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Abstract

Background: An increasing number of studies reported that exogenous miRNAs (xenomiRs) can be detected in
animal bodies, however, some others reported negative results. Some attributed this divergence to the selective
absorption of plant-derived xenomiRs by animals.

Results: Here, we analyzed 166 plant-derived xenomiRs reported in our previous study and 942 non-xenomiRs
extracted from miRNA expression profiles of four species of commonly consumed plants. Employing statistics
analysis and cluster analysis, our study revealed the potential sequence specificity of plant-derived xenomiRs.
Furthermore, a random forest model and a one-dimensional convolutional neural network model were trained
using miRNA sequence features and raw miRNA sequences respectively and then employed to predict unlabeled
plant miRNAs in miRBase. A total of 241 possible plant-derived xenomiRs were predicted by both models. Finally,
the potential functions of these possible plant-derived xenomiRs along with our previously reported ones in human
body were analyzed.

Conclusions: Our study, for the first time, presents the systematic plant-derived xenomiR sequences analysis and
provides evidence for selective absorption of plant miRNA by human body, which could facilitate the future
investigation about the mechanisms underlying the transference of plant-derived xenomiR.

Keywords: miRNA, Plant-derived xenomiR, Cross-kingdom regulation, Selective absorption, Statistics analysis,
Machine learning

Background
miRNAs and their gene expression regulation function
in eukaryotes is one of the most important discoveries in
recent years [1]. It has been well established that en-
dogenous miRNAs could degrade or silence mRNAs to
mediate gene expression by binding RNA-induced silen-
cing complex (RICS) in a sequence-specific manner [2].
Meanwhile, although still controversial, new hypotheses
about extracellular miRNA have been continually pro-
posed, e.g., exosomal miRNA [3, 4], circulating miRNA
[5, 6] and exogenous miRNA (xenomiR) [7, 8].

Due to the possibility of cross-kingdom regulation,
plant-derived xenomiR hypothesis has received great at-
tention since first proposed in 2012 [7]. Plant-derived
xenomiRs were defined as the miRNAs derived from
plants which are capable of transferring into human or
animal bodies. Subsequently, plant-derived xenomiRs
have been detected in different tissues or body fluids of
several species of animals, including human [7], mice
[7], pig [9], panda [10] and silkworm [11]. And their
relevance to many diseases, such as cardiovascular dis-
eases [7, 12], tumor [13, 14], chronic-inflammation [15],
influenza [16], benign prostatic hyperplasia [17] and pul-
monary fibrosis [18], were also proposed. However,
many mechanisms of plant-derived xenomiRs in keeping
stable in gastrointestinal (GI) track, transferring across
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GI track, entering cells or being secreted by cells are still
unknown. Of note, negative results have also been re-
ported in some biological experiments and computa-
tional analyses, making this issue very contentious.
Some biological experiments-based studies claimed the
plant-derived miRNAs detected in animal samples were
contamination during experiments instead of bona fide
xenomiRs [19–24]. Of interest, exogenous non-diet de-
rived miRNAs were detected in insects [25] and it has
been argued that plant miRNAs in animals are artefac-
tual due to sequencing methodology. Some computa-
tional analyses also showed that plant-derived xenomiRs
were divergent from reality [21, 25, 26]. For instance,
Tosar [21] reported the amount of plant miRNAs in 3
human spermatozoa samples reached extreme, biologic-
ally meaningless level. Though it is still a controversial
issue, the new findings about xenomiRs never stop.
Emerging evidence suggests that the species of plant
miRNAs detected in animals are limited, although the
total species of miRNAs of a single plant is often more
than several hundred, for example 713 species of miR-
NAs have been identified in Oryza sativa (osa) so far
[27]. Only 25 species of plant miRNAs were detected by
Zhang et al. [7], although their samples pooled 80 hu-
man serum (8 samples, each sample pooled from 10
humans). In another study of Zhang et al. [28], where
plant miRNAs in human plasma were examined by
qRT-PCR after donors had drunk fruit juice, 10 species
of plant miRNAs were detected, whereas 16 species of
plant miRNAs could be detected in the fruit juice. Simi-
larly, limited species of maize miRNAs were detected
using qRT-PCR in the serum and tissues of pigs feed
with fresh maize for 7 days [9]. With TA-cloning and
Sanger sequencing, only a part of species of
mulberry-derived miRNAs were detected in hemo-
lymphs of silkworms which were fed with mulberry
leaves [11].
In fact, besides natural plant miRNAs, many species of

synthetic plant miRNAs or mimic plant miRNAs that
are identical or similar to natural plant miRNAs, were
also reported to be able to transfer into and keep stable
in animal bodies. Chin et al. [13] suggested that both
natural plant miR159 and synthetic oligos, with the same
sequence as miR159, were capable of transferring into
human breast cancer cells. Similarly, the synthetic
miR166b were detected in silkworm hemolymph [11]. A
recent study reported that 3 species of mimic plant miR-
NAs (mmu-miR34a, mmu-miR143 and mmu-miR145)
can also transfer into mouse body by oral administration
[14]. Many reports suggested that MIR2911 could be sig-
nificantly taken in by human and animals, which was at-
tributed to its unique sequence [16, 29, 30], and the
disruption of the MIR2911 sequence by two nucleotides
abolished its absorption [31]. Yang et al. [30] suggested

that not all miRNAs, but miRNAs with certain features
could keep stable in GI tract of animals, and randomly
synthesized miRNA-like sequences would be degraded
quickly after injected in animals.
The discoveries described above imply the selective ab-

sorption of plant miRNAs by animals, i.e. only plant miR-
NAs with specific sequence could be absorbed by specific
species of animals, which also provides an explanation for
studies that reported the un-detectability [25, 32] of several
plant miRNAs in animals. In this paper, we first systematic-
ally studied the sequence differences between the plant
miRNAs which can transfer (xenomiR group) and cannot
transfer (non-xenomiR group) into human bodies using
statistics methods. Significant difference was found in 28
sequence features between the two groups, which suggested
the potential patterns underlying the plant-derived xeno-
miR sequences and a possible link between these patterns
with selective absorption of xenomiRs. Subsequently, a ran-
dom forest (RF) model and a one-dimensional convolu-
tional neural network (1D-CNN) model were trained to
distinguish the two groups. Both models successfully distin-
guished between xenomiRs and non-xenomiRs with high
accuracy. They were then used to predict potential
plant-derived xenomiRs on unlabeled plant miRNAs, and a
total of 241 plant miRNAs were identified as xenomiRs by
both models. Finally, we analyzed the functions of the 241
predicted along with 166 previously reported xenomiRs in
human body. Taken together, we report the first systematic
plant-derived xenomiR sequences analysis, and the results
provide evidence for selective absorption of plant miRNAs
by human body. In addition, we propose the first list of
high-probability xenomiRs, which further enables more ro-
bust decisions regarding plant miRNAs candidates for ex-
perimental validation and facilitates future investigation
about the mechanisms of xenomiRs transferring into ani-
mal bodies.

Results
Datasets and feature extraction
For sequence comparison, we collected 166 xenomiR se-
quences (positive samples) and 942 non-xenomiR se-
quences (negative samples). All 166 xenomiRs
(Additional file 1: Table S1) were collected from our previ-
ous study [33], which were obtained from 388 healthy hu-
man samples analyzed by a rigorous bioinformatics
pipeline. These miRNAs covered almost all the reported
plant-derived xenomiRs so far. Regarding non-xenomiRs
(negative samples), no off the shelf dataset is available at
present. To obtain the non-xenomiRs as accurately as
possible, we carefully selected the miRNAs that have
never been detected in human from osa, Zea maize (zma),
Glycine max (gma) and Arabidopsis thaliana (ath) (see
“Methods”), which are either staple food or the plant
closely related to common vegetables (see “Discussion”).
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In total, 942 miRNAs (Additional file 2: Table S2) were la-
beled as non-xenomiRs. For both positive and negative
samples, we extracted the length, nucleotide positions, 1~
3 nt motif frequency in full miRNA sequences and 1~ 2 nt
motif frequency in miRNA seed regions (Additional file 3:
Table S3). All these features are widely used in miRNA as-
sociated researches.

Statistical analysis of the differences between xenomiRs
and non-xenomiRs
Considering the similarity of the members in the
same miRNA family, we first studied the miRNA fam-
ilies to which the xenomiRs belong according to the
miRNA families classified by miRBase [27]. In total,
49 miRNA families were mapped by xenomiRs (Add-
itional file 4: Table S4), among which 8 (Fig. 1) cov-
ered more than half of the 166 xenomiRs. In mir168
family, up to 41.2% miRNAs (7 out of 17 miRNA se-
quences) were mapped by xenomiRs. These results
suggested that xenomiRs are likely to enrich in spe-
cific miRNA families, rather than randomly distrib-
uted among all miRNA families. That may be caused
by the common sequence features in miRNA families.
Further, we explored the differences between xeno-

miRs (Additional file 1: Table S1) and non-xenomiRs
(Additional file 2: Table S2) in terms of nucleotide pos-
ition. The percentages of the 4 kinds of nucleotides (ad-
enine (A), cytosine (C), guanine (G) and uracil (U)) in
each position were obtained for each group (Fig. 2), re-
spectively. It can be found that the percentages of nu-
cleotides are different in xenomiRs and non-xenomiRs,
especially the percentages of pyrimidines (U at the 1st,

7th, 9th, 13th, 15th~17th position, and C at the 3rd,
4th, 5th,6th, 9th, 13th, 15th~22nd position), suggesting
the difference in position features between the two
groups. Hypothesis tests were also performed on all the
other features listed in Additional file 3: Table S3 for
further comparison. In total, 23 out of 105 features
were significantly different between the two groups
(p < 0.01, false discovery rate (FDR) corrected), as listed
in Table 1, including, C content, U content, six different
2-mer motifs, twelve kinds of 3-mer motifs and three kinds
of 2-mer motifs in seed region. It can be found that, com-
paring with non-xenomiRs, the contents of most motifs
(1~ 3 mer) with C nucleotides are higher in xenomiRs, yet
the contents of most motifs with U nucleotides are lower.
Besides, the sequence length of xenomiRs is also signifi-
cantly shorter than that of non-xenomiRs. Taken together,
our results suggested that xenomiRs and non-xenomiRs are
separable in sequence feature space.
To easily observe the multi-dimensional feature differ-

ences between xenomiRs and non-xenomiRs, linear dis-
criminant analysis (LDA) was performed to visualize the
differences in lower dimension. We selected all features ex-
cept position features listed in Additional file 3: Table S3 to
describe miRNA sequences, and the density of LD1 was
shown in Fig. 3. Overall, the xenomiRs and non-xenomiRs
could be separated with partial overlap in the middle, and
the distribution of xenomiRs is more compact (p < 2.2e-16,
see “Methods”) than that of non-xenomiRs. To better
distinguish xenomiRs and non-xenomiRs for accurately
predicting potential xenomiRs, two more complicated
models, random forest and one-dimensional convolutional
(1D-CNN) neural network were employed.

Fig. 1 The top 8 plant miRNA families that contain the most xenomiRs. More than one half of xenomiRs belong to these 8 miRNA families. In
mir168 family, up to 41.2% miRNAs (7 of 17 miRNA sequences) were mapped. All redundant sequences were removed from each RNA family
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Model building and training
In our RF model, 1~ 3 mer motifs in full miRNA se-
quence, 1~ 2 mer motifs in seed region and the length of
miRNA were employed as inputs. The number of decision
trees and the number of features randomly sampled as
candidates at each split were set to 501 and 6, respectively.
The framework of our 1D-CNN is summarized in Fig. 4
(see “Methods”), which contained 2 convolutional layers,
1 flatten layer, 2 dense layers and 1 output layer. We
encoded the four kinds of nucleotides by one-of-K fashion,
and for each miRNA sequence, the codes of the first 18
nucleotides of a raw miRNA sequence were flattened
into a one-dimensional vector, which was used as inputs
(see “Methods”). Furthermore, L2 regulation and drop-
out [34] strategy were employed to relieve 1D-CNN
model from overfitting, and the hyper-parameters used
in our 1D-CNN model were determined using Bayesian
optimization method.

Performance evaluation
An independent test set containing 25 positive sam-
ples (15% of all positive samples) and 25 negative
samples, which were randomly selected from positive
and negative samples, was used only in testing
process, and all the other samples consisted of the
training set (Table 2). To deal with the imbalance be-
tween positive and negative samples in training set
(141 versus 917), an oversampling strategy was
employed (see “Methods”).
An independent test set containing 25 positive samples

(15% of all positive samples) and 25 negative samples,
which were random selected from positive and negative
samples, was used only in the testing process, and all the
other samples were used for training.
To compare model performance, our RF model and

1D-CNN model were trained and tested under the
same training set and testing set. As shown in Table 3,

Fig. 2 Nucleotide position comparison between xenomiRs and non-xenomiRs. Percentage of the four kinds of nucleotide at each position of a)
166 xenomiRs and b) 942 non-xenomiRs
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Table 1 Sequence feature comparison between xenomiRs and non-xenomiRs

Feature p value (Wilcox-rank-sum test) FDR Mean (positive) Mean (negative)

C 1.27E-05 1.66E-04 0.254699729 0.206518506

U 1.03E-03 5.16E-03 0.242165895 0.276586575

AC 8.49E-04 4.69E-03 0.053561834 0.042817287

AU 3.95E-04 3.13E-03 0.051751301 0.068725933

CA 1.23E-10 6.46E-09 0.085152137 0.060351853

GC 1.00E-03 5.16E-03 0.065351632 0.056254644

GU 2.35E-07 4.11E-06 0.034289003 0.057152059

UA 1.13E-09 3.97E-08 0.021754371 0.045343654

AGC 2.00E-05 2.33E-04 0.026437639 0.016911021

CAC 1.27E-07 2.67E-06 0.019516663 0.010089057

CAG 5.85E-11 6.15E-09 0.027642769 0.013855275

CCC 2.41E-04 2.30E-03 0.016600043 0.007669506

GAA 1.32E-03 6.04E-03 0.028207567 0.022570777

GCA 8.94E-06 1.34E-04 0.027717889 0.016944631

GGU 5.00E-04 3.27E-03 0.00755333 0.015033431

GUA 5.30E-04 3.27E-03 0.003583374 0.01049709

UAA 4.42E-04 3.13E-03 0.003479138 0.010353066

UAU 7.81E-09 2.05E-07 0.001510348 0.013291427

UUA 4.47E-04 3.13E-03 0.003682193 0.01009223

UUU 1.09E-03 5.18E-03 0.010166663 0.021144843

GU (seed) 4.75E-05 4.98E-04 0.031124498 0.060686483

GA (seed) 3.27E-04 2.86E-03 0.123493976 0.088110403

UA (seed) 8.28E-04 4.69E-03 0.016064257 0.037508846

Feature comparison was performed between xenomiRs and non-xenomiRs, and 23 features with FDR less than 0.01 were listed. Bold indicates the values are
higher and non-bold indicates lower in xenomiRs than non-xenomiRs

Fig. 3 Dimension reduction of features extracted from xenomiRs and non-xenomiRs. Dimension reduction of features extracted from xenomiRs
and non-xenomiRs was performed using LDA to show the differences between them. Overall, the xenomiRs and non-xenomiRs could be
separated with partial overlap in the middle, and the distribution of xenomiRs is more compact than that of non-xenomiRs
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both models achieved relatively high accuracy, and
their performance was comparable. The RF model
achieved better SN (0.920), at the cost of lower SP
(0.560). The SN of 1D-CNN model (0.880) is lower
than that of random forest model, however, the speci-
ficity is much higher (0.680). In the meantime, our
1D-CNN model achieved higher ACC (0.780) and
MCC (0.574) than RF model, but the AUC under the
ROC curve is lower (0.817) (Fig. 5a). To further en-
sure that our models were independent of training
and testing sets, a 5-fold cross-validation was per-
formed. Comparable results were obtained for both
RF and 1D-CNN models, as shown in Fig. 5b and
Table 3.
We further obtained the top 10% most important fea-

tures evaluated by mean decrease accuracy and mean
decrease Gini obtained from our RF model (Add-
itional file 5: Table S5). The important features identified
by both methods are highly consistent (7 out of 10) and
also in line with the features that show significant differ-
ence between the xenomiRs and non-xenomiRs (Table
1). Among them, the motif ‘CAG’ was evaluated as the
most important feature by mean decrease Gini, and it
was also the only 3 mer motif feature evaluated by mean
decrease accuracy method.

Prediction of potential xenomiRs from unlabeled plant
miRNAs and xenomiR potential target analysis
Both RF model and 1D-CNN models were used for pre-
dicting potential xenomiRs from all unlabeled 3695 plant
miRNAs (Additional file 6: Table S6) with unique se-
quences in miRBase [27] (see “Methods”). In total, 643
and 555 miRNAs were predicted as xenomiRs by RF and
1D-CNN models, respectively, and 241 miRNAs (Add-
itional file 7: Table S7) were predicted by both models
(Additional file 8: Figure S1). Being conservative, we only
considered these 241 miRNAs as predicted xenomiRs.
Further, we analyzed the potential functions of all possible
xenomiRs in human bodies, including 166 previously re-
ported xenomiRs (Additional file 1: Table S1) and 241 pre-
dicted xenomiRs (Additional file 7: Table S7). Specifically,
we firstly obtained the potential target genes of xenomiRs
using miRanda [35] and RNAhybrid [36], which are com-
monly used miRNA target prediction tools. The 2194
unique target genes (Additional file 9: Table S8) identified
by both tools were regarded as high-probability targets
(see “Methods”). Subsequently, gene ontology analysis was
employed to annotate the biological processes enriched by

Fig. 4 The architecture of our 1D-CNN model. This model consists of two convolutional layers, one flatten layer, two dense layers and one
output layer

Table 2 Training set and testing set

Data set Class # of miRNAs Data source

Training Positive 141 Literature [33]

Negative 917 miRbase, GEO

Testing Positive 25 Literature [33]

Negative 25 miRbase, GEO

Table 3 Accuracy comparison between RF model and 1D-CNN
model on test set and 5-fold cross-validation set

Model SN SP ACC AUC MCC

Independent test set RF 0.920 0.560 0.740 0.866 0.547

1D-CNN 0.880 0.680 0.780 0.817 0.574

5-fold CV RF 0.901 0.666 0.736 0.840 0.538

1D-CNN 0.859 0.712 0.766 0.794 0.543

ACC, SN, SP, AUC and MCC indicate accuracy, sensitivity, specificity, area under
the ROC
curve and Mathews correlation coefficient, respectively
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the target genes (see “Methods”). The top 20 most sig-
nificantly enriched biological processes were shown in
Fig. 6a. It can be seen that the target genes are likely
related to the development, differentiation, regulation
of neural system, and the regulation of circulation
system. Similarly, pathway enrichment analysis was
employed to find potential biological pathways in-
volved by xenomiRs, and the top 20 most significantly
enriched pathways were shown in Fig. 6b. Results in-
dicated that the target genes are related to endocrine,
cancer and inflammatory regulation pathways.

Discussion
We have conducted the first systematic analysis of se-
quence differences between xenomiRs and non-xenomiRs,
and significant difference was found, which argued in
favor of the selective nature of the absorption of xenomiRs
and its relation with miRNA sequences. We have then
shown the feasibility of distinguishing between xenomiRs
and non-xenomiRs based on miRNA sequences using ma-
chine learning models. High accuracies were achieved by
both random forest model and 1D-CNN model. This
could serve as a valuable tool for predicting potential

Fig. 5 ROC curves for performance comparison. ROC curves for performance comparison between RF and 1D-CNN models by (a) test set and (b)
5-fold cross validation, respectively
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xenomiRs that have not yet been discovered, based on
which further biological experiments could be conducted
for validating their ability of transferring into human
bodies and more importantly, exploring their potential
functions. The important features of xenomiRs identified
here might offer insights into underlying mechanisms of
xenomiRs transferring into and keeping stable in animal
body. In addition, we have provided the first list of
high-probability xenomiRs as well as their potential func-
tions. Of interest, the functions of the predicted targets of
these xenomiRs seem to be consistent with previous stud-
ies (see details below). We have shown in our previous
paper [33] that the plant miRNAs detected in human bod-
ies are tissue-specific and cannot be fully explained by
contamination and provided evidence for the xenomiRs
hypothesis. The selective absorption of plant miRNAs by
animal bodies could provide an explanation for studies

where xenomiRs were not detected in animal bodies. If
more plant-derived xenomiRs in different human tissues
are available, our 1D-CNN model could be adjusted
slightly using transfer learning [37] to learn the different
patterns of plant-derived xenomiRs in different tissues.
Thus, the channel tropism proposed in Inner Gannon of
Huangdi [38] may be better explained, and the corre-
sponding tissues, where a specific herb function may also
be predicted.
More than one hundred species of xenomiRs have

been reported so far, however, more species of xenomiRs
remain to be discovered, especially those in the plants
seldom consumed, such as traditional medical herbs.
The discovery of xenomiRs in traditional medical herbs
has great significance in better understanding of the
mechanisms underlying the therapeutic function of these
herbs. Therefore, to predict the potential xenomiRs

Fig. 6 Enriched biological processes and KEGG pathways. The top 20 enriched biological processes (a) and the top 20 KEGG pathways (b) shown
by Gene Ontology analysis pathway enrichment analysis, respectively
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using machine learning model is of great significance.
However, since no off the shelf data were available, we
collected xenomiRs/non-xenomiRs in the following way.
The positive dataset was extracted through a rigorous

pipeline, which includes all plant-derived miRNAs iden-
tified from all sRNA-seq data of healthy individuals in
NCBI GEO database (before 2016). It accorded well with
the xenomiRs reported in human tissues [33]. Hence,
the positive dataset contained currently reported
plant-derived xenomiRs in common food. It is likely that
some plant-derived xenomiRs were not included in the
positive dataset due to their low abundance under nor-
mal condition. However, it is still the optimum choice
given current scientific advances.
The collection of negative data, on the other hand, is

less straightforward. We chose miRNAs from plants that
are human everyday diet or closely related to common
vegetables, but have never been detected in human sam-
ples. There might exist xenomiRs remain undetected, due
to either the inability of current detection technique or in-
appropriate experimental conditions, such as the time
after oral administration or amount of food taken in. To
maximally avoid false negatives in our negative dataset, we
included only “non-xenomiRs” in four species that can be
regarded as everyday diet, i.e. ath, gma, osa and zma (ath
is closely related to common vegetables, such as Brassica
rapa, Brassica oleracea, Brassica juncea and Oilseed rape).
Therefore, the selection of negative dataset is based on
current advances in plant-derived xenomiRs. Of note, we
cannot rule out all false negatives, which might limit the
accuracy of our models.
However, the identification of these false positives/neg-

atives requires biological verification, which is time con-
suming due to the enormous number of candidates. Our
model, although imperfect, could serve as the first and
efficient tool for selecting the most probable ones for
further experimental verification. The verified xenomiRs
or non-xenomiRs could, in turn, be fed to our model,
and thus improve its accuracy.
The 166 xenomiRs in the positive dataset are from 49

miRNA families and 55.3% are from 8 miRNA families
(Additional file 10: Table S10). For non-xenomiRs in the
negative dataset, 48% are from these 49 miNRA families
but only 19.0% are from the top 8 families containing
xenomiRs (Additional file 10: Table S10). In the predic-
tion set, 201 (83.4%) additional members of these 49
miRNA families have been predicted as xenomiRs,
among which 123 (50.9%) are from the top 8 families
(Additional file 10: Table S10). It can be seen that both
collected and predicted xenomiRs concentrate in limited
and similar group of families.
In feature extraction, each sequence was assumed to have

24 nt. The choice of 24 nt was not arbitrary. We tried to
use the fist 21 nt ~ 23 nt as well as the last 21 nt ~ 23 nt of

each miRNA sequence as the sequence position features,
for better capturing 5′ end and 3′ end absolute sequence
position features, respectively. The final choice was made
upon the model performance, i.e. training our models using
24 nt could slightly outperform the other cases. Further-
more, only 0.047% plant miRNAs for prediction are longer
than 24 nt. Thus, truncating the part of miRNAs longer
than 24 nt had minor effect on the performance of our
models. We chose sequence-based features because they
are very commonly used to characterize miRNAs and play
essential roles in the function of miRNAs. They might also
affect miRNAs’ ability of entering human body. This moti-
vated us to investigate the difference in sequence-based fea-
tures between xenomiRs and non-xenomiRs. Our results,
indeed, confirmed that existence of significant difference
between these two groups of miRNAs (Table 1).
The structure-based features of miRNAs were also tried

to use in training our models. However, because a miRNA
is very short, most of them cannot construct a stable sec-
ondary structure, which was verified by predicting miRNA
secondary structures using both RNAfold [39] and our
previously published tool Fledfold [40, 41]. Nevertheless,
adding secondary features of pre-miRNA, including stem
features, hairpin loop features, bulge loop features, in-
ternal loop features and energy (stability), did not improve
model performance. There are two possibilities resulting
in this. First, the ability of miRNA entering human body
has little to do with the secondary structure of a
pre-miRNA. Alternatively, the sample size might limit the
usefulness of additional features given to the model.
In our study, the positive dataset was composed of

miRNAs from more than 20 species, among which 57%
were from ath, gma, osa or zma. All the negative miR-
NAs were from these four species. Therefore, it is very
unlikely that the models simply perform species recogni-
tion. If the dataset were separated by species (ath, gma,
osa and zma), the positive dataset will be very small
(average 24 miRNAs for each specie), leading to a high
risk of overfitting. A model such like that has poor
generalization ability. Re-training our models using
miRNA data from single species (ath, gma, osa or zma)
verified this thought: the re-rained model performs
much better on training set, compared to testing set (ac-
curacy: 81% VS 62%).
High GC content was reported to be responsible for

the absorption of MIR2911 by animal bodies [29]. More
generally, the high GC content [16] and the short length
could increase the stability of an RNA. Our results con-
firmed this by systematic statistical analysis, revealed
that xenomiRs have higher GC content (p < 0.05) and
shorter length (p < 0.05), compared to non-xenomiRs.
Meanwhile, other differences between xenomiRs and
non-xenomiRs sequences were also identified (Fig. 2,
Table 1). Besides, the important features obtained from
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our RF model (Additional file 5: Table S5) provided
more insights into the patterns of xenomiR sequence.
And if some important patterns are sabotaged, the ab-
sorption might be abolished, as in the case where
miR2911 sequence is disrupted by just two GC nucleo-
tides [31]. In addition, the 3 mer motif ‘CAG’ was evalu-
ated as one of the most important patterns for
distinguishing xenomiRs with non-xenomiRs (Additional
file 5: Table S5), suggesting its possible relation with the
transference or stability of xenomiRs.
These results supported our assumption that

plant-derived miRNAs are absorbed selectively by hu-
man and other animals, and only the sequence of a
miRNA with certain patterns could be transferred into
human bodies. However, further studies are needed to
identify more concrete patterns in xenomiR sequences.
Deep Learning has been widely applied in bioinformat-

ics and obtained satisfactory performance [42, 43]. Our
study used a 1D-CNN model to identify xenomiRs using
only raw miRNA sequences as inputs, and higher predic-
tion accuracy was achieved on independent test set,
compared to RF model, which used 105 hand-craft fea-
tures as inputs. It is likely that 1D-CNN model, which is
capable of extracting the features of successive nucleo-
tides, could capture the specific patterns underlying
xenomiR sequences that contain important information
for identifying xenomiRs.
To uncover the potential role of xenomiRs in human

body, we analyzed the function of predicted targets of
xenomiRs using enrichment analysis tools [44]. Many
identified functions have already been reported by other
studies with bio-experiments. For example, xenomiRs
were reported to be related with cancer [13, 14], inflam-
matory [16, 18], circulation system [7] in human body.
And recent studies reported an association between
xenomiRs with neuron development of pandas [10], and
the caste development of honeybees [45].
This study does not deny the animal-derived xenomiRs

hypothesis. However, animal-derived xenomiRs are much
more difficult to identify because of the high sequence con-
servation, which obscures the differences between dietary
animal miRNAs and endogenous miRNAs [8]. Hence, in
this study, we only studied the plant-derived xenomiRs.
In addition, many other factors could affect the de-

tectability of xenomiRs in human samples, such as,
the miRNA abundance in the consumed plant mate-
rials, the stability of plant miRNAs, the time after
consumption [28] and some special molecules in the
diet consumed along with plant miRNAs [18]. There-
fore, in xenomiR studies, randomly selecting miRNAs
to perform biological verification is risky. The meth-
odology present in this paper could serve as a valu-
able and efficient tool for selecting candidate plant
miRNAs for biological verification.

Methods
Data sets
We collected 166 xenomiRs reported in our previous study
as positive data set [33]. To obtain reliable negative data
set, we collected small RNA sequencing samples of ath,
gma, osa, zma using GEO database [46] and miRBase [27].
Specifically, to decrease the false negatives in the negative
dataset, the miRNAs were carefully selected. Some miRNAs
are only expressed at extreme conditions, such as drought.
Hence, instead of directly selecting the non-xenomiRs in
four species of plants (ath, gma, osa, zma) from miRBase,
we collected non-xenomiRs from 12 sRNA sequencing data
in NCBI GEO database. For convenience, we used the
processed data provided by GEO. Firstly, the miRNA reads
were screened out using miRBase, and abundance of reads
in the last 30% were removed. They are probable false nega-
tives because their undetectability in human body might be
due to the rather low abundance, and removing those miR-
NAs with low abundance could reduce possible false nega-
tives in the negative dataset. Furthermore, we removed the
miRNAs contained in the positive dataset. The remaining
miRNAs constituted non-xenomiRs set for each species
were obtained. We merged the miRNA sets obtained from
different collected samples, resulting in a pooled miRNA
set of four species of plants. In total, 942 non-xenomiRs
were obtained (Additional file 1: Table S1) from the pooled
miRNA set. Each miRNA sequence was unique in either
positive or negative dataset. Besides, removing the miRNAs
labeled as xenomiRs and non-xenomiRs in this study, the
remaining miRNAs (3695) in miRBase [27] with unique se-
quences and length more than 18 (containing 18) nt were
regarded as unlabeled samples and used for xenomiR
prediction.

Feature extraction
In total, 129 features were extracted from miRNA se-
quences, which were listed in Additional file 3: Table S3, in-
cluding sequence length, nucleotide position, 1~ 3 met
motif frequency in both full miRNA sequences and miRNA
seed region (2nd ~ 8th nt). In 1D-CNN model, four kinds
of nucleotide (A, C, G, U) were represented by one-of-K
(K = 4) coding, i.e., binary code ‘0001’ for A, ‘0010’ for C,
‘0100’ for G and ‘1000’ U. Each sequence was assumed to
have 24 nt. The RNAs with the length less than 24 nt were
filled with code ‘0000’ at the end of miRNAs, whereas the
RNAs with longer sequence were truncated. This is because
in both collected positive and negative dataset, all miRNAs
have a length no longer than 24 nt. Besides, a miRNA is la-
beled with 1 if it is a xenomiR or 0 otherwise.

LDA
LDA was performed using 1~ 3 mer motifs in full
miRNA sequence, 1~ 2 mer motifs in seed region and
the length of miRNA. LD1 for each sample was

Zhao et al. BMC Genomics          (2018) 19:839 Page 10 of 13



obtained, and its distribution for both xenomiR and
non-xenomiR groups were shown in Fig. 3. To compare
the degree of compactness for LD1 distribution of the
two groups, any distance of LD1 (LD1 distance) between
two sample within both groups was obtained, and t-test
was performed to test the difference between LD1 dis-
tances of the two groups.

Performance measures
Commonly used metrics were used to evaluate the per-
formance of our models, namely accuracy (ACC), sensi-
tivity (SN), specificity (SP) and Matthews correlation
coefficient (MCC), of which the formulas were summa-
rized in Additional file 11: Table S9. Receiver operating
characteristic (ROC) curves were plotted using SN and
SP, and areas under ROC curves (AUC) were also calcu-
lated to further compare the performance of our models.

One dimensional CNN
Keras framework (https://keras.rstudio.com) was employed
to build our 1D-CNN model. The one-of-K coding of first
L nucleotides were flattened into a single one-dimensional
vector as inputs for our 1D-CNN model. Since the length
of most plant miRNA sequences in xenomiRs or
non-xenomiRs are more than 18 nt, L was set to 18. Hence,
L × K units were used in the input layer. Our 1D-CNN
model consisted of two convolutional layers to extract fea-
tures from the miRNA sequences. After flatting the feature
maps of second convolutional layer, two dense layers were
used, which employed dropout technique and L2 regulation
to avoid overfitting. All the layers used sigmoid function as
activation function except the two-unit output layer, where
softmax function was used. Bayesian optimization was
employed to optimized channel sizes and kernel sizes in
each convolutional layer, number of units in dense layers,
dropout rate and lambda in L2 regulation.
To deal with the imbalance between positive and nega-

tive samples in the dataset, an oversampling strategy was
employed. Given the training samples containing P posi-
tive samples and N negative samples (P < < N), oversam-
pling strategy is as follows. The positive samples were
extended to the number of N by random sampling in P
samples with replacement, meanwhile, all the positive
samples should be sampled at least one time, resulting
in the same number of positive and negative samples.
Hence, the same number (N) of positive and negative
samples were obtained in the training process. When
performing the cross validation, the oversampling
process was conducted inside the validation loop, i.e.,
oversample the minority class after the validation set has
already been removed from the training set. Thus, the
samples in the validation set will not be duplicated and
further used in the training process. Doing this way,
overfitting of the model is avoided.

Targets prediction of plant-derived xenomiRs and
enrichment analysis
We assumed that plant-derived xenomiRs can suppress the
target genes in a working manner of endogenous miRNAs.
Human 3’ Untranslated Regions (3’ UTR) sequences were
downloaded from UCSC Genome Browser database [47].
Miranda [35] and RNAhybrid [36] were employed to pre-
dict the target genes of xenomiRs, both of which are widely
used in miRNA target prediction. And the unique target
genes predicted by both tools were regarded as potential
plant-derived xenomiR targets (S8 Table). Corresponding
gene names were collected for further annotation analysis
and GO annotation. KEGG pathway were performed for
identifying significant enriched (FDR < 0.01) biological pro-
cesses and pathways using “clusterProfiler” package [44].

Conclusion
Taken together, this study showed the sequence differences
between xenomiRs and non-xenomiRs, and provided the
first insights into the sequence specificity of xenomiRs. This
could facilitate our better understanding of mechanisms
underlying the absorption of plant-derived xenomiRs, as
well as the biological processes participated. In addition, we
showed the feasibility of using machine learning models for
predicting potential plant-derived xenomiRs based on
miRNA sequences and made the first attempt to build such
models. Furthermore, this study showed that, in xenomiR
studies, randomly picking plant miRNAs to carry out a
bio-experiment could be risky, in terms of being inefficient,
and the plant miRNAs should be decided with great care,
for example, picking miRNAs in detected xenomiRs (Add-
itional file 1: Table S1) or predicted xenomiRs (Additional
file 7: Table S7) provided in our study.
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