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Rationale & Objective: Accurate estimation of in-
hospital outcomes for patients with acute kidney
injury (AKI) is crucial for aiding physicians in
making optimal clinical decisions. We aimed to
review prediction models constructed by machine
learning methods for predicting AKI prognosis
using administrative databases.

Study Design: A systematic review following
PRISMA guidelines.

Setting & Study Populations: Adult patients
diagnosed with AKI who are admitted to either
hospitals or intensive care units.

Search Strategy & Sources: We searched
PubMed, Embase, Web of Science, Scopus, and
Cumulative Index to Nursing and Allied Health for
studies published between January 1, 2014 and
February 29, 2024. Eligible studies employed ma-
chine learning models to predict in-hospital
outcomes of AKI based on administrative
databases.

Data Extraction: Extracted data included predic-
tion outcomes and population, prediction models
with performance, feature selection methods, and
predictive features.

Analytical Approach: The included studies were
qualitatively synthesized with assessments of
quality and bias. We calculated the pooled model
discrimination of different AKI prognoses using
random-effects models.

Results: Of 3,029 studies, 27 studies were eligible
for qualitative review. In-hospital outcomes for
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patients with AKI included acute kidney disease,
chronic kidney disease, renal function recovery or
kidney failure, and mortality. Compared with
models predicting the mortality of patients with
AKI during hospitalization, the prediction
performance of models on kidney function
recovery was less accurate. Meta-analysis
showed that machine learning methods
outperformed traditional approaches in mortality
prediction (area under the receiver operating
characteristic curve, 0.831; 95% CI, 0.799-0.859
vs 0.772; 95% CI, 0.744-0.797). The overlapping
predictive features for in-hospital mortality
identified from ≥6 studies were age, serum
creatinine level, serum urea nitrogen level, anion
gap, and white blood cell count. Similarly, age,
serum creatinine level, AKI stage, estimated
glomerular filtration rate, and comorbid conditions
were the common predictive features for kidney
function recovery.

Limitations: Many studies developed prediction
models within specific hospital settings without
broad validation, restricting their generalizability
and clinical application.

Conclusions: Machine learning models out-
performed traditional approaches in predicting
mortality for patients with AKI, although they are
less accurate in predicting kidney function recov-
ery. Overall, these models demonstrate significant
potential to help physicians improve clinical deci-
sion making and patient outcomes.

Registration: CRD42024535965.
INTRODUCTION

Acute kidney injury (AKI) is a critical condition among
hospitalized patients, especially in those admitted to the
intensive care unit (ICU), with a mortality rate of 26.9%,
almost 4 times higher than patients without AKI during an
ICU stay.1 In addition to high mortality rates, patients with
AKI may have a high possibility of experiencing long-term
complications such as acute kidney disease, kidney failure,
or cardiovascular events.2-5 Despite decades of research,
few effective therapies exist to improve kidney function
recovery in patients with AKI.6 Early recognition of the
onset and development of AKI and timely interventions are
essential for the effective management and the prevention
of long-term kidney damage in patients with AKI.

In recent years, numerous reviews have been published
to provide an overview of AKI prediction model
development, with some of them focused on specific
populations, such as patients with hospital- or ICU-
acquired AKI,7,8 those undergoing cardiac or noncardiac
surgery,9-11 liver transplant surgery,12 or other condi-
tions.13-18 Many studies in the past decade have employed
traditional regression models, mostly logistic or Cox
regression, to predict new-onset AKI or its prognosis.19,20

However, these methods may be limited when there is
collinearity between variables. Advancements in machine
learning techniques have provided better solutions to
disentangle the nonlinear relationship between predictors
and outcomes and effectively use longitudinal data, of-
fering new opportunities for early intervention.21-23

In clinical practice, the therapeutic strategy for stage 3
AKI, characterized by volume overload or electrolyte ab-
normalities, is using kidney replacement therapy (KRT) to
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correct metabolic disorders and alleviate fluid overload.24

However, early KRT initiation does not improve the
overall survival of patients with AKI, based on existing
evidence.25,26 Several clinical trials27,28 highlighted the
lack of effective tools to identify which patients with AKI
would benefit from KRT at an early stage. Developing
prediction models that accurately predict patients with AKI
with a high risk of adverse outcomes can significantly
improve the management and treatment of those patients.
Several models have been developed for AKI prognosis
prediction using machine learning methods, and their
performances were compared with those of traditional
statistical approaches.29-31 Machine learning models have
demonstrated impressive performance in predicting mor-
tality compared with traditional approaches, providing
clinicians with useful information regarding further
adverse events or long-term prognosis. Given the intricate
nature of time dependency of clinical data, some deep
learning approaches offer real-time probability prediction
of clinical outcomes,32 which potentially enable the inte-
gration of the algorithms with e-alert systems for the
timely detection of adverse events.

In the subsequent sections, we will explore in depth the
methodologies, datasets, and performance metrics used in
AKI prognosis prediction studies, as well as the challenges
of real-world implementation and future directions for
machine learning in this field.

METHODS

Literature Search

We preregistered the protocol for this review in the In-
ternational Database of Prospectively Registered Systematic
Reviews (registration ID: CRD42024535965) and followed
the PRISMA guidelines33 as well as a previous systematic
review guideline on prediction model performance34 to
assess machine learning models for clinical outcomes in
patients with AKI. We searched PubMed, Embase, Web of
Science, Scopus, and Cumulative Index to Nursing and Al-
lied Health databases for literature published in the last 10
years, from January 1, 2014 to February 29, 2024, to
explore the application of machine learning models in AKI
prognosis-related studies. The keywords for literature search
are detailed in Item S1: Supplementary Text and the search
strategies are displayed in Fig S6. We also extensively
searched the reference list of a published systematic review
focused on AKI prognosis.35

Research ethics committee approval: As a systematic review
based on published literature, this study did not involve
new data collection from human participants, thus
exempting it from formal ethics approval.

Informed consent: Because this study used only deidentified
data from published sources, informed consent was waived.

Inclusion and Exclusion Criteria

We included studies that were as follows: (1) focused on
adult patients admitted into hospitals or ICUs; (2) used
2

routinely collected data from administrative databases such as
electronic health records or electronic medical records; (3)
developed and validated prediction models for the clinical
outcomes in patients with AKI; and (4) were published
within the last 10 years from January 1, 2014 to February
29, 2024. Additionally, studies that used single-center or
multicenter research databases primarily consisting of regu-
larly collected electronic health record or electronic medical
record data were also included in this review. The exclusion
criteria were as follows: (1) studies that did not use
administrative databases such as registry-based studies; (2)
validation studies that did not develop the prediction models;
(3) conference abstracts; (4) unpublished literature such as
preprint articles; and (5) articles not written in English.

Study Selection and Data Extraction

After applying the search strategies, we initially retrieved
studies with titles or abstracts related to our topic. Two re-
searchers independently screened the literature using the
inclusion and exclusion criteria, extracted data, and cross-
checked the findings. During the screening process, the re-
searchers first excluded irrelevant literature by title and
accessed the abstracts with full texts to determine the articles
for final inclusion. Any discrepancies were resolved by dis-
cussion within groups. For the data extraction, 2 researchers
exacted the information of each study, including the pre-
diction outcomes and population (Table 1),29-31,36-59 pre-
diction models with performance (Table 2),29-31,36-59 feature
selection methods, and predictive features (Table 3).29-31,36-59

We also completed a quality assessment and evaluated the risk
of bias (Tables S1 and S2) of the included studies.

Data Synthesis and Quality Assessment

First, we qualitatively reviewed the included studies for the
model characteristics and predictive features for outcomes.
The model discrimination was recorded for models vali-
dated internally or externally. The best C-statistic or area
under the receiver operating characteristic curve (AUROC)
was reported for both machine learning and traditional
models when studies used multiple prediction algorithms.
If the study did not provide the average model perfor-
mance for the prediction at several time points, we re-
ported the best C-statistic or AUROC for the prediction
model at different time points. We further conducted
meta-analyses for studies that developed models using
both machine learning and traditional methods. Detailed
methods for the meta-analyses are shown in Item S1:
Supplementary Text. The quality of the prediction model
in each study was evaluated using the following criteria:
(1) handling of missing data, (2) validation method used,
(3) inclusion of external validation, (4) calibration of the
model, (5) scope of outcome assessed, and (6) model
availability. Incompleteness was not meant to indicate low
quality but may implicate the potential limitations of each
publication. We employed the standard tool Prediction
model Risk of Bias Assessment Tool to evaluate the risk of
bias and the applicability of the included studies.60,61
Kidney Med Vol 7 | Iss 1 | January 2025 | 100936



Table 1. Characteristics of Patients With AKI and Prediction Outcomes in the Selected Literature

Study Prediction Outcome Data Source Population

Sample Size in
Included Population/
Training Set

No. of Participants
With Outcome

Incidence of
Outcome

He et al36 (2021) Acute kidney disease Development: Beijing
Friendship Hospital
Validation: MIMIC III

Sepsis-associated AKI 209 116 55.5%

Liu et al37 (2022) Mortality University of Kentucky
Hospital (UK Albert B.
Chandler Hospital)

AKI with dialysis 570 237 41.6%

Liu et al38 (2021) Mortality Development: University of
Kentucky Hospital (UK
Albert B. Chandler Hospital)
Validation: MIMIC III

AKI with dialysis 608 247 40.6%

Yang et al39 (2023) Mortality MIMIC IV Sepsis-associated AKI 9,158 1,940 21.2%
Chang et al40 (2022) Mortality Pooled dataset of MIMIC III

and eICU-CRD
patients receiving KRT for
AKI

11,558 3,412 29.5%

Liu et al41 (2021) Mortality eICU-CRD ICU patients with AKI 7,548 1,234 16.4%
Luo et al42 (2022) Mortality Development: MIMIC IV

Validation: eICU-CRD
Sepsis-associated AKI 6,066 1,127 18.6%

Huang et al43 (2021) Mortality Development: MIMIC III
Validation: eICU-CRD and
the Second People’s
Hospital of Shenzhen

ICU patients with AKI 3,411 838 24.6%

Cunha et al44 (2016) Mortality MIMIC III ICU patients with AKI 2,362 1,148 48.6%
Hung et al31 (2022) Mortality Changhua Christian

Hospital (CCH) Clinical
Research Database
(CCHRD)

AKI patients who received
CKRT

2,932 2,024 (in-hospital)
1,733 (28-d)
1,984 (90-d)

69.0% (in-hospital)
59.1% (28-d)
67.7% (90-d)

Huang et al45 (2021) Mortality MIMIC III Hospitalized patients with
AKI

2,247 824 36.7%

Tang et al46 (2024) Mortality MIMIC IV Sepsis-associated AKI 8,426 1,813 21.5%
Li et al47 (2023) Mortality MIMIC IV Sepsis-associated AKI 8,129 1,629 20.0%
Lin et al48 (2019) Mortality MIMIC III ICU patients with AKI 19,044 2,586 13.6%
Fan et al29 (2023) Mortality Development: MIMIC IV

Validation: Hangzhou First
People’s Hospital Affiliated
to Zhejiang University
School of Medicine

Sepsis-associated AKI 2,599 712 27.4%

Zhou et al49 (2023) Mortality MIMIC IV, Xiangya Hospital
and Third Xiangya Hospital
of Central South University,
Changsha, China

Sepsis-associated AKI 16,154 3,318 20.5%
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Table 1 (Cont'd). Characteristics of Patients With AKI and Prediction Outcomes in the Selected Literature

Study Prediction Outcome Data Source Population

Sample Size in
Included Population/
Training Set

No. of Participants
With Outcome

Incidence of
Outcome

Neyra et al50 (2023) Multiple outcomes:
Mortality
Major adverse kidney
events (death, KRT or
long-term decrease in
eGFR)

Development: The University
of Kentucky Hospital
Validation: The University of
Texas Southwestern
(UTSW) Medical Center

Critically ill patients with AKI 7,354 2,383 32.4%

Nateghi et al51

(2023)
Multiple outcomes:
Mortality
CKD

AZ Groeninge Hospital in
Kortrijk

ICU patients diagnosed with
AKI stage 3

101 43 (mortality)
47 (CKD)

42.6% (mortality)
46.5% (CKD)

Pike et al52 (2015) Multiple outcomes:
Mortality
Kidney function
recovery

27 US Veterans Affairs- and
university-affiliated centers

Critically ill patients with AKI 817 298 (recovery)
415 (mortality)

36.5% (recovery)
50.8% (mortality)

Wei et al53 (2023) Multiple outcomes:
Mortality
Kidney function
recovery

Shanghai General Hospital,
Shanghai Jiao Tong
University School of
Medicine

AKI patients who received
PIKRT

493 256 (mortality)
150 (recovery at
30 d)
163 (recovery at
90 d)

51.9% (mortality)
30.4% (recovery at
30 d)
33.1% (recovery at
90 d)

Wu et al54 (2023) Multiple outcomes:
Mortality
KRT

Chinese Renal Disease Data
System

Hospitalized patients with
AKI

137,084 1,864 1.4%

Liu et al55 (2021) Non-recovery AKI Chang Gung Memorial
Hospitals in Taiwan

Patients with AKI at
admission (index_AKI) and/
or during the hospitalization

8,600 3,871 45.0%

Lee et al56 (2019) Kidney function
recovery

21 Kaiser Permanente-
owned hospitals

Hospitalized patients with
AKI

2,214 905 40.9%

Huang et al30 (2023) Kidney function
recovery

Multicenter EPaNIC
database

Critically ill patients with
ICU-acquired AKI stage 3

229 86 37.6%

Zhao et al57 (2022) Kidney function
recovery

MIMIC IV Hospitalized patients with
AKI

12,321 8,364 67.9%

Low et al58 (2019) KRT A tertiary institution in
Singapore

Hospitalized patients with
AKI

3,333 174 5.2%

Pattharanitima
et al59 (2021)

KRT-free survival MIMIC III Critically ill patients with AKI
requiring CKRT

684 205 30.0%

Abbreviations: AKI, acute kidney injury; CKD, chronic kidney disease; CKRT, continuous kidney replacement therapy; eGFR, estimated glomerular filtration rate; eICU-CRD, eICU Collaborative Research Database; EPaNIC, Early
Parenteral Nutrition Completing Enteral Nutrition in Adult Critically Ill Patients; ICU, intensive care unit; KRT, kidney replacement therapy; MIMIC, Medical Information Mart for Intensive Care; PIKRT, prolonged intermittent kidney
replacement therapy.
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Table 2. Characteristics of Models for Predicting the Clinical Outcomes of Patients With AKI

Study
Prediction
Outcome

Time for Outcome
Prediction Algorithm

Model
Discrimination
(Traditional
Methods)

Model
Discrimination
(Machine
Learning)

Other Metrics to
Measure
Performance

Time Series
Features
Included

He et al36

(2021)
Acute kidney
disease

7 d after AKI-initiating
event

Recurrent neural
network-LSTM, decision
tree, logistic regression

AUROC: 0.728 AUROC: 1.000 NA No

Liu et al37

(2022)
Mortality Mortality during

hospitalization
Knowledge-guIded Time-
aware (KIT)-LSTM,
LSTM, T-LSTM, Phased-
LSTM, RE-TAIN, ATTAIN,
Transformer, XGBoost,
SVM

NA AUROC:
0.75 ± 0.10

Recall: 0.62 ± 0.21,
Precision:
0.70 ± 0.10, F3 score:
0.62 ± 0.20

Yes

Liu et al38

(2021)
Mortality Rolling mortality

prediction during
hospitalization (24 h, 48
h, 72 h)

Knowledge graph guided
double attention LSTM
model (KGDAL), LSTM,
XGBoost, random forest

NA AUROC: 0.76 Accuracy: 0.71,
Precision: 0.66,
Recall: 0.87, F1 score:
0.75

Yes

Yang et al39

(2023)
Mortality 28-dmortality after ICU

admission
XGBoost, random forest,
GBM, logistic regression,
SAPS II score

AUROC: 0.850
(95% CI, 0.836-
0.864)

AUROC: 0.873
(95% CI, 0.860-
0.886)

NA No

Chang et al40

(2022)
Mortality 30-d mortality XGBoost, random forest,

MLP, logistic regression
AUROC: 0.819
(95% CI, 0.787-
0.851)

AUROC: 0.823
(95% CI, 0.791-
0.854)

Accuracy: 0.758,
Sensitivity: 0.635,
Specificity: 0.832,
PPV: 0.697, NPV:
0.790

No

Liu et al41

(2021)
Mortality Mortality during

hospitalization
XGBoost, SVM, random
forest, logistic regression

AUROC: 0.662 AUROC: 0.796 Accuracy: 0.860,
Precision: 0.860,
Recall: 0.994, F1
score: 0.922

No

Luo et al42

(2022)
Mortality Mortality in 48, 72, and

120 h and in the first 28
d after ICU admission

XGBoost, SOFA score,
SAPS II score

AUROC: 0.763
(95% CI, 0.751-
0.775)

AUROC: 0.848
(95% CI, 0.838-
0.858)

Accuracy: 0.795,
Sensitivity: 0.674,
Specificity: 0.803

Yes

Huang et al43

(2021)
Mortality Mortality during

hospitalization and at 28
and 90 d

Random forest, SOFA
score, SAPS II score,
APACHE IV score

AUROC: 0.74 AUROC: 0.82 Accuracy: 0.75,
Sensitivity: 0.70,
Specificity: 0.77, F1
score: 0.67

No

Cunha et al44

(2016)
Mortality 24-h, 1-y mortality Fuzzy c-means,

Gustafson-Kessel
algorithm

NA AUROC:
0.76 ± 0.04

Accuracy:
0.69 ± 0.05,
Sensitivity:
0.69 ± 0.04,
Specificity:
0.69 ± 0.05

No
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Table 2 (Cont'd). Characteristics of Models for Predicting the Clinical Outcomes of Patients With AKI

Study
Prediction
Outcome

Time for Outcome
Prediction Algorithm

Model
Discrimination
(Traditional
Methods)

Model
Discrimination
(Machine
Learning)

Other Metrics to
Measure
Performance

Time Series
Features
Included

Hung et al31

(2022)
Mortality Mortality in 28 d, 90 d,

and during hospitalization
SVM, random forest,
GBM, XGBoost

NA AUROC: 0.823
(95% CI, 0.788-
0.858)

Sensitivity: 0.742,
Specificity: 0.787,
PPV: 0.881, NPV:
0.590, F1 score:
0.806, Accuracy:
0.756

No

Huang et al45

(2021)
Mortality 1-year mortality XGBoost, artificial neural

network
NA AUROC: 0.83 Accuracy: 0.81,

Sensitivity: 0.81,
Specificity: 0.94,
PPV: 0.69, NPV: 0.83

No

Tang et al46

(2024)
Mortality Mortality during

hospitalization
SVM, GBM, AdaBoost,
XGBoost, CatBoost,
Naïve Bayesian, neural
network, MLP, KNN,
random forest, logistic
regression

AUROC: 0.771 AUROC: 0.804 Youden index: 0.470,
F1 score: 0.402,
Accuracy: 0.810
(95% CI, 0.790-
0.830), Sensitivity:
0.290 (95% CI,
0.250-0.330),
Specificity: 0.950
(95% CI, 0.940-
0.960), PPV: 0.640
(95% CI, 0.580-
0.700), NPV: 0.830
(95% CI, 0.810-
0.840)

No

Li et al47

(2023)
Mortality Mortality during

hospitalization
XGBoost, random forest,
SVM, KNN, decision tree,
logistic regression,
SAPS II score

AUROC: 0.730
(95% CI, 0.694-
0.765)

AUROC: 0.794
(95% CI, 0.762-
0.827)

Accuracy: 0.832,
Sensitivity: 0.793,
Specificity: 0.752,
Average precision:
0.660

No

Lin et al48

(2019)
Mortality Mortality during

hospitalization
Random forest, SVM,
artificial neural network,
customized SAPS II
model based on logistic
regression

AUROC: 0.795
(95% CI, 0.781-
0.809)

AUROC: 0.866
(95% CI, 0.862-
0.870)

Brier score: 0.085
(95% CI, 0.084-
0.086), Accuracy:
0.728 (95% CI,
0.715-0.741), F1
score: 0.459 (95%
CI, 0.449-0.470)

No

Fan et al29

(2023)
Mortality Mortality in 7, 14, or 28 d XGBoost, random forest,

MLP, support vector
classifier, logistic
regression

AUROC: 0.75 (95%
CI, 0.73-0.77)

AUROC: 0.91
(95% CI, 0.90-
0.92)

Accuracy: 0.85,
Precision: 0.85, F-
score: 0.85, Recall:
0.85

No

(Continued)
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Table 2 (Cont'd). Characteristics of Models for Predicting the Clinical Outcomes of Patients With AKI

Study
Prediction
Outcome

Time for Outcome
Prediction Algorithm

Model
Discrimination
(Traditional
Methods)

Model
Discrimination
(Machine
Learning)

Other Metrics to
Measure
Performance

Time Series
Features
Included

Zhou et al49

(2023)
Mortality Mortality during

hospitalization
CatBoost, GBM,
LightGBM, AdaBoost,
XGBoost, KNN, MLP,
SVM, logistic regression

AUROC: 0.788 AUROC: 0.827 Accuracy: 0.750,
Youden index: 0.500,
Sensitivity: 0.750,
Specificity: 0.750, F1
score: 0.560, PPV:
0.440, NPV: 0.920

No

Neyra et al50

(2023)
Multiple
outcomes:
Mortality
MAKE: death,
KRT, or long-
term
decrease in
eGFR

Mortality during
hospitalization
Mortality or KRT or 50%
reduction of eGFR within
or at 120 d after
discharge
KRT within the last 48 h
before discharge

Random forest, SVM,
XGBoost, logistic
regression

Mortality AUROC:
0.71 (95% CI, 0.71-
0.71)
MAKE AUROC:
0.67 (95% CI, 0.67-
0.67)

Mortality AUROC:
0.74 (95% CI,
0.73-0.74)
MAKE AUROC:
0.73 (95% CI,
0.72-0.74)

Mortality – Accuracy:
0.65 (95% CI, 0.64-
0.66), Precision: 0.18
(95% CI, 0.17-0.18),
Sensitivity: 0.69 (95%
CI, 0.67-0.71),
Specificity: 0.64
(95% CI, 0.63-0.65),
F1 score: 0.28 (95%
CI, 0.27-0.29), PPV:
0.18 (95% CI, 0.17-
0.18), NPV: 0.95
(95% CI, 0.95-0.95),
Calibration slope:
1.17 (95% CI, 1.12-
1.21)
MAKE – Accuracy:
0.67 (95% CI, 0.66-
0.69), Precision: 0.42
(95% CI, 0.40-0.43),
Sensitivity: 0.67 (95%
CI, 0.64-0.69),
Specificity: 0.68
(95% CI, 0.64-0.71),
F1 score: 0.51 (95%
CI, 0.50-0.52), PPV:
0.42 (95% CI, 0.40-
0.43), NPV: 0.85
(95% CI, 0.85-0.86),
Calibration slope:
1.34 (95% CI, 1.27-
1.41)

No

Nateghi et al51

(2023)
Multiple
outcomes:
Mortality
CKD

3 and 6 mo after
experiencing stage 3 AKI

Random survival forests,
survival XGBoost,
logistic regression

Kidney recovery
AUROC: 0.717
Mortality C-statistic:
0.776 ± 0.081

Kidney recovery
AUROC: 0.846
Mortality C-
statistic:
0.825 ± 0.057

Kidney recovery PR-
AUC: 0.895

No
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Table 2 (Cont'd). Characteristics of Models for Predicting the Clinical Outcomes of Patients With AKI

Study
Prediction
Outcome

Time for Outcome
Prediction Algorithm

Model
Discrimination
(Traditional
Methods)

Model
Discrimination
(Machine
Learning)

Other Metrics to
Measure
Performance

Time Series
Features
Included

Pike et al52

(2015)
Multiple
outcomes:
Mortality
Kidney
function
recovery

Kidney recovery or
mortality at day 60

LASSO, stepwise model Renal recovery
AUROC: 0.73 (95%
CI, 0.68-0.78)
Mortality AUROC:
0.74 (95% CI, 0.69-
0.78)

Kidney recovery
AUROC: 0.76
(95% CI, 0.71-
0.81)
Mortality AUROC:
0.78 (95% CI,
0.73-0.82)

Net Reclassification
Index:
Kidney recovery 0.27
(95% CI, 0.08-0.47)
Mortality 0.41 (95%
CI, 0.22-0.59)

No

Wei et al53

(2023)
Multiple
outcomes:
Mortality
Kidney
function
recovery

30-d mortality, 30- and
90-d renal function
recovery

SVM, KNN, Naïve Bayes,
perceptron, stochastic
gradient descent,
decision tree, random
forest, logistic regression

Mortality AUROC:
0.665
Renal recovery
AUROC: 0.534

Mortality AUROC:
0.679
Renal recovery
AUROC: 0.665

Mortality – Accuracy:
0.669, Precision:
0.755, Recall: 0.545,
F1 score: 0.633
Renal recovery –
Accuracy: 0.709,
Precision: 0.637,
Recall: 0.493, F1
score: 0.556

No

Wu et al54

(2023)
Multiple
outcomes:
Mortality
KRT

24 h, 28 h, 72 h, and 7d Bidirectional LSTM
model

NA Mortality AUROC:
0.924
KRT AUROC:
0.776

Mortality – Accuracy:
0.885, Precision:
0.673, Recall: 0.930,
F1 score: 0.755
KRT –
Accuracy:0.885,
Precision: 0.673,
Recall: 0.934, F1
score: 0.755

Yes

Liu et al55

(2021)
Non-recovery
AKI

AKI non-recovery during
hospitalization

LASSO, random forest,
XGBoost, LightGBM,
stepwise logistic
regression

AUROC:
0.790 ± 0.014

AUROC:
0.808 ± 0.015

Sensitivity:
0.661 ± 0.037,
Specificity:
0.796 ± 0.050,
Precision:
0.800 ± 0.031, F1
score: 0.723 ± 0.016

No

Lee et al56

(2019)
Kidney
function
recovery

Kidney function recovery
without KRTdependence
within 90 d after KRT
initiation and survival
for ≥4 wk after KRT
discontinuation

logistic regression, CART C-statistic: 0.94 C-statistic: 0.64 NA No

Huang et al30

(2023)
Kidney
function
recovery

Kidney function recovery
during hospitalization

LASSO Biomarker
NGAL_AKI: 0.54

AUROC: 0.71 NA No

(Continued)
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RESULTS

After applying the search strategies, we retrieved 3,029
articles without duplication. Among these manuscripts,
2,823 were excluded based on their titles and abstracts, and
156 were selected for complete review (Fig 1). In accor-
dance with our inclusion and exclusion criteria, we even-
tually included 27 studies for systematic review.29-31,36-59

For the clinical outcomes of patients with AKI, the post-
AKI conditions reported in the selected studies include
acute kidney disease (n = 1), chronic kidney disease
(n = 1), kidney function recovery or kidney failure
requiring KRT (n = 9), and mortality (n = 20). Some
studies focused on general hospitalized patients with AKI
(n = 6), whereas most studies predicted the in-hospital
outcomes for patients with AKI with specific conditions
(n = 21), such as sepsis (n = 7), admission to the ICU
(n = 8), and requirement for dialysis (n = 6). Separate
datasets were used in 13 studies for model development and
validation. The sample size for model training ranged from
101-137,084. Twenty-five studies evaluated the model
prediction capability through retrospective validation,
whereas Liu et al55 and Nateghi et al51 assessed the model
prediction performance through prospective validation.
Prediction Models

The prediction model characteristics were extracted and
are displayed in Table 2. The timing of predicting the
prognosis outcomes of patients with AKI varied between
different studies. Most studies predicted the mortality or
kidney function recovery in patients with AKI during
hospitalization (n = 10), whereas some studies predicted
AKI prognoses at specific time points, such as 72 hours
(n = 4), 7 days (n = 5), or 28 days (n = 5). The timing of
prognosis prediction in patients with AKI may also affect
the predictive capability of models, because the disease
status may change over time but not necessarily at a con-
stant rate.

Twenty-five studies examined the performance of >1
model in outcome predictions. Among 4 studies employ-
ing deep learning methods, 3 studies37,38,59 constructed a
deep learning model with superior performance to other
machine learning methods such as extreme gradient
boosting (XGBoost), support vector machine, or random
forest for mortality prediction or KRT-free survival pre-
diction. Additionally, Wu et al54 proposed a deep learning
model with better prediction accuracy for short-term
mortality (24 hours: AUROC = 0.934) and KRT (24
hours: AUROC = 0.883) than longer prediction times
(48 hours, 72 hours, and 7 days). Other commonly used
machine learning models for AKI prognosis prediction
included XGBoost (n = 17), random forest (n = 15),
support vector machine (n = 11), decision tree (n = 5),
multilayer perceptron (n = 5), gradient boosting machine
(n = 4), and K-nearest neighbor (n = 4). A brief intro-
duction to these machine learning methods is provided in
Item S1: Supplementary Text and Figs S1-S5.
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Table 3. Characteristics of Feature Selection Methods and Top Predictive Features for AKI Prognosis Prediction

Study Time Points of Predictor Availability Feature Selection Methods Top Predictive Features
He et al36(2021) Within 3 d after ICU admission RNN-LSTM model Delta non-kidney SOFA, creatinine on day 3, hypertension, diuretics,

delta creatinine, emergency department, non-kidney SOFA at day 3,
baseline creatinine, kidney toxic drug, AKI stage, CCI

Liu et al37 (2022) Temporal features were used before
the outcome

Not reported Not reported

Liu et al38 (2021) Features were selected before
outcome

Not reported Not reported

Yang et al39 (2023) Not reported Univariate regression, correlation
analysis, and Boruta were combined
for feature selection

Age, BMI, albumin, respiratory rate, pH, urine output, SpO2,
temperature, glucose, SUN, sodium, anion gap, WBC, PaCO2,
bicarbonate, heart rate, creatinine, Hgb, lactate, PaO2, neutrophils,
DBP, SBP, PaO2/FiO2, cerebrovascular disease, metastatic solid
tumor, severe liver disease, mild liver disease, dementia

Chang et al40 (2022) Within 24 h before KRT initiation Not reported Creatinine, platelet, FiO2, anion gap, GCS, age, mean arterial
pressure, vasopressor, breaths per minute, bicarbonate

Liu et al41 (2021) Within 24 h of ICU admission LASSO Age, BMI, SCr, sodium, platelets, bicarbonate, chloride, BP, SUN,
RBC, heart rate, respiratory rate, potassium

Luo et al42 (2022) predictors were selected within each
time window (48 h, 72 h, 120 h, and
28 d)

Not reported GCS, urine output, ICU length of stay, age, SUN, lactate, mechanical
ventilation, vasopressors, heart rate, respiratory rate, SpO2, BP,WBC,
potassium, sodium, temperature, PTT, platelets, serum total bilirubin,
Hgb, INR, pH, chloride, creatinine, KRT, ethnicity, PaO2, PaCO2,
bicarbonate, albumin, sex, loop diuretics

Huang et al43 (2021) Within 24 h of ICU admission Univariate analysis using random
forest and logistic regression

Comfort measures only, do not resuscitate, SAPS II, urine output,
SOFA, anion gap, SUN, lactate, BP, total CO2, bicarbonate, platelets,
respiration rate, age, INR, prothrombin time; WBC, length of stay, PTT,
sodium

Cunha et al44 (2016) Not reported Not reported Not reported
Hung et al31 (2022) Within 24 h after CKRT initiation Recursive feature elimination APACHE II, albumin level, timing of CKRT initiation, age, potassium

levels, SpO2, mean arterial pressure, INR, creatinine levels,
vasopressor use

Huang et al45 (2021) Not reported Not reported Age, cancer, kidney failure, hypotension, shock, anemia, hemorrhage,
acidosis, hypertension, creatinine level, urine output, prothrombin time,
hematocrit, Hgb, WBC, SUN, serum bicarbonate, serum sodium,
platelet count, BP, sex

Tang et al46 (2024) Within 24 h of admission Recursive feature elimination AKI stage, PaO2, lactate, urine output, norepinephrine injection rate,
SUN, invasive mechanical ventilation, base excess, and anion gap

Li et al47 (2023) During the first 24 h after ICU
admission

LASSO SOFA, respiratory rate, SAPS II, age, cerebrovascular disease, body
temperature, urine output, serum sodium, serum chloride, weight, INR,
Hgb, heart rate, cancer, SCr, liver disease, PTT, platelets, anion gap,
SUN

Lin et al48 (2019) Measured before the outcome Not reported Urine output, SBP, age, serum bicarbonate level, heart rate
Fan et al29 (2023) In the first 24 h of ICU stay Not reported SOFA, urine output, lactate, SpO2, respiratory rate, INR, mean BP,

anion gap, bicarbonate, heart rate, age, weight, temperature, chloride,
glucose, sodium, SUN, potassium, hematocrit, WBC, creatinine,
platelets

(Continued)
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Table 3 (Cont'd). Characteristics of Feature Selection Methods and Top Predictive Features for AKI Prognosis Prediction

Study Time Points of Predictor Availability Feature Selection Methods Top Predictive Features
Zhou et al49 (2023) Within 24 h of admission Recursive feature elimination Urine output, SUN, norepinephrine injection rate, anion gap,

creatinine, RBC volume distribution width, INR, heart rate,
temperature, respiratory rate, FiO2, creatinine, GCS, diabetes, stroke

Neyra et al50 (2023) During the first 3 d of ICU admission Features were ranked according to
importance in logistic regression,
Random Forest, SVM, and XGBoost,
and the overlapping features were
used as final predictive features

Mortality: Last KDIGO, urine output, FiO2, pressor, SUN, platelets,
age, bilirubin, Hgb, pH, heart rate, ICU admission SCr, serum sodium,
maximum KDIGO
MAKE: pressor, urine output, FiO2, platelets, SUN, lowest
temperature, hours in ICU, bilirubin, last KDIGO, age, pH, heart rate,
highest temperature, ECMO, maximum KDIGO

Nateghi et al51

(2023)
CysC and creatinine were measured
at ICU admission and at the time of
developing AKI stage 3; other
variables were measured in the first
day of ICU admission

Not reported Mortality: SOFA, SAPS II, fluid balance, clinically COPD, suspected
infection, oncological history, eGFR, ventilation, arterial hypertension,
diabetes
CKD: GFR, SCr, CysC, age, SOFA, SAPS II, length of stay in-
hospital, length of stay in ICU, fluid balance, arterial hypertension, BMI

Pike et al52 (2015) Not reported Pearson’s correlation, partial eta
squared and χ2 test

Mortality: sodium, total protein, LDH, phosphorus, thrombin time
Kidney function recovery: hematocrit, chlorine, total protein, uric acid,
blood phosphorus, prothrombin time, CKD stage, diabetes

Wei et al53 (2023) Not reported Multivariate logistic regression Age, mean arterial pressure, mechanical ventilation, bilirubin, and
plasma IL-8

Wu et al54 (2023) Within 24 h of hospital admission Not reported Not reported
Liu et al55 (2021) Before and during the index

hospitalization for AKI
Recursive feature elimination Age at index date, HA-AKI, index AKI stage at index admission, CCI,

CKD, cancer, index SCr, baseline SCr, SUN, potassium, LDL
cholesterol, SUA, calcium, CRP, albumin, erythrocyte sedimentation
rate, WBC, lymphocyte count, neutrophil count, use of health service

Lee et al56 (2019) Demographics and inpatient
laboratory values were recorded on
the RRT initiation date; outpatient
laboratory values and vital signs were
measured 7 to 365 d before
admission

Stepwise logistic regression applied
to bootstrapped samples

eGFR, preadmission Hgb level, chronic liver disease, age

Huang et al30 (2023) The first day of AKI stage 3 in the ICU Correlation-based feature selection
method (CfsSubsetEval)

Age, sepsis on admission, surgery/trauma diagnostic group, KRT on
the first AKI stage 3 day in ICU, cardiac surgery diagnostic group

Zhao et al57 (2022) Within the first 24 h after ICU
admission and the diagnosis of AKI

Not reported SCr, antibiotic duration, sodium, anion gap, temperature, chloride,
SAPS II, Hgb, urine output volume to weight ratio, sepsis, heart rate,
prothrombin time, SpO2, AKI stage

Low et al58 (2019) Not reported Multivariate logistic regression AKI onset in ICU, hematological malignancy, higher delta SCr (SCr
increase from AKI detection until peak), higher serum potassium,
baseline eGFR

Pattharanitima
et al59 (2021)

From hospital admission and up to
CKRT initiation

Not reported Not reported

Abbreviations: AKI, acute kidney injury; APACHE, Acute Physiology And Chronic Health Evaluation; AST, aspartate aminotransferase; BMI, body mass index; BP, blood pressure; CCI, Charleson comorbidity index; CKD, chronic
kidney disease; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; CRRT, continuous renal replacement therapy; CysC, cystatin C; DBP, diastolic blood pressure; ECMO, extracorporeal membrane
oxygenation; eGFR, estimated glomerular filtration rate; FiO2, fraction of inspired oxygen; GCS, Glasgow Coma Scale; HA-AKI, hospital acquired acute kidney injury; Hgb, hemoglobin; ICU, intensive care unit; IL, interleukin; INR,
international normalized ratio; KDIGO, Kidney Disease: Improving Global Outcomes; KRT, kidney replacement therapy; LASSO, least absolute shrinkage and selection operator; LDL, low-density lipoprotein; MAKE, major adverse
kidney events; PaCO2, partial pressure of carbon dioxide; PaO2, partial pressure of oxygen; PTT, partial thromboplastin time; RBC, red blood cell; RNN-LSTM, recurrent neural network long short-term memory; RRT, renal
replacement therapy; SAPS II, Simplified Acute Physiology Score II; SBP, systolic blood pressure; SCr, serum creatinine; SOFA, Sequential Organ Failure Assessment; SpO2, oxygen saturation; SUA, serum uric acid; SUN,
serum urea nitrogen; SVM, support vector machine; WBC, white blood cell; XGBoost, extreme gradient boosting.
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searching: PubMed: 1834, Embase:
454, Web of Science: 1372, Scopus: 

365, CINAHL: 596 

through other sources
(n = 8)

(n = 3029)

Records screened
(n = 3029)

Records excluded
(n = 2873)

Full-
for eligibility

(n = 156)

Full-
with reasons:
· Review (n=25)
· P

(n=38)
·

(49)
· Not using machine 

learning models (17)
Studies included in 

(n = 27)

Figure 1. Flow diagram illustrating systematic literature search
to identify eligible studies. AKI, acute kidney injury.

Lin et al
Of the selected 27 studies, 21 compared traditional
methods (such as severity scoring systems [Simplified
Acute Physiology Score II, Acute Physiology And Chronic
Health Evaluation III] or logistic regression) with machine
learning models. Except for the studies conducted by Low
et al58 and Lee et al,56 19 of 21 studies found that machine
learning models had a higher AUROC or C-statistic than
traditional statistical models or severity assessment scores.
For mortality prediction (n = 20), the AUROC of the
machine learning models in different studies ranged from
0.679-0.924, with 18 of them exceeding an
AUROC >0.750. We meta-analyzed the model discrimi-
nation for mortality prediction (Fig S7), and machine
learning approaches significantly outperformed traditional
methods (AUROC, 0.831; 95% confidence interval [CI],
0.799-0.859 vs 0.772; 95% CI, 0.744-0.797).

The prediction models for kidney function recovery or
kidney failure were less accurate than the mortality pre-
diction models, with an AUROC ranging from 0.640-
0.846. Only 4 studies provided sufficient data for meta-
analysis of kidney functional recovery. Although machine
learning showed a trend toward higher model discrimi-
nation, the difference was not statistically significant
(AUROC, 0.781; 95% CI, 0.674-0.861 vs. 0.734; 95% CI,
0.547-0.863) for different models, which might be
because of the limited number of studies that predicted
kidney functional recovery (Fig S8). The Egger’s test
indicated no significant publication bias for all meta-
analyses (Fig S9). Across the meta-analyses, there were
high study heterogeneities with significant I2 values
exceeding 90% (P < 0.001), which is common in pre-
diction model meta-analyses because of non-overlapping
CIs among studies.62,63 In addition to AUROC, a few
studies reported the model performance using other model
12
evaluation metrics. For example, sensitivity (recall)
(n = 19), accuracy (n = 17), specificity (n = 13), F1 score
(n = 11), precision (n = 10), positive predictive value
(n = 8), and negative predictive value (n = 8) were
commonly used in these studies.

Predictors for the Clinical Outcomes of Patients

With AKI

We summarized each study’s feature selection method and
top predictive features (Table 3). Five studies applied
traditional regression-based or correlation-based ap-
proaches for the feature selection. Six studies applied
feature selection methods belonging to wrapped methods
that can maximize the model prediction ability using a
combined subset of features, such as recursive feature
elimination or CfsSubsetEval from Weka software.

Except for 4 studies, 23 studies reported the most
predictive features in their models. Among them, 18
studies reported important features for mortality,
including age, serum creatinine level, serum urea nitrogen
level, anion gap, and white blood cell count, which were
overlapping predictive features for mortality that appeared
in >6 studies. A multicenter study in China investigated
risk factors for death in elderly AKI patients across 15
hospitals and found that age and comorbid conditions such
as cardiovascular disease, cancer, and mechanical ventila-
tion were significantly associated with mortality risk.64 The
increase in serum urea nitrogen level was linked to long-
term mortality in patients with various diseases such as
heart failure65 or cardiovascular disease.66 Additionally,
serum anion gap has been reported to be robustly associ-
ated with mortality risk in critically ill patients with
chronic obstructive pulmonary disease.67 White blood
cells, such as lymphocytes, play an important role in AKI
development by producing proinflammatory cytokines.68

For the outcome of kidney function recovery or kidney
failure, age, serum creatinine level, estimated glomerular
filtration rate, AKI stage, and comorbid conditions were
frequently used predictive features. A retrospective cohort
study showed that patients with a decreased estimated
glomerular filtration rate during hospitalization would
have an 18% increased mortality in the following year and
a 267% increased risk of kidney failure within 10 years.69

The various stages of AKI, particularly AKI requiring
dialysis, which is the most severe form of AKI, were
associated with increased mortality and kidney non-
recovery in patients after surgery.70 In the case of acute
kidney disease, factors such as serum creatinine level, co-
morbid conditions, and medications played significant
roles in determining acute kidney disease persistence.

Quality Assessment of Included Studies

The quality of the included studies was assessed from 6
perspectives, including handling of missing data, valida-
tion methods, validation type, calibration of the model,
scope of the population included in model development,
and model availability (Table S1). Of the 27 studies, 21
Kidney Med Vol 7 | Iss 1 | January 2025 | 100936
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reported the time points of feature measurements used in
model construction (Table 3). Nine studies used variables
measured within 24 hours of ICU admission, whereas 3
used variables measured at AKI initiation to predict clinical
outcomes. Eight studies were externally validated on
different datasets, indicating that the variables used are
widely available, and these models could be deployed
across different hospitals if needed. Nineteen studies
employed various methods to handle missing values,
suggesting that some predictive variables may be of low
quality and require further processing before risk estima-
tion. Of the 21 studies comparing traditional methods with
machine learning models, 14 reported model calibration,
with 7 providing detailed calibration metrics. Four studies
reported the slope of the calibration curve or the correla-
tion between predicted and observed outcomes, ranging
from 0.840-1.349 (a slope of 1 indicating perfect cali-
bration). Three studies reported Hosmer-Lemeshow test P
values (all > 0.05), indicating good model fit. Finally, 14
studies used the study population from a single hospital to
predict the clinical outcomes of AKI patients. It was chal-
lenging to evaluate the generalizability of these prediction
models trained and internally validated within a single
hospital dataset without external validation. Specifically, 2
prediction models from Fan et al29 and Neyra et al50 are
publicly available for nephrologists and can be used to
predict mortality based on clinical variables routinely
measured in patients. These models offer a foundation for
incorporating machine learning into clinical practice,
intending to reduce patient risk.

We further assessed the risk of bias for the included
studies and the applicability of the prediction models
using the Prediction model Risk Of Bias Assessment tool
(Table S2). Machine learning models that were only
developed and validated in a single dataset from a single
hospital were considered as having low applicability
(n = 14). Those constructing models from relatively
small sample sizes, without feature selection, or without
calibration were identified as having a high risk of bias
for methodology. We identified only 4 studies with
relatively low bias risk and minimal concerns regarding
the applicability of their prediction models for patients
with AKI.
DISCUSSION

In this comprehensive systematic review of 27 studies on
AKI prognosis, we found that machine learning models
provide better discrimination in predicting mortality than
kidney function recovery, and they outperform tradi-
tional approaches in mortality prediction among patients
with AKI. We identified a key set of predictive features for
in-hospital mortality including age, serum creatinine
level, serum urea nitrogen level, anion gap, and white
blood cell count, whereas age, serum creatinine level, AKI
stage, estimated glomerular filtration rate, and comorbid
conditions played an important role in kidney function
Kidney Med Vol 7 | Iss 1 | January 2025 | 100936
recovery or kidney failure prediction. The deep learning
models that can identify the risk of adverse events
dynamically with time-dependent features incorporated
have superior model performance over static models.
With the capability of identifying high-risk adverse
events in patients with AKI, machine learning models
might aid physicians in making timely and optimal in-
terventions and ultimately improve the clinical outcomes
of high-risk patients.

Given its potential effect on patient survival, the prog-
nosis of AKI patients is a highly concerning topic in post-
AKI management. The timing of KRT initiation remains
controversial in AKI patients without heavy fluid overload
or major metabolic disorders, such as acidosis, hyper-
kalemia, and uremia.71 Meta-analysis showed no differ-
ence in mortality rate and dialysis dependence between
early or late initiation of KRT.26 Previous studies27,28

highlighted an absence of risk stratification tools in pa-
tients with AKI without severe complications to guide KRT
initiation. Machine learning models that accurately predict
clinical outcomes of patients with AKI are capable of (1)
helping clinicians to identify patients at a high risk of death
or nonrecovery early and obtain the opportunity to pro-
vide timely interventions; (2) facilitating clinical trials for
AKI patients at a high risk of adverse outcomes, potentially
reducing mortality or loss of kidney function; and (3)
assisting medical counseling and informing patients about
the risks of deteriorating conditions. In addition to tradi-
tional machine learning methods, the rising trend of using
deep learning models to identify AKI risk is a popular
strategy for the early detection of patients with AKI. Deep
learning models can capture useful information from time
series data, demonstrating better prediction performance
than traditional statistical approaches, machine learning
models, and even medical experts.72,73 A study systemat-
ically reviewed published studies on AKI prognosis with a
wide range of prediction models and concluded that some
clinical models were internally validated but unavailable
for easy application in clinical settings. Our study extends
the current understanding of the AKI prognosis prediction
models by incorporating a broader range of machine
learning approaches, providing valuable insights into the
utilization of machine learning models in patients with
AKI.

In this review, we summarized several overlapping
predictive features from various machine learning
models. Several biomarkers were used in AKI prediction,
but these biomarkers have limited effects in predicting
the prognosis of AKI.74-77 Baseline estimated glomerular
filtration rate, proteinuria, age, diabetes, AKI stage, and
comorbid conditions have been shown to influence the
probability of kidney function recovery.78-81 A meta-
analysis reviewed 63 studies to identify the biomarkers
for KRT in AKI and found that neutrophil gelatinase-
associated lipocalin, blood creatinine, and cystatin C
were highly predictive for receiving KRT in patients with
AKI.82 Our study indicated that age and serum creatinine
13
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levels have been repeatedly reported as significant risk
factors for mortality in patients with AKI. In addition to
serum creatinine, age is an essential indicator of kidney
function.83 A previous study highlighted the increased
susceptibility of aging individuals to AKI and the high
incidence of progression to kidney failure.84 Delahunt
et al85 investigated patients with progeria and found that
a patient showed focal glomerulosclerosis and tubular
atrophy, a symptom of kidney aging. During the aging
process, the deterioration of significant artery stiffness
with the increased systolic blood pressure and diastolic
blood pressure contributed to kidney microvascular
damage and increased the possibility of trauma, further
leading to kidney failure.84,86,87 Multimorbidities in pa-
tients with AKI, such as diabetes, hypertension, and
cardiovascular disease, are frequently reported to be
associated with nonrecovery AKI.74,88-90 Aging and
chronic diseases accompanied by diminished glomerular
reserve may lead to advanced-stage AKI.91 Collective ev-
idence has demonstrated that the severity of disease
conditions is highly possible to be associated with he-
modynamic instability and decreased nephron mass,
eventually resulting in kidney nonrecovery.

This study has its limitations. Most of these studies
developed prediction models within specific hospital set-
tings and did not validate them at a large scale in hospitals
at a national level or across countries, limiting broad
application of these models. Furthermore, most included
studies did not provide further discussion about the clin-
ical use of these machine learning models, restricting their
utilization in clinical practice and continuous improve-
ment of these models. In addition to comparing machine
learning models with traditional methods, future research
should prioritize developing models based on commonly
used clinical variables and validate these models across
different hospitals to ensure their robustness and general-
izability. Making these models publicly available and
integrating them into electronic medical record systems
would greatly assist nephrologists in making clinical de-
cisions and help reduce patient risk. Collaboration between
model developers, health care institutions, and electronic
health record providers will be crucial to achieving this
integration.
CONCLUSIONS

In conclusion, we found that machine learning models
outperform traditional methods in predicting mortality,
with better model discrimination for mortality than kidney
function recovery. The application of deep learning models
in AKI prognosis suggests they can effectively predict
adverse outcomes with time changes, showing the po-
tential to assist clinicians in identifying high-risk patients.
Notably, these models need to be validated across diverse
datasets and made publicly accessible to maximize their
benefit for patients with AKI.
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