) had no significant efficacy as analyzed by clinical 
status, mechanical ventilation use, or mortality [20]. Until definitive 
anti-viral treatments are developed against SARS-CoV-2 and an effective 
prophylactic vaccine comes to fruition, the scientific community should 
continue to investigate existing drugs – with acceptable side effect 
profiles – that may target SARS-CoV-2 and the pathophysiologic mech-
anisms of COVID-19. 

Fig. 1. Hypothesized mechanisms by alpha- 
1-antitrypsin (AAT) may be therapeutically 
efficacious against COVID-19. We hypothe-
size that AAT is a promising therapeutic 
against COVID-19 via at least seven mecha-
nisms (see accompanying text for full 
description). In brief, we posit that AAT will: 
(1) augment host immunity against SARS- 
CoV-2 by enhancing autophagy, (2) inhibit 
TMPRSS-2 activity, mitigating a key and 
necessary step prior to SARS-CoV-2 entry 
into cells, (3) antagonize inflammation, (4) 
inhibit neutrophil elastase and ameliorate 
acute lung injury, (5) inhibit thrombin, 
retarding microthrombi formation, (6) 
inhibit neutrophil extracellular traps (NETs) 
adherence, limiting immunothrombosis seen 
with COVID-19, and (7) protect against 
endothelial cell apoptosis, curbing COVID- 
19-associated endothelial injury. Whereas 
TMPRSS-2 may also process ACE2 to facili-
tate binding and entry of SARS-CoV, it is not 
known whether such activity also enhances 
SARS-CoV-2 binding to ACE2; this uncer-
tainly is denoted by the question mark. 
ACE2 = receptor for SARS-CoV-2; TMPRSS- 
2 = serine protease necessary to “activate” 
SARS-CoV-2; T-shaped “arrows” = inhibi-
tion; red heptagon = SARS-CoV-2. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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Hypothesis 

alpha-1-antitrypsin is a promising treatment option for COVID-19. 
Alpha-1-antitrypsin (AAT) is a serine protease inhibitor (SERPIN) 

and the third most abundant protein in circulation. AAT plasma level 
can increase 3- to 5-fold in states of systemic inflammation and / or 
infection, perhaps indicative of a homeostatic role of AAT but which 
may be deficient or overwhelmed in severe cases of COVID-19 [21–22]. 
While the best described function of AAT is that it irreversibly inhibits 
the serine protease elastase [22], it has a panoply of biological activities 
that may be independent of its SERPIN activity. Thus, because AAT 
possesses several biological functions that may antagonize both SARS- 
CoV-2 infection and the array of pathophysiologic processes that have 
been ascribed to COVID-19, we hypothesize that AAT is a promising 
candidate for the successful treatment of COVID-19. 

In the U.S., it is estimated that there are ~300,000 individuals with 
frank AAT deficiency and the vast majority are undiagnosed. Even in the 
absence of AAT shortage, the AAT response to a systemic infection may 
be inadequate in some individuals. An estimated 9% of individuals in the 
U.S. (>20 million) are carriers of a single AAT gene mutation (with over 
400 different mutations identified) with most having no ill effects but an 
uncertain number have inadequate AAT response to infections or 
inflammation [21]. Vianello and Braccioni [23] showed that in Italy 
there was geographic co-localization between those with AAT deficiency 
and the number of COVID-19 cases. Furthermore, since oxidation of 
methionine 351 and/or 358 residues of normal AAT may lead to loss of 
its SERPIN activity, the increased oxidative stress seen with COVID-19 
may render even normal or elevated levels of AAT ineffective [24–25]. 

Support for the hypothesis 

alpha-1-antitrypsin embraces a panoply of functions that can antagonize 
COVID-19 

Our central hypothesis is that AAT, a naturally occuring molecule 
which has been utilized at pharmacologic doses for decades, is a 
promising agent against COVID-19. We describe below seven potential 
mechanisms by which AAT could antagonize both SARS-CoV-2 and 
some of the known pathogenic processes of COVID-19. The seven 
mechanisms discussed coincide with the numbers shown in Fig. 1. 

AAT protects against microbes including RNA viruses 

AAT augments host immunity against a wide variety of pathogens 
including influenza [26], HIV [27–31], Pseudomonas aeruginosa [32], 
and Mycobacterium intracellulare [33]. AAT antagonizes HIV by several 
mechanisms including interacting with gp41 to block HIV entry into 
CD4+ lymphocytes, inhibiting HIV replication through alteration of IκBα 
ubiquitination and inhibition of nuclear factor-kappa B (NFκB) activa-
tion (a transcription factor that induces HIV replication), and inducing 
prostaglandin synthase-2, which inhibits HIV replication [27–31]. A 
mechanism by which AAT reduces the burden of cell-associated 
M. intracellulare is through sequential inhibition of NFκB, reduction in 
the expression of A20 (a deubiquitinating enzyme that inhibits auto-
phagosome maturation by inhibiting TRAF6 from ubiquitinating a key 
autophagic protein Beclin-1), and induction of autophagy [33]. Auto-
phagy has been implicated in controlling MERS-CoV, a related corona-
virus that causes the Middle East Respiratory Syndrome (MERS) [34]. 
Given the similarities between the highly pathogenic coronaviruses, we 
posit that AAT augmentation of autophagy is likely important in the host 
immune response to SARS-CoV-2. 

AAT inhibition of TMPRSS-2 impedes SARS-CoV-2 entry into cells 

The coronaviruses that may cause fatal disease – SARS-CoV, MERS- 
CoV, and SARS-CoV-2 – all utilize the host cell serine protease TMPRSS- 
2 to process the viral spike protein so that it may bind to the cell surface 

receptor ACE2 (or DPP4 in the case of MERS-CoV) on host cells to gain 
intracellular entry. TMPRSS-2 may also process ACE2 to facilitate entry 
of SARS-CoV [35] but whether this applies to SARS-CoV-2 is not known. 
The SERPIN camostat inhibits TMPRSS-2 and entry of SARS-CoV and 
SARS-CoV-2 into cells [36–38]. Camostat was also shown to inhibit 
influenza replication and cytokine production in airway epithelial cells, 
likely due to inhibition of the host serine protease hepsin [39]. 

Because AAT is a potent SERPIN, it also has the potential to inhibit 
viral entry into cells. Indeed, in HEK293T cells engineered to over-
express TMPRSS-2, physiologic concentrations of AAT potently inhibi-
ted TMPRSS-2 activity using the fluorogenic substrate Boc-Gln-Ala-Arg- 
7-amino-4-methylcoumarin [40]. Wettstein et al [41] further demon-
strated that AAT has inhibitory properties against SARS-CoV-2 infection 
of cells. From a pooled 20 L volume of bronchoalveolar lavage fluid, they 
analyzed different fractions of a peptide/protein library in their ability 
to inhibit SARS-CoV-2 entry of epithelial cells. After MALDI-TOF-MS 
(matrix-assisted laser-desorption ionization time-of-flight mass spec-
trometry) analysis of the fraction that best inhibited viral infection, AAT 
was identified as the principal inhibitor [41]. These findings were 
confirmed by the ability of exogenous AAT in physiological concentra-
tions to inhibit SARS-CoV-2 infection of human airway epithelial cells as 
well as TMPRSS-2-expressing Vero E6 cells. The specificity of AAT to 
inhibit SARS-CoV-2 was demonstrated by the inability of AAT to inhibit 
pseudoparticles carrying the G-protein of the vesicular stomatitis virus, 
a negative sense RNA virus [41]. Oguntuyo and colleagues [42] reported 
that sera from SARS-CoV-2 naïve individuals inhibited cellular entry of 
SARS-CoV-2 and identified AAT as the molecule responsible. de Loyola 
and co-workers [43] also showed that AAT inhibits disintegrin/metal-
loproteinase 17 (ADAM17), a protease that can cause shedding of ACE2 
(which would decrease viral entry) [35] but may also process 
membrane-bound ACE2 and enhance SARS-CoV entry [44] although 
this latter finding is controversial [35]. To the best of our knowledge, 
whether ADAM17 processing of ACE2 to enhance SARS-CoV-2 cellular 
entry is not known. 

AAT has potent anti-inflammatory activities 

While much has been written of the injurious role the delayed hyper- 
inflammatory response may play in COVID-19 and evinced by the 
numerous clinical trials being undertaken to counter inflammation, this 
concept is not completely established because a recent trial of neutral-
izing antibodies to the IL-6 receptor showed no significant efficacy [20]. 
Furthermore, genome-wide association studies have not implicated any 
targetable inflammatory pathways as linked to COVID-19 risk [45]. But 
negative studies in which only one pro-inflammatory cytokine was tar-
geted does not rule out the potential injurious role an array of cytokines 
may play as evinced by the benefit of delayed administration of gluco-
corticoid in severe COVID-19. 

AAT also has potent anti-inflammatory properties [46–48]. A 
mechanism by which AAT attenuates inflammation is by inhibiting 
NFκB activation, a prototypical pro-inflammatory transcription factor, 
through binding of IκBα and/or altering IκBα ubiquitination [31,47,49]. 
AAT also binds extracellular IL-8, preventing the chemokine from 
binding to its receptor CXCR1 and activating Akt signaling pathway 
[46]. Because Akt signaling inhibits the early stages of autophagy, 
perhaps this binding of AAT to IL-8 attenuates Akt activation, thereby 
inducing autophagy [50]. In addition, since neutrophilia is associated 
with worse outcome in COVID-19 [51], the ability of AAT to sequester 
IL-8, a chemokine for neutrophils, may limit both neutrophil influx and 
acute lung injury. COVID-19 is also associated with increased oxidative 
stress [25] and AAT has been shown to inhibit neutrophil superoxide 
production [52]. 

Another anti-inflammatory mechanism of AAT is inhibition of 
ADAM17 [43]. Also known as TNFα-converting enzyme, ADAM17 is a 
cell surface metalloprotease that is activated by the spike protein of 
coronaviruses and cleaves membrane-bound TNFα to soluble TNFα. But 
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as previously mentioned, ADAM17 also causes shedding of ACE2 (Fig. 1) 
[35]. In the blood compartment or within tissues, shedding of ACE2 by 
ADAM17 would increase inflammation since ACE2 normally converts 
angiotensin I and pro-inflammatory angiotensin II [53] to “resolution 
peptides” – angiotensin-(1–7) and angiotensin-(1–9) – that are anti- 
inflammatory, anti-fibrotic, and vasodilatory (Fig. 2A) [54]. While 
these biochemical functions of ACE2 may also occur in the airway 
lumen, the specific ligand(s) other than SARS-CoV or SARS-CoV-2 that 
bind ACE2 in the airways is not known (Fig. 2B). Neverthless, normal 
ACE2 expression has been shown to protect the lungs from injury – by 
reducing both bradykinin production and neutrophil infiltration [55] as 
well as catalyzing angiotensin II to the anti-inflammatory angiotensin- 
(1–7) and angiotensin-(1–9); both these two metabolic products also 
protect lung epithelial cells from death [56]. Consequently, ADAM17- 
induced shedding of ACE2 may cause excessive inflammation, result-
ing in lung injury whereas AAT would dampen these host-deleterious 
responses [35]. To summarize these complex interactions, ACE2, 
while being a receptor for SARS-CoV-2, also has anti-inflammatory 
properties (Fig. 2C). ADAM17, by inducing ACE2 shedding, would 
decrease the cell surface receptor for SARS-CoV-2 but also negate ACE2 
inhibition of overzealous inflammation, acute lung injury, and lung 

edema (Fig. 2C). AAT inhibition of ADAM17 would reduce inflammation 
by decreasing both soluble TNFα formation and ACE2 shedding. 

Pharmacologic inhibition of the renin-angiotensin-aldosterone 
(RAA) axis (e.g., ACE inhibitors) appear to have a neutral effect on the 
course of COVID-19. This neutrality may be due to off-setting effects in 
that RAA inhibition induces ACE2 cell surface expression (potentially 
increasing viral entry) but decreases angiotensin-II (which would 
decrease overzealous inflammation) [57]. As shown in Fig. 2C, both 
RAA inhibition and AAT would theoretically increase ACE2 expression 
and both would decrease angiotensin-II expression and inflammation. 

McElvaney and colleagues [58] reported in 40 hospitalized COVID- 
19 patients (20 stable and 20 requiring intensive care) and 15 patients 
with critically ill non-COVID-19 community-acquired pneumonia that 
there is a blunted AAT acute-phase response in the critically-ill COVID- 
19 patients but not in non-COVID-19 patients requiring intensive care. 
In addition, they found that an increased IL-6:AAT ratio predicted pro-
longed ICU stay and mortality, while relative reduction in IL-6:AAT ratio 
was associated with clinical resolution [58]. Thus, their findings support 
our hypothesis that an inadequate AAT response may be responsible for 
the hyper-inflammatory response associated with COVID-19 and predict 
a worse outcome. 

Fig. 2. The two faces of ACE2, ADAM17, and RAA inhibitors. (A) In blood vessels, angiotensin converting enzyme (ACE) converts angiotensin I (A-I) to angiotensin II 
(A-II). ACE2 then metabolizes A-I and A-II into angiotensin-(1–7) and angiotensin-(1–9), with the latter metabolites also known as pro-resolution peptides because, 
unlike A-II, they have anti-inflammatory, anti-fibrotic, and vasodilatory properties. (B) In the nasal and lung epithelium, ACE2 is the receptor for SARS-CoV-2 after 
the viral spike protein is processed by the serine protease TMPRSS-2. However, ACE2 is also anti-inflammatory and protects against various forms of acute lung injury 
through metabolism of pro-inflammatory A-II to anti-inflammatory angiotensin-(1–7) and angiotensin-(1–9), inhibition of bradykinin production, and preservation of 
cell viability but the precise ligand in the airways that ACE2 catalyzes is not known. ADAM17 is pro-inflammatory in that it converts membrane TNFα to soluble TNFα 
as well as causes shedding of ACE2, reducing the latter’s anti-inflammatory effects. Thus, (C) the two faces of ACE2 are that it is the receptor for SARS-CoV-2 and yet 
is anti-inflammatory and protects against lung injury. ADAM17 causes ACE2 shedding, reducing cell surface expression of the SARS-CoV-2 receptor but also induces a 
pro-inflammatory state. Inhibition of the renin-angiotensin-aldosterone (RAA) axis is also known to induce ACE2 expression but inhibits inflammation by reducing A- 
II expression. Thus, both RAA inhibition and AAT would increase ACE2 expression but both would inhibit A-II expression and inflammation. A-I = angiotensin I; A-II 
= angiotensin II; BK = bradykinin; RAA = renin-angiotensin-aldosterone; mTNFα = membrane-bound tumor necrosis factor-alpha; sTNFα = soluble TNFα; TACE =
TNFα converting enzyme; Negative sign = inhibit or reduce; Positive sign = augment. 
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AAT inhibition of neutrophil elastase may limit acute lung injury 

Neutrophil elastase at sites of acute inflammation is known to 
mediate acute lung injury [59]. Elastase contributes to excessive 
inflammation by inducing the release of IL-8 from neutrophil vesicles 
and facilitating conversion of pro-IL-1β to IL-1β [60]. AAT is a potent 
and irreversible inhibitor of elastase. In a rat model of lipopolysaccha-
ride / ventilator-induced lung injury, pre-treatment with AAT resulted 
in improved outcome, as evinced by increased PaO2/FiO2 ratio and 
decreased wet/dry lung weight ratio as well as decreased protein levels, 
pro-inflammatory cytokines, and cell count in the bronchoalveolar 
lavage fluid [61]. Recently, Mehraban and colleagues [62] showed that 
broken down elastic fibers as a result of elastase plus another insult such 
as lipopolysacchardide was pro-inflammatory. However, there have 
been mixed results with the use of neutrophil elastase inhibitors in 
various forms of non-COVID-19-related acute lung injury [63]. This may 
be due, in part, to the fact that neutrophil elastase may not only incite 
excessive inflammation but is also required for optimal intracellular 
killing of gram-negative bacteria [64]. 

Acute lung injury is also manifested by non-cardiogenic pulmonary 
edema due to leakage of exudate through the alveolar-capillary mem-
brane (Fig. 2). Bradykinin may play a role in this leakage [55,65]. Since 
ACE2 inactivates bradykinin by cleaving a single amino acid from its 
carboxyl terminus, ACE2 can protect against this mechanism of acute 
lung injury. Given that ADAM17 causes shedding of ACE2 [35], 
ADAM17 would theoretically exacerbate the capillary leakage by 
attenuating ACE2 inhibition of bradykinin. But since AAT inhibits 
ADAM17, AAT would mitigate the pulmonary edema caused by the 
virus-induced bradykinin pathway (Fig. 2C) [55]. While AAT inhibition 
of ADAM17 would inhibit ADAM17 shedding of ACE2 and in theory 
enhance viral binding, AAT was found to inhibit SARS-CoV-2 viral entry 
into cells through inhibition of TMPRSS-2 [41–42]. 

AAT inhibition of thrombin may retard thrombus formation 

Both venous thromboembolism as well as in situ micro- and macro- 
thrombi are increasingly recognized with COVID-19 and likely 
contribute to the hypoxemia seen with the acute lung injury [6,66–67]. 
AAT has been shown to antagonize thrombin, a serine protease [68]. 
Because most of the enzymes in the coagulation cascade are also serine 
proteases, AAT has the potential to inhibit other pro-coagulant proteins 
in addition to thrombin. Thus, while AAT itself is unlikely to be 
thrombolytic in those with established thrombi, it may help retard 
thrombus formation [42]. 

AAT alteration of neutrophil extracellular traps may limit COVID-19 
immunothrombosis 

Increased absolute neutrophil number, percentage of neutrophils, 
and neutrophil:lymphocyte ratio in the blood of COVID-19 patients are 
predictive of progression to severe disease [51]. While this association 
may simply be a non-specific reflection of increased severity, there is 
increasing evidence that aberrant formation of neutrophil extracellular 
traps (NETs) – essentially comprised of neutrophil-derived decondensed 
chromatin (cell-free DNA) and proteins such as elastase, cathepsin G, 
and histones to trap and kill extracellular pathogens – play a pathogenic 
role in the immunothrombosis, mucous secretions, and cytokine pro-
duction seen with COVID-19 based on autopsy results, ex vivo NETs 
formation studies, and blood biomarkers for NETs (cell-free DNA, 
myeloperoxidase DNA, and citrullinated histone H3) [5,69–73]. Since 
elastase plays a key role in NETs formation by degrading specific his-
tones and promoting chromatin decondensation [74], AAT has the po-
tential to inhibit NETs formation and reduce the excessive inflammation 
and immunothrombosis seen with COVID-19. Indeed, Frenzel and co- 
workers [75] showed that while AAT did not decrease the formation 
of phorbol myristate acetate-induced NETs, it changed the shape and 

adherence of the NETs in ex vivo experiments using blood neutrophils. 

AAT inhibition of apoptosis may limit endothelial injury by SARS-CoV-2 

SARS-CoV-2 infects endothelial cells and COVID-19 lungs demon-
strate endothelial cell injury, microthrombi and angiogenesis [66]. This 
endothelial injury seen with COVID-19 may be part of a spectrum of 
pulmonary pathology observed that includes acute lung injury, micro-
thrombi formation, and extra-pulmonary multi-organ dysfunction 
associated with the most severe cases. 

Another disorder increasingly recognized in gravid patients with 
severe COVID-19 is pre-eclampsia or pre-eclampsia-like syndrome 
[76–77]. One obvious common denominator for both pre-eclampsia and 
severe COVID-19 is endothelial injury / pathology as a hallmark of pre- 
eclampsia is disrupted placentation which leads to endothelial 
dysfunction and end-organ damage [78]. An indirect support for a 
similar underlying pathophysiology of pre-eclampsia and severe COVID- 
19 is that both disorders may manifest with non-cardiogenic pulmonary 
edema, venous thromboembolism, and/or multi-organ dysfunction. 
Two other specific pathogenic elements that are increased in both 
COVID-19 and non-COVID-19 pre-eclampsia is further evidence that the 
two disorders are linked pathogenically. One is that NETs – as previously 
mentioned with mounting evidence of a pathologic role in COVID-19 – 
have also been implicated in the pathogenesis of non-COVID-19-related 
severe pre-eclampsia [79]. Another is that the presence of anti- 
phospholipid antibodies (aPLA) is a major risk factor for pre-eclampsia 
[80] and one study found that 52% of COVID-19 patients had elevated 
aPLA levels [81]. This very high prevalence of pro-thrombotic aPLA in 
COVID-19 is most likely a consequence of its induction by SARS-CoV-2 
rather than being a pre-existing state. 

AAT inhibits endothelial cell apoptosis and thus may antagonize the 
endothelial injury seen with COVID-19 [82–83]. More specifically, 
murine models revealed that in endothelial cells, AAT inhibits caspase-3, 
an executioner caspase in the classical apoptotic pathway [83]. In 
addition, AAT treatment of endothelial cells decreased oxidative stress, 
inflammation, and cell wall deterioration [83]. Interestingly, low levels 
of plasma AAT have been associated with severe non-COVID-19-related 
pre-eclampsia [84]. Furthermore, AAT suppresses oxidative stress in 
both murine and molecular models of non-COVID-19 pre-eclampsia 
[85–86]. Thus, AAT may also be a promising agent against the pre- 
eclampsia-like syndrome seen in pregnant women with severe COVID- 
19 and should be studied. While large prospective studies have not 
evaluated AAT therapy in pregnancy, there are case reports of safe use in 
pregnancy with normal neonatal outcomes [87]. Before administering 
AAT – as part of a study or as augmentation therapy in those with AAT 
deficiency – screening for IgA deficiency should be done since those with 
IgA deficiency are more likely to develop hypersensitivity reactions due 
to the potential presence of antibodies directed against IgA. 

Summary and fulfilment of the hypothesis 

In summary, given its anti-viral, SERPIN (anti-TMPRSS-2 and anti- 
elastase), anti-inflammatory, anti-thrombin, anti-NETs, and anti- 
apoptotic activities, AAT is a promising therapeutic for COVID-19. It is 
also important to note that AAT is routinely prescribed to those with 
AAT deficiency, has an excellent safety profile, and normal plasma AAT 
levels may be achieved with once weekly intravenous administration. 
Moreover, an inhaled AAT formulation is available although its efficacy 
remains to be fully determined. It is important to also be cognizant that 
even if a truly effective prophylactic vaccine is developed against SARS- 
CoV-2, there will continue to be barriers, including the challenge of 
administering one or more doses of the vaccine to each person in the 
world, vaccine efficacy likely will not be 100%, vaccine refusal by a 
significant number of individuals, and the looming specter of mutations 
of SARS-CoV-2, rendering the vaccine less effective, vis-à-vis what is seen 
with influenza. If mounting evidence shows that AAT does have 
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significant activity against SARS-CoV-2 infection, it can be studied by 
randomized, placebo-controlled trials in which is AAT administered by 
different means depending on the severity of the SARS-CoV-2 infection 
(Fig. 3). For example, AAT administered intravenously (IV) along with 
an anti-oxidant to protect AAT from oxidation in critically-ill COVID-19 
subjects (Fig. 3A), by nebulization in non-critically-ill patients with 
COVID-19 pneumonia (Fig. 3B), or prophylactically by a nasal spray 
(yet-to-be-developed) in asymptomatic persons with multiple risk fac-
tors for severe COVID-19 with unavoidable close contact with COVID-19 
positive individuals (Fig. 3C). 
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