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André L. Martins1, Ninad M. Walavalkar1, Warren D. Anderson1,2, Chongzhi Zang1,2 and
Michael J. Guertin1,2,*

1Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia, USA and 2Center
for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA

Received February 10, 2017; Revised September 19, 2017; Editorial Decision October 16, 2017; Accepted October 18, 2017

ABSTRACT

Coupling molecular biology to high-throughput se-
quencing has revolutionized the study of biology.
Molecular genomics techniques are continually re-
fined to provide higher resolution mapping of nucleic
acid interactions and structure. Sequence prefer-
ences of enzymes can interfere with the accurate in-
terpretation of these data. We developed seqOutBias
to characterize enzymatic sequence bias from ex-
perimental data and scale individual sequence reads
to correct intrinsic enzymatic sequence biases. Se-
qOutBias efficiently corrects DNase-seq, TACh-seq,
ATAC-seq, MNase-seq and PRO-seq data. We show
that seqOutBias correction facilitates identification
of true molecular signatures resulting from transcrip-
tion factors and RNA polymerase interacting with
DNA.

INTRODUCTION

The field of molecular genomics emerged as classical molec-
ular biology techniques were coupled to high-throughput
sequencing technology to provide unprecedented genome-
wide measurements of molecular features. Molecular ge-
nomics assays, such as DNase-seq (1,2), ChIP-exo (3) and
PRO-seq (4,5), are converging on single-nucleotide resolu-
tion measurements. The enzymes that are routinely used
in molecular biology and cloning have inherent and of-
ten uncharacterized sequence preferences. These prefer-
ences manifest more prominently as the resolution of ge-
nomic assays increases. Therefore, we developed seqOutBias
(https://github.com/guertinlab/seqOutBias) to characterize
and correct enzymatic biases that can obscure proper inter-
pretation of molecular genomics data.

Enzymatic hypersensitivity assays, such as DNase-seq
(1,2), TACh-seq (6) and ATAC-seq (7), have the potential
to measure transcription factor (TF) binding sites genome-

wide in a single experiment. These assays strictly mea-
sure enzymatic (DNase, Tn5 transposase, Benzonase or
Cyanase) accessibility to DNA and not a specific biologi-
cal event, making data challenging to deconvolve. Standard
algorithms scan for footprints, which are depletions of sig-
nal in larger regions of hypersensitivity (8–12). Many TFs,
however, do not exhibit composite footprints if enzymatic
cut frequency is averaged at all ChIP-seq validated binding
sites with strong consensus motifs (10–13). Moreover, the
inability to detect a footprint at any individual TF binding
site results in high false negative rates for footprinting al-
gorithms (14). Accurate footprinting is also confounded by
the artifactual molecular signatures that result from enzy-
matic sequence preference (10–12). DNase footprinting al-
gorithms can incorporate DNase cut preference data to ab-
rogate this bias (12,14,15). However, no existing tools spe-
cialize in correcting intrinsic sequence bias for a diverse set
of enzymes and experimental methodologies.

We find that correcting for enzymatic sequence bias high-
lights true molecular signatures that result from TF/DNA
interactions. Despite the limitations of enzymatic hypersen-
sitivity footprinting and sequence bias signatures, hypersen-
sitive regions reveal a near-comprehensive set of functional
regulatory regions in the genome (16). Therefore, we present
seqOutBias, which calculates sequence bias from an aligned
BAM file and corrects individual reads accordingly. While
this software does not directly infer TF binding, correction
of sequence bias provides a more accurate measurement of
three key features of enzymatic hypersensitivity data: (i) raw
peak height; (ii) footprint depth; and (iii) true molecular
signatures. These measurements, taken together with DNA
sequence, can be used to develop algorithms that infer TF
binding genome-wide. Moreover, footprint depth and the
presence of true molecular signatures are unique to each
TF and these features should be characterized for each TF
using corrected data in order to optimize TF-binding infer-
ence algorithms.
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Enzymatic sequence biases are most well-characterized
for DNase-seq experiments (10–12), but nearly all molecu-
lar genomics experiments employ enzymatic treatments and
these enzymes also have intrinsic biases. Herein, we show
that DNase, Cyanase, Benzonase, MNase, Tn5 transposase
and T4 RNA ligase all exhibit sequence preferences that are
effectively corrected with seqOutBias. We also characterize
enzymatic bias that results from T4 DNA Polymerase, T4
Polynucleotide Kinase and Klenow Fragment (3’→5’ exo-)
treatment of DNA in preparation of high-throughput se-
quencing libraries. At last, we show that correction of en-
zymatic sequence bias highlights true molecular signatures,
such as sharp peaks of hypersensitivity and footprints, that
result from protein/DNA interactions.

MATERIALS AND METHODS

Sequence bias correction

Enzymes that are commonly used in molecular biology
have nucleic acid preferences for their substrates and the
sequence at or near the active site of the enzyme typically
dictates enzymatic preference. Let the sequence context be
defined by a k-mer proximal to the start of the detected
sequence read. A sequenced read corresponds to a k-mer
observation if it occurs at a specific offset with respect to
the edge of the k-mer (Figure 1A). Assuming a systematic
k-mer dependent bias, the true read count will be a scaled
version of the observed read count, that is:

Ri, j = α ( j ) Oi, j

where, for position i, Ri, j is the true read count, Oi, j is the
observed read count and α( j ) is the scale factor, or bias,
corresponding to k-mer j.

In an unbiased setting, the observed frequency of k-mers
should be proportional to their genome-wide counts or a re-
gional subset of the genome. For example, condensed chro-
matin may restrict enzyme access and these can be excluded
from the genomic k-mer counts. Let I(m, j ) be the indica-
tor function that genome position m is assigned to k-mer j,
then we have:∑

i

Ri, j / NR ≈
∑

m

I (m, j ) / M

where M is the total number of observable genome positions
and NR is the total read count. Further taking the observed
total read count NO to be NO ≈ NR, then α( j ) can be ap-
proximated by:

α ( j ) ≈
[∑

m

I (m, j ) / M

]
/

[∑
i

Oi, j / NO

]

The seqOutBias software aims to correct sequence biases
by scaling the aligned read counts by α( j ), which is effec-
tively the ratio of genome-wide expected read counts to the
observed sequence counts for each k-mer. The seqOutBias
software additionally takes into account mappability, which
means that observable positions can differ per strand, thus
we compute a separate value of α( j ) on each strand.

A

B

Figure 1. SeqOutBias overview and parameter definitions. (A) An enzy-
matic cleavage event that results in a blunt end can be detected by sequenc-
ing the upstream or downstream DNA (red bases). The hexamer sequence
centered (red block) on the nick sites (dotted vertical lines) confers speci-
ficity; this parameter is referred to as the k-mer. The plus-offset and minus-
offset parameters specify the nick site relative to the first position and last
position of the k-mer. As opposed to specifying the immediate upstream
base for the minus strand, we shift the base position by +1 to match the first
position of the plus aligned read. (B) This panel illustrates the high-level
overview of the inputs, intermediate files and output of the seqOutBias pro-
gram and the computation steps that the program performs. The tallymer
step indexes the reference sequence (FASTA) and computes mappability
for the given read length. The seqTable step parses the reference sequence
together with the mappability information to compute the k-mer that cor-
responds to each possible read alignment position. The tabulate step tallies
the k-mer counts across the selected regions (or the full genome), as well
as the k-mers corresponding to observed aligned reads (if a BAM file is
supplied). At last, scale computes the genome-wide aligned read pile-ups,
scaling sequence reads by the expected/observed k-mer frequency.

Computational workflow of seqOutBias

The seqOutBias software uses a genome FASTA file and an
aligned and sorted BAM file as inputs. Each intermediate
step within seqOutBias corresponds to a seqOutBias sub-
command, which permits them to be run individually or
separately on different machines. Due to the large size of
genomic datasets, seqOutBias can read compressed FASTA
files.
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Computing genomic mappability. In the implementation of
seqOutBias, our algorithm first calculates the expected se-
quence detection frequency for each k-mer by determin-
ing the positions in the supplied reference genome that are
uniquely mappable for a given sequence read length. It is
important to compute mappability for a read length be-
cause the algorithm should only count k-mers that corre-
spond to genomic positions that have the potential to be
detected based on their unique genomic mappability when
it calculates the expected k-mer detection frequency from
the FASTA file. SeqOutBias invokes GenomeTools’ tally-
mer to compute mappability at each position in the genome
(17,18). First, the reference genome FASTA file is indexed
using GenomeTools’ Tallymer program (17,18). Next, Tal-
lymer computes unique mappability for each position in the
genome for a given input read length. This step corresponds
to a seqOutBias subcommand, tallymer, which can be run
individually or on different machines. The tallymer subcom-
mand computes the mappability information, parses the
reference sequence to compute k-mer indexes, and creates
a mappability file for a given read length (Figure 1B). This
process consists of three parts: (i) creating a suffix tree; (ii)
creating a genome index; and (iii) creating the mappability
file. These processes are the most computationally intensive
steps and seqOutBias will recognize the existence of inter-
mediate files in the directory to avoid unnecessary recom-
putation. For instance, if the seqOutBias tallymer step is ex-
ecuted for different read lengths, but using the same FASTA
file, then the first suffix-tree portion is re-used across invo-
cations.

Mapping k-mer indexes to the aligned read positions. The
next step, seqOutBias seqtable, creates an intermediate ta-
ble that combines mappability information, read length and
plus/minus offsets (Figure 1A) to map k-mer indexes to the
aligned read positions (Figure 1B). The seqtable subcom-
mand parses the reference sequence (FASTA) together with
the mappability information to compute the k-mer that cor-
responds to each possible read alignment position. The re-
sulting binary file stores this information in a compressed
form that can be easily used for subsequent computation
steps, as well as storing the corresponding parameters (read
length, k-mer size, and cut-site offsets). This intermediate
file reduces the amount of computation needed when pro-
cessing aligned read files and provides an intermediate TBL
file that decouples the reference sequence processing from
the remaining steps.

Tallying the k-mer counts in the reference sequence and the
aligned reads. The resultant TBL file is an input for the
seqOutBias tabulate subcommand, which tallies the k-mer
counts across the selected regions (or full genome), as well
as the k-mers corresponding to observed aligned reads from
the BAM file. In contrast to other methods (10–12,15), these
numbers are used to scale the reads without the need for
Naked DNA to calibrate (14). This subcommand produces
a k-mer count table based on the TBL sequence information
and the optional sorted BAM file. Counts correspond to the
entire genome by default, but counts can be constrained to
specific regions by supplying a BED file with the regions op-
tion. When no BAM file is supplied, the output will have

four columns: k-mer index, k-mer string, plus strand count
and minus strand count. If a BAM file is supplied, the out-
put will have two additional columns with the plus and mi-
nus strand counts of observed aligned reads.

Scaling individual sequence reads. The final subcommand,
seqOutBias scale, computes the genome-wide aligned read
pile-ups and scales them by the expected/observed k-mer
detection frequency. This produces the corrected aligned
read pile-ups, both as BED and bigWig files. This com-
mand provides flexibility in the output, including the - -
shift-counts and - -tail-edge options. The - -shift-counts op-
tion shifts minus strand pile-up positions to align with the
plus strand pile-up, making reads from both sides of a cleav-
age site pile up at the same position regardless of whether
the upstream or downstream sequence was detected by se-
quencing (Figure 1A). This option is used when enzymatic
cleavage of individual sites can result in a single base shift
depending on whether the nicking event was detected by
sequencing the upstream or downstream DNA (red nu-
cleotides in Figure 1A). The tail-edge option outputs the 3′
end of the reads; this option is used primarily for analysis
of PRO-seq data (4,5). Therefore, seqOutBias reads com-
pressed files (FASTA, mappability information and sorted
BAM files), reuses intermediate results, and allows for flex-
ibility in specifying sequence features for data correction.

K-mer mask optimization

In seqOutBias, the k-mer sequence that is recognized by the
enzyme to confer specificity is characterized by three pa-
rameters: k-mer size and a pair of offsets for the plus and
minus strands (Figure 1A). These parameters enable flexi-
bility and seqOutBias works with enzymes that have a vari-
ety of recognition site lengths. The k-mer mask parameter of
seqOutBias restricts which positions contribute to the bias
correction. A gapped k-mer enables the user to capture bias
due to distal contributions and ignore uninformative posi-
tions that are more proximal. Positions within the mask that
are ignored are represented by an X and informative posi-
tions by an N. This parameter provides an alternative way
to specify the position intervening between the first base se-
quenced and the base directly upstream by inserting a C in
the mask string. For example, a possible 8-mer that spans 16
bp could be represented as NNXXNNXXCXXNNXXNN;
likewise, NNNCNNN, would represent a recognition site
with kmer-size = 6, plus-offset = 3 and minus-offset = 3
(Figure 1A). We developed two approaches to guide the
choice of the k-mer mask.

The first of these approaches, implemented in the Rust
program kmer mask em (https://github.com/guertinlab/
kmer mask em), is aimed at assays like DNase-seq
and TACh-seq where enzymatic digestion liberates
free DNA ends and the digestion event can be de-
tected by sequencing the upstream or downstream
sequence. The second approach, implemented in R (https:
//github.com/guertinlab/seqOutBias/tree/master/docs/R),
aims to flatten the composite profiles of the input molecu-
lar genomics data at TF position-specific weight matrices
(PSWM) and is offered as an alternative that imposes less
constraints on the k-mer mask.

https://github.com/guertinlab/kmer_mask_em
https://github.com/guertinlab/seqOutBias/tree/master/docs/R
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k-mer mask optimization via enzyme cut-site model. In
the k-mer mask optimization via enzyme cut-site model
method, we model the enzyme cut bias as a PSWM of length
K, over the sequence surrounding the cut site. Each k-mer
corresponds to a possible cut-site with unknown orienta-
tion. We apply expectation maximization (EM) to infer the
PSWM from the table of k-mer counts.

Let the PSWM be defined as θ =
{p j, b : 1 ≤ j ≤ K ; b ∈ {A, C, G, T}}, where p j, b
be the probability of observing the nucleotide b at cut-site
position j and b̄ to be the complement of nucleotide b (e.g.
b = A, b̄ = T). Given a table of k-mer counts, let xi be the
sequence of k-mer i occurring ni times, zi ∈ { f wd, rev} be
unknown orientation of xi and P(Zi = f wd) = γi . The
full likelihood of the model is depicted in Supplementary
Figure S1, thus the full log-likelihood is given by:

l(γ, θ |X, Z) = log P(X, Z | γ, θ )
= ∑

i
ni log P(Xi , Zi |γi , θ )

= ∑
i

(
ni log P(Zi |γi ) +

K∑
j=1

ni log P(Xi, j |Zi , θ )

)

= ∑
i

ni log P(Zi | γi ) + ∑
i

K∑
j=1

∑
b

ni I
(
xi, j = b

)
(
I (zi = fwd) log p j, b + I (zi = rev) log pK− j +1, b̄

)
which results in the simple definitions for the EM steps:

E-step: use Bayes rule to get the posterior of Z, i.e. com-
pute P(Zi = f wd | Xi , γ, θ );

M-step: update the model parameters:

γi
′ = P(Zi = fwd | Xi , γ, θ )

p j, b
′ = Aj (b) /

(∑
m

Aj (m)

)

with:

Aj (b)

=
∑

i

(
ni P(Zi = fwd |Xi , γ, θ )I

(
xi, j = b

)
+ ni P(Zi = rev |Xi , γ, θ )I

(
xi, j = b̄

) )
In practice, we add a pseudo-count to the values of Aj (b)

of 0.1. Furthermore, since EM does not guarantee a global
optimum, the kmer mask em program computes the opti-
mization from multiple random starting points, taking the
best global result as the optimum.

The inferred PSWM is used to infer a sequence of k-mer
masks of increasing complexity by making use of the Infor-
mation Content score at each position. Positional Informa-
tion Content refers to the relative difference in observed se-
quence at that position relative to what is expected, so high
Information Content means that a position is likely to influ-
ence enzyme preference. Bases that have a value lower than
a given Information Content threshold are excluded from
the mask. Finally, the resulting ‘forward’ mask is combined
with it’s own ‘reverse’ mask. Therefore, a position in k-mer
mask is unmasked if it is unmasked in either the forward or

the reversed mask. This is necessary since during the execu-
tion of the seqOutBias program we do not know the orien-
tation of each specific site.

This approach is ideal for assays where a single enzyme,
such as DNase-seq and TACh-seq, will free DNA ends and
sequencing will produce reads in both directions. The result-
ing matrix provides candidate positions that are influencing
the enzyme specificity. This approach: (i) assumes that the
mask is symmetric; (ii) requires a full counts table (all po-
sitions unmasked) as input; and (iii) requires multiple runs
of the same computation with random starting sites, which
are automatically done in parallel, to ensure a reasonably
good global optimum for the PSWM.

k-mer mask optimization using profiles at PSWMs and hill
climbing optimization. We implemented a hill climbing
method to optimize the k-mer mask. This method takes a
starting k-mer mask and a set of read count tables (one for
each TF) as inputs to guide a greedy search over the space
of possible k-mer masks. The metric we use to evaluate k-
mer masks aims to measure the effect these masks have on
the TF composite profile at the binding sites.

A TF composite profile is the position-wise sum of the
scaled read counts across the set of binding sites. That is,
for k-mer mask m and a given TF t, let ci, j (t, m) be the
scaled read count at position j of the binding site i, then the
TF profile is the vector Gt (m) = [g j (t, m)] where:

g j (t, m) =
∑

i

ci, j (t, m)

We define our metric Mt(m), as the sum of the per-TF
profile standard deviation:

MT (m) =
∑

t

√√√√√
⎛
⎝ Nj∑

j=1

(
g j (t, m) − Gt (m)

)2

⎞
⎠ /

(
Nj − 1

)

Let H(m) be the set of masks that differ from m by only
one X being changed to N (i.e. by unmasking an additional
position). The search procedure, given a starting mask m0
(for example the mask of all X, indicating that all positions
in the mask are excluded from the k-mer), is simply the it-
eration:

mk+1 = argmins ∈ H(mk) MT (s) ,

stopping when there are no more masked X positions in the
current mask.

This empirical approach requires many k-mer mask
evaluations, which correspond to complete runs of se-
qOutBias. Our implementation allows running multiple
instances of seqOutBias in parallel (see mc.cores pa-
rameter in https://raw.githubusercontent.com/guertinlab/
seqOutBias/master/docs/R/seqOutBias hcsearch.R).

SeqOutBias application programming interface (API)

We structured the code into two parts: a main library (se-
qoutbiaslib) and the command line program (seqOutBias)
implemented using the main library. This split allows the
code to be reused to implement different interfaces with
similar functionality or as a component in a larger program.
The library is exposed as both a Rust library and a C library.

https://raw.githubusercontent.com/guertinlab/seqOutBias/master/docs/R/seqOutBias_hcsearch.R
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The Rust interface includes everything used to build the
main program. The code is split into a series of modules
which correspond to the subcommands of seqOutBias:

- tallyrun––code to execute GenomeTools (17) to produce
the mappability file

- tallyread––code to read and access the mappability infor-
mation

- seqtable––code to read and write seqtable files to disk
- fasta––code to read in the FASTA file, combine it with

the mappability information, and produce the seqtable file
(via calls to the seqtable module)

- filter––code to filter BAM records based on features such
as length, quality, etc.

- counts––code to tabulate k-mer counts
- scale––code to compute read pile-ups and scale them ap-

propriately
- bigwig––code to write the chromInfo and wiggle files and

convert them to a bigWig file using the wigToBigWig pro-
gram

The C API exposes the ability to generate a seqtable file
and query pile-ups in memory without the need to write
them to disk. The C API exposes two query functions, one
to query specific genomic coordinates and one that returns
a full chromosome as an array. The C library and the cor-
responding header files are built as part of the main com-
pilation process and can be linked as typical for C libraries.
Functions can be grouped into four sets:

i) Functions to manage the seqtable generation parame-
ters.

ii) A function to create a default set of pile-up generation
parameters.

iii) A function to generate the seqtable file.
iv) Functions to generate and query the pile-ups.

Deproteinized DNA ATAC-seq

The naked DNA ATAC-seq library was prepared as previ-
ously described (7) with several modifications: (i) we used
purified genomic DNA, as opposed to crude nuclei isola-
tions; (ii) we omitted IGEPAL CA-630 from all buffers; and
(iii) we performed PCR cleanup using AMPure XP beads
to select DNA <600 bp. The naked DNA ATAC-seq data
were deposited in the Gene Expression Omnibus (GEO)
database, with accession number GSE92674.

Installation and analyses

The user guide and install instructions are available
through GitHub: https://guertinlab.github.io/seqOutBias/
seqOutBias user guide.pdf.

The analyses presented herein are reproduced in
full with rationale in the accompanying seqOut-
Bias PDF vignette on GitHub: https://guertinlab.
github.io/seqOutBias/seqOutBias vignette.pdf. We
also provide a website version of the vignette:
https://guertinlab.github.io/seqOutBias Vignette/.

RESULTS

Correction of individual DNase-seq reads

DNase-seq measures the accessibility of the phosphodi-
ester backbone of DNA at single-nucleotide resolution
(1,2,9,19). Composite DNase-seq profiles that are centered
on sequence motifs of TF binding sites accentuate molecu-
lar features that inform on TF binding properties. For ex-
ample, DNase footprints are defined as depletions of sen-
sitivity within large regions of hypersensitivity; footprints
align with TF recognition sites and result from TF interac-
tions with DNA (20,21). High-throughput DNase-seq ex-
periments described a cleavage pattern at the footprint that
was interpreted as a measure of TF/DNA interactions (9);
however, subsequent work attributed these artifactual sig-
natures to differential substrate specificity of DNase con-
ferred by the presence of the TF motif (10–12). As a result,
some footprint detection programs now incorporate se-
quence biases into their algorithms (12,14,15,22). SeqOut-
Bias provides the option to correct enzymatic sequence bias
prior to footprint detection and the output files can be used
with future footprinting algorithms.

Previous studies used a hexamer (11) and a tetramer (10)
centered on the DNase cut site to account for the intrinsic
sequence bias of DNase. We systematically explored how
the individual bases within a 10-mer contribute to the pref-
erence of DNase (see ‘Materials and Methods’ section). We
found that there was little Information Content beyond po-
sition 3 from the DNase cut site (Supplementary Figure
S2A and B). This EM method identifies candidate positions
that contribute to enzyme specificity based on sequence
content, so we sought to directly test how each position in
the mask contributes to the smoothing of the composite
profiles. For each TF PSWM, we computed the standard
deviation for the profile obtained by summing the scaled
reads across all sites at each position in the PSWM (see
Methods). We summed these standard deviations across a
set of PSWMs as a metric to determine the contribution of
each position to DNase preference. We found only a modest
improvement beyond tetramer correction (Supplementary
Figure S2C).

We scaled individual reads based on the preference of
DNase using seqOutBias and a 6-mer correction factor
(Figure 2). Figure 2A illustrates that DNase prefers to nick
the sequence CCTTGC and the read associated with this
window was reduced to an intensity of 0.15. DNase disfa-
vors nicking of GGGGAA, thus the read associated with this
hexamer was scaled to an intensity of 5.6.

DNase sequence preferences are most apparent in com-
posite profiles of DNase cut frequency surrounding TF mo-
tifs. We tested the efficacy of 6-mer correction on DNase-
digested naked DNA (23); corrected profiles of naked DNA
digestion should not exhibit footprints or molecular signa-
tures that result from protein/DNA interactions. We ob-
serve that sharp peaks and troughs are smoothed in the cor-
rected composite profiles for ELF1, GATA3 and MAX mo-
tifs (Figure 3).

True signatures that result from TF/DNA interactions
are not smoothed by seqOutBias. For instance, ChIP-seq
validated CCCTC-binding factor (CTCF) binding sites ex-

https://guertinlab.github.io/seqOutBias/seqOutBias_user_guide.pdf
https://guertinlab.github.io/seqOutBias/seqOutBias_vignette.pdf
https://guertinlab.github.io/seqOutBias_Vignette/
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Figure 2. SeqOutBias scales individual sequence reads and corrected DNase-seq data reveals footprints. (A) The bottom track shows six nick positions from
naked DNA DNase-seq data; each position was found once in the data. The top track reports corrected read intensities, which scale inversely with DNase
sequence preference. (B) The GATA3 binding site (transparent pink) contains sharp peaks within the binding site in uncorrected DNase-seq profiles; a
footprint is present only in the corrected data.
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hibit strong footprints and composite profiles at CTCF mo-
tifs highlight a sharp signature upstream of CTCF bind-
ing (24). This CTCF signature is unaffected after correct-
ing for DNase intrinsic sequence preference (12). We plot-
ted DNase-seq profiles at GATA3 and MAX binding sites
to determine whether true molecular signatures are appar-
ent after intrinsic bias correction (Figure 4). We observe a
clear composite footprint at MAX binding sites in chro-
matin, as expected, this footprint is not present in the naked
DNA digestion (Figure 4A). The MAX footprint is ob-
scured by sharp peaks of hypersensitivity (sequence artifact
signatures) in the raw uncorrected traces (Figure 4A). Indi-
vidual footprints also exhibit these sharp peaks at the site
of TF binding in raw data. At a ChIP-seq validated MAX
binding site we observe a footprint only after correcting for
DNase sequence bias (Supplementary Figure S3). We ob-
serve a sharp DNase signature upstream of GATA3 binding
sites, which is present only in the chromatin digested sam-
ples (Figure 4B). We conclude that this molecular signature
is a result of GATA3/DNA interactions, because this peak
is neither smoothed following seqOutBias correction nor
present in the naked DNA DNase digested sample. Note
that GATA3 does not have an appreciable composite foot-
print, but TF inference algorithms may use TF-specific sig-
natures, as we observe for GATA3, to inform on TF oc-
cupancy and binding intensity. The sharp peak with raw
DNase-seq data within the GATA3 motif obscures foot-
prints at individual GATA3 binding sites (Figure 2B and
Supplementary Figure S4). Bias correction enhances both
the footprint and the signature upstream of the GATA mo-
tif (Supplementary Figure S4). Therefore, correction of in-
trinsic DNase sequence bias highlights true molecular fea-
tures: footprints and sharp hypersensitivity peaks. We pro-
pose that these features can be systematically characterized
for all TFs and used as informative priors when inferring
TF binding profiles genome-wide from enzymatic hypersen-
sitivity data.

Correction of TACh-seq, MNase-seq, ATAC-seq and PRO-
seq data

We characterized and corrected the biases of Benzonase
and Cyanase using Tissue Accessible Chromatin (TACh-
seq) data (6). TACh-seq is a variant of traditional enzy-
matic hypersensitivity assays whereby frozen tissue sam-
ples are treated with either Benzonase or Cyanase endonu-
clease. Benzonase is an endonuclease cloned from Serra-
tia marcescens that functions as a dimer and Cyanase is a
non-Serratia monomeric enzyme. These enzymes are more
highly active under high salt and high detergent conditions,
so these enzymes are more suited for digestion of solid tissue
sample, which requires harsh dissociation treatments. We
corrected TACh-seq data generated from frozen mouse liver
tissue (6). Composite profiles from CEBP-beta, FOXA2
and CTCF binding sites (25–27) in mouse liver indicate that
an eight base pair mask centered on the nick site is suffi-
cient to correct both Cyanase and Benzonase biases (Sup-
plementary Figures S5 and S6). Next, we applied seqOut-
Bias correction to MNase-seq data generated from MCF-7
cells (28). An eight base pair mask abrogates the intrinsic

sequence bias of MNase-seq data (Supplementary Figure
S7).

ATAC-seq is unique among enzymatic accessibility as-
says because each transposition event inserts two sequenc-
ing adapters into the chromatin. Each Tn5 molecule can be
pre-loaded with any combination of the paired-end 1 and
paired-end 2 adapter. Reads that align to the plus and mi-
nus strand are processed separately because the Tn5 recog-
nition site is distinct for plus and minus reads. We applied
seqOutBias correction to published ATAC-seq data from
GM12878 cells (7). We generated and analyzed naked DNA
libraries using the ATAC-seq work flow to measure Tn5
specificity in the absence of chromatin (GEO accession:
GSE92674). We optimized the k-mer mask for ATAC-seq
data by starting with a k-mer mask of 12 X bases flanking
each side of the Tn5 insertion site, then we systematically
changed each X position into a masked N using a hill climb-
ing mask optimization method (see Methods). We chose the
position that results in the lowest summed standard devia-
tions across a set of PSWMs and iterated until we found the
top 11 positions that contribute to Tn5 sequence bias (Sup-
plementary Figure S8). We used the N positions of the 8-
mer NXNXXXCXXNNXNNNXXN for the ATAC mask
because these are the most influential for Tn5 recognition of
plus strand reads (Supplementary Figure S8). The recipro-
cal mask, NXXNNNXNNXXCXXXNXN, is the optimal
8-mer mask for minus strand reads. The sharp ATAC-seq
spikes at the sites of TF binding for SP1, REST and EBF1
(29) are reduced in the corrected data (Supplementary Fig-
ures S9 and 10). The complex nature of Tn5 recognition and
dual loading of adapters, taken together with the incom-
plete smoothing of ATAC composite profiles, suggests that
a simple spaced k-mer correction may not be sufficient to
fully correct Tn5 bias.

PRO-seq couples terminating nuclear run-on assays with
high-throughput sequencing to quantify engaged RNA
polymerase molecules genome-wide at nucleotide resolu-
tion (4). Sequence composition of transcripts may affect run
on efficiency, therefore, the sequence immediately down-
stream of RNA polymerase may influence detection of
RNA molecules. The sequence upstream of RNA poly-
merase could affect ligation efficiency because T4 RNA lig-
ase treatment may exhibit sequence preference. We used se-
qOutBias to scale published PRO-seq data from K562 cells
(30). We specifically used annotated transcripts to calcu-
late expected k-mer frequency, as opposed to genomic k-
mer frequency, because the vast majority of transcription
occurs within gene annotations (31). We found that a k-
mer mask that spans the last three bases of the ligated
RNA molecule and the three bases downstream from RNA
polymerase is sufficient to correct the PRO-seq data (Fig-
ures 5 and 6). RNA polymerase density decreases at the
polypyrimidine tract upstream of the 3′ splice site, which
suggests an increased RNA Polymerase elongation rate at
this tract (Figure 6). These data indicate that in addition
to U2AF (32,33) recognizing the pyrimidine residues in the
pre-mRNA polypyrimidine tract, this tract increases RNA
polymerase elongation rate.

We also observe a sharp peak at position −3 from the 5′
end of exon. This sharp peak is absent using seqOutBias-
corrected reads (Figure 6), therefore we hypothesized that



e9 Nucleic Acids Research, 2018, Vol. 46, No. 2 PAGE 8 OF 12

Distance from MAX Motif center

D
N

as
e 

C
ut

 F
re

qu
en

cy

−20 −10 0 10 20

0.000

0.005

0.010

0.015

0.020

0

1

2

3

Raw

−20 −10 0 10 20

0.000

0.005

0.010

0.015

0.020

0

2

3

Corrected

Naked
Chromatin

Distance from GATA3 Motif center

D
N

as
e 

C
ut

 F
re

qu
en

cy

−20 −10 0 10 20

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.5

1.0

1.5

Raw

−20 −10 0 10 20

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.5

1.0

1.5

Corrected

A

B

footprint

true signature

Figure 4. True molecular signatures resulting from TF/DNA interactions are visible in corrected composite profiles. (A) A true footprint is highlighted in
corrected composite profile (right panel) of DNase cleavage at ChIP-seq confirmed MAX binding sites (29) compared to raw frequency counts (left panel).
The black trace is DNase-digested chromatin and the green trace is DNase-digested naked DNA. As expected, the composite footprint is not detected in
the naked DNA composite. (B) A true molecular signature is highlighted in the corrected composite profile (right panel) of GATA3 binding sites (29). The
signature is exclusively detected in the chromatin digested experiment and may result from GATA3/DNA interaction.

this peak results from either inefficient adenine incorpora-
tion during the nuclear run-on or a preference for cytosine
or uracil during either the run-on or ligation reaction. We
classified 3′ splice acceptor sequences into AAG, CAG and
TAG to generate composite RNA polymerase profiles–note
that very few splice acceptor sequences are GAG, so they
were excluded. The sharp peak at position -3 is exclusively
found in the CAG splice acceptor profile (Supplementary
Figure S11), which indicates that cytosine is preferentially
incorporated during the run-on or preferentially ligated.
We examined the composite profiles at corrected CAG and
TAG splice acceptor sites and we observed that RNA poly-
merase density is higher following CAG splice acceptor sites
(Supplementary Figure S12). This result indicates that the

consensus splice acceptor site, CAG, decreases RNA poly-
merase elongation rate in the 5′ region of the exon.

Genome-wide binding data for CTCF is available for
K562, GM12878, mouse liver and MCF-7 cells (27,29).
Upon correcting for enzymatic sequence bias, the sharp
signature artifacts at CTCF motifs are abrogated in each
molecular genomics dataset we tested (Figure 5). The naked
DNA profiles for ATAC-seq and DNase-seq are not re-
stricted to CTCF-bound sites; all genomic CTCF motifs are
included in these composites (Figure 5). In the chromatin
TACh, DNase and ATAC experiments, we observed pro-
tection resulting in a footprint and a sharp peak upstream
of the CTCF motif. Taken together, we show that seqOut-
Bias effectively corrects enzymatic sequence bias resulting
from a diverse set of molecular genomics experiments.
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Figure 5. SeqOutBias corrects sequence bias at CTCF binding sites associated with DNase (9,23), Tn5 Transposase (ATAC) (7), Benzonase (TACh) (6),
Cyanase (TACh) (6), MNase (28) and T4 RNA ligase (PRO) (4). Upon correcting for enzymatic sequence bias, the artifactual spikes at the CTCF binding
site are abrogated in each molecular genomics dataset we tested. However, in cases of CTCF binding to chromatin, we observe protection that results in a
footprint; note that MNase is not expected to result in a composite footprint. We observe the previously characterized sharp peak upstream of the CTCF
motif and this molecular signature is likely caused by CTCF-mediated enhancement of cleavage activity.
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signature at the 3′ splice site is abrogated. The first base of the exon spans position 0–1 on the x-axis and the sequence bias peak is at position −3.

Enzymatic DNA end repair and ligation bias

We found that the bases upstream and downstream of a
DNase nick site are not equally likely to be detected by se-
quencing (red nucleotides in Figure 1A). In Figure 1A, for
GATGTC we would expect the ratio of reads that begin with
GACCAGATGACA (plus strand) and ATCATATCCCGT
(minus strand) to be approximately equal to one if this site

was nicked repeatedly and there was no enzymatic end re-
pair and ligation bias. We performed this analysis for all in-
stances of each NNNGAC-mer in the genome (Figure 7A)
and all 4096 pairwise combinations of 3-mers (Figure 7B).
Palindromic 6-mers are balanced (Supplementary Figure
S13), but for most 3-mer combinations we identified a pref-
erence for which 3-mer is detected by sequencing, we term
this ‘detection bias.’ We took the top 5% most skewed 6-
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Figure 7. Detection biases are highly correlated between enzymes with similar cut specificities, suggesting that ssDNA overhangs drive enzymatic specificity.
(A) For all sequence-detected DNase-nicked 6-mers that end in GAC we compare the ratio of sequence reads that start with GAC to the oppositely oriented
3-mer. This bias results from enzymatic end repair and ligation sequence preference during the library preparation. (B) The relative bias of all 3-mers
sequenced (the ratio of x-axis 3-mer to y-axis 3-mer). Note that these k-mers are not clustered. (C) This figure plots the values from panel B. The post-nick
sequence preferences are highly correlated between DNase-seq experiments and between Benzonase and Cyanase experiments, but not between DNase
and Benzonase.

mers and generated a composite motif. This motif indicates
that an Adenine in position 4 of the 6-mer is preferentially
sequenced compared to the oppositely oriented nucleotide
in position 3 (Supplementary Figure S14).

Preparing digested DNA for Illumina high-throughput
sequencing requires several enzymatic treatments. T4 DNA
Polymerase treatment removes 3′ overhangs and fills in 3′
recessed (5′ overhang) ends. T4 Polynucleotide kinase phos-
phorylates the 5′ end and Klenow Fragment (3′ to 5′ exo-)
adds a single 3′ adenine overhang. We hypothesized that the
overhanging sequences dictate the detection bias, because
the detection bias is distinct for Benzonase and DNase (Fig-
ure 7C, top panel). Although four nick events are necessary
to sequence a DNA molecule, enzymatic (DNase, Cyanase
and Benzonase) hypersensitivity assays only detect one nick

on each end of the molecule and it is impossible to de-
termine the precise location of the other nicks. By assum-
ing that two enzymes with similar nick specificity (Sup-
plementary Figure S15) will have comparable distribution
of sequence overhangs, we can test the hypothesis that the
overhang sequences contribute to post-nicking enzymatic
treatment biases. We compared this post-nicking bias using
DNase-seq data from two different labs and two different
organisms (Supplementary Figure S15). We also compared
the detection bias of Cyanase and Benzonase, which have
similar sequence preferences (Supplementary Figure S15).
Indeed, digestions with enzymes that have similar nick pref-
erences, which results in comparable distributions of over-
hanging sequences, have highly correlated detection biases
(Figure 7C, bottom two panels and Supplementary Figure
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S16). Importantly, seqOutBias calculates the ratio of ge-
nomic k-mers and experimentally observed k-mers to scale
individual reads and this calculation inherently corrects for
the convolution of biases resulting from multiple enzymatic
steps, including these end repair and ligation biases.

DISCUSSION

We previously described the challenge of interpreting
single-nucleotide resolution DNase-seq data (10,11). Sub-
sequently, groups have developed algorithms that consider
this bias for DNase-seq footprinting detection (12,22).
However, this is the first report of stand-alone software that
specializes in correcting sequence bias for a diverse set of
molecular genomics datasets. SeqOutBias is a command
line tool and designed for a UNIX environment, making
the software compatible for seamless integration into exist-
ing high-throughput sequencing analysis pipelines. SeqOut-
Bias is conceptually and mathematically simple, effectively
counting k-mer occurrences and scaling data accordingly.
This calculation sufficiently corrects biases associated with
many different assays. However, we anticipate that subse-
quent software may incorporate more complex calculations
and models into data correction. For instance, RNA hair-
pins may affect the efficiency of ligating adapter to RNA us-
ing T4 RNA ligase. Due to the complexity of secondary and
post-secondary RNA structure predictions (34), we suspect
that more sophisticated models are necessary for correction
of datasets such as PRO-seq.

Enzymatic hypersensitivity assays have the potential to
identify regulatory elements genome-wide and infer TF
binding intensity at each regulatory element. Four features
of enzymatic hypersensitivity assays can aid in TF binding
inference: (i) the presence of a TF’s recognition motif; (ii)
the raw enzyme cleavage frequency in the region surround-
ing the motif; (iii) a depletion in sensitivity at the motif
(footprint); and (iv) the presence of TF-mediated molecu-
lar signatures (sharp peaks and valleys) that surround the
motif. Correction of enzymatic sequence bias provides a
more accurate measurement of all these features except se-
quence composition. Correction of intrinsic experimental
biases will prove important as the field continues to refine
experiments and algorithms to more accurately infer TF
binding intensity genome-wide from enzymatic hypersensi-
tivity data.

In conclusion, we and others have previously shown that
enzymatic sequence preferences can be misinterpreted as
biologically important phenomena (10–12). Sequence bias
correction is an important step in analyzing high resolution
molecular genomics data and we introduce seqOutBias as
flexible and novel software that efficiently characterizes bi-
ases and appropriately scales individual sequence reads.
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